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Abstract: In this paper, we proposed a sub-pixel measurement algorithm based on intensity
integration threshold (IIT). The proposedmethod can localize the sub-pixel edges in an inexpensive
way by calculating the integration of the intensity across the edge and finding the point where the
integration reaches the threshold. Comparative tests show our method realized better efficiency
and robustness in practical applications than other state-of-the-art algorithms.
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1. Introduction

Measurement technology based on computer vision has advantages of non-touch and high
efficiency. Therefore, it has been widely used in industrial productions [1]. A typical computer
vision dimensional measurement system mainly consists of illumination system, telecentric
lens and detectors. In practical measurement vision system, backlight illumination can notably
enhance the contrast of image, and telecentric lens can avoid measurement errors caused by
distortion. Apart from the hardware facilities, whether the dimension of an object can be
measured accurately, depends on the accuracy of image processing algorithms. Therefore, to
improve accuracy, stability and calculate efficiency of the edge extraction algorithm is still an
important task.
Sub-pixel edge detection is of higher accuracy than pixel edge detection in computer vision.

As for traditional methods of sub-pixel accuracy dimensional measurement, researchers often
use pixel edge detection operators (such as Sobel, Canny and LoG) to extract edge pixels, then
calculate sub-pixel edges based on the intensity levels of edge pixels and nearby pixels for
dimensional measurement. Therefore, the fundamental pixel-accuracy edge detection plays an
important role. When the test image is in high quality, both Sobel and Canny will output smooth
and precise edge pixels. Sobel is a simple operator which use only two 3×3 filters without other
sophisticated calculations, and it is faster than Canny.

After edge pixel detection, researchers use the intensity levels of pixel points and their neighbor
pixels to calculate sub-pixel edges. Most of the existing sub-pixel algorithms can be divided
into moment-based methods [2–4], reconstructive methods [5–7] and fitting methods [8–11].
Moment operator has good noise immunity, but it needs large amounts of convolution operation,
so moment operators will cost longer time to find sub-pixel edges. The accuracy of reconstructive
methods mostly depends on the edge model. Among fitting methods, parabolic fitting is in a
relatively high efficiency but it is not precise enough. Erf function fitting is more accurate, but it
also consumes more time [12].

Nowadays, Hagara et al. proposed a sub-pixel algorithm based on approximation of the edge
with erf function [13], compared it with moment-based edge operator, spatial moments, and
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wavelet transform in 1-D images, showed the superiority their method [12]. Fabijańska et al.
proposed a sub-pixel edge detection algorithm reconstructs image gradient function at the edge
using the Gaussian function [14]. Flasia et. al. proposed a method for subpixel straight lines
detection using a version of the Savitzky-Golay filter and determined subpixel edge location by
fitting a Gaussian function to orthogonal sections of the coarse edge image [15]. Von Gioi et al.
proposed a sub-pixel edge detecting algorithm which combines Canny operator and Devernay
sub-pixel correction and chained the obtained edge points [16]. Yang et al. proposed a sub-pixel
measurement system of circle outer diameter based on Zernike moment and quadratic polynomial
interpolation [17]. Seo et al. presents a subpixel edge localization method based on the adaptive
weighting of gradients (AWG) and a method that uses the squared weighting of gradients (SWG),
then combines the SWG and AWG selectively to obtain the best localization [18].

In this paper, we proposed a fast and reliable dimensional measurement algorithm in sub-pixel
accuracy which is different from the existing algorithms. Our method firstly uses Sobel operator
to obtain edge pixels from the test image. Then, it extracts a sequence of pixels across each edge
pixel. Finally, along the sequence of pixels, we calculate the indefinite integral of the pixels’
intensity and the subpixel edge is located where the integral of the pixels reaches the threshold.
The threshold is often determined by erf-function model or physical photo calibrating experiments.
In the experiments, we use a vision system to get pictures of the test objects, compare other
algorithms with ours in edge detection and dimensional measurement, and proved that our
algorithm can effectively realize high accuracy in sub-pixel edge detection and dimensional
measurement.
This paper is organized as follows. Section 2 introduced Sobel operator and our intensity

integration threshold method. In Section 3, we illustrated our vision system, and carried out
experiments using test images we obtained from the vision system to compare the edge extraction
efficiency and accuracy of Sobel operator, Sobel operator + Zernike moment, Sobel operator +
erf function fitting and the method we proposed in this paper. We also evaluated the repeatability
accuracy of our algorithm comparing with Sobel operator + erf function fitting. According to
experimental results, our algorithm shows high precision and great efficiency. Finally, Section 4
concludes this paper.

2. Sub-pixel edge detection

2.1. Sobel operator

Considering both efficiency and accuracy, we choose Sobel operator to extract edges in pixel
accuracy. Sobel operator use two edge detection operators:
Horizontal operator:

Gx = −f (x − 1, y − 1) − 2f (x, y − 1) − f (x + 1, y − 1) + f (x − 1, y + 1)

+2f (x, y − 1) + f (x + 1, y − 1)
(1)

Vertical operator:

Gy = −f (x − 1, y − 1) + f (x + 1, y − 1) − 2f (x − 1, y) + 2f (x + 1, y)

−f (x − 1, y + 1) + f (x + 1, y + 1)
(2)

to perform convolution with the whole picture, as shown in Fig. 1 (a),(b). The output intensity
level of each pixel is

G =
√
Gx + Gy (3)
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If G is greater than the threshold, this pixel can be classified as edge pixel. Meanwhile, the
gradient direction of intensity levels in a point can be calculated as

θ = arctan(
Gx

Gy
) (4)

2.2. Intensity integration threshold algorithm

Firstly, we need to determine the gradient direction of the edge pixels.
As for one edge pixel f (x, y), we get its 3× 3 neighbors, and perform convolution using the

horizontal and vertical operators mentioned above. If Gx(x, y)>Gy(x, y), this point can be defined
as horizontal edge point, we then extract points along the direction where the intensity levels
change along, that is the vertical direction. If Gy(x, y)>Gx(x, y), this point can be defined as
vertical edge point, we then extract points along the horizontal direction.

Along the direction where the intensity levels change, we extract the intensity of nearby points.
Set I as the intensity and l as the location. Figures 2(a) and 2(b) are the I − L figures of the
simulated continuous edge and the dispersed edge. The area of the gray part is the integration we
require.

Fig. 1. Sobel operator (a) Horizontal (b) Vertical

Fig. 2. (a) I − L figure of the simulated continuous edge (b) I − L figure of the dispersed
edge

Then, the intensity integration threshold k needs to be determined. k can be determined by
calibration experiments. After determining k, the pixel intensity values are integrated from left
to right. When the integrated value reaches the threshold, here the position t is the edge position
of the sub-pixel to be measured as showed in Eq. (1).

t∫
0

I(l)dl = k (5)
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In the actual image, although the pixel intensity can be fitted as a continuous curve [as shown
in the Fig. 2(a)], considering the efficiency, we still use discrete intensity values for integration
[as shown in the Fig. 2(b)]. In the calculating process, we simplify the integration to summation.
At first, arrange the intensity from small to large. If a total of N points are taken, a series of

intensity values I1 ∼ IN are obtained. Then, calculate the intensity sum Ens of the first n items,
which is equivalent to integrating the intensity of the first n points.

En =

n∑
i=1

Ii, n = 1, 2, . . . ,N (6)

Find the En,En+1 closest to the threshold, so that

En<k ∩ En+1>k (7)

The sub-pixel edge position l coordinates where the integral just reaches the threshold.

l =
k − En

In
+ n (8)

The flexibility of IIT algorithm is that the number of points N can be determined according
to the blur of the tested edge, and the threshold can be changed according to different lighting
conditions to achieve more accurate sub-pixel edge detection results.

In this paper, to realize best result apply for our vision system, we set the original point as the
center, and get its nearest 6 points for calculating the intensity integration, which means N=7.
The threshold k=0.9 is determined by the calibration process in 3.2.

3. Comparative experiments and accuracy evaluation

3.1. Vision system and the relationship between actual dimensions and pixels

In this part, we make a brief introduction of the vision system we use in this paper.
Our vision system is mainly based on backlight illumination, bi-telecentric lens and CMOS

camera, as shown in Figs. 3 and 4. The outgoing light of the illumination is parallel light, and
part of the light is blocked by the test object. The bi-telecentric lens can be simplified as shown
in Fig. 4. The incident light and the outgoing light of the bi-telecentric lens are both parallel
lights. Consequently, a clear shade formed by test object is projected on the CMOS sensor.

Fig. 3. Experiment device
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Fig. 4. Schematic diagram of optical path

In our vision system, the magnification of the lens β = −0.11. Distance between the bottom
of the test object and the first face of the lens is 80mm. The resolution of the CMOS is
2448px × 2048px, the dimension of each pixel is 3.45µm × 3.45µm.

In the following tests, we use MATLAB on the computer of 8 GB RAM, Intel Core i5-8250U
CPU.
The process of edge detection and dimensional measurement in this part can be described as

follows (Fig. 5):

Fig. 5. The flow chart of our sub-pixel measurement algorithm
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3.2. Calibration

The edge position sought by this algorithm depends largely on the integration threshold. For a
machine vision measurement system, if it can locate the edge accurately, then for any object of
known size, the exact size can be obtained based on the calibration result.

In this part of the experiment, we selected two objects to be measured: the standard rectangular
gauge [Fig. 6(a)] and the inner diameter ring gauge [Fig. 6(b)]. The width of the standard
rectangular gauge is 40mm. The inner diameter of the ring gauge is 3.003mm. the accuracy of
both objects is 0.001mm. During the process of obtaining test pictures, the lighting conditions
remain stable. As shown in Fig. 6, the two objects have such characteristics: the measured
shape of the rectangle standard gauge is a straight edge, and the test area is opaque; the shape we
measure for the inner diameter ring gauge is the inner diameter [ Fig. 7(b)] and the measured
area is transparent [Fig. 7(a)].

Fig. 6. The measured objects (a) rectangle standard gauge (b) inner diameter gauge

Fig. 7. (a) Test image of rectangle standard gauge (b) Test image of inner diameter ring
gauge

Set q = pixel number
size as the relationship between pixels and the actual size of a test object.

The pixel number/size of the rectangle standard gauge is q1, the pixel number/size of the inner
diameter ring gauge is q2. Theoretically, if the selected threshold is appropriate, q1 = q2. If the
selected threshold is too low, the tested light-transmitting area is increased, and the tested opaque
area is reduced, which will cause q1

q2 to be less than 1; otherwise, the ratio will be greater than 1.
Therefore, here we set up an experiment, taking 8 photos of each object under test (Fig. 8), each
time using a different threshold, and using the IIT algorithm to obtain the average dimension.
Then we calculate and list the q of the two test objects, and get the ratio q1

q2 listed in the table
below (Table 1).

As can be seen from Table 1, the experiment conforms our theoretical prediction of the change
of q with threshold k, and we have obtained the threshold value when q1 = q2: k=0.9, and
obtained the calibration result: 1pix corresponds to 0.0389mm. In addition, it can be seen that the
value of the rectangle standard gauge is very stable, because its size is relatively large(40mm), and
the slight change of the edge has little effect on the calibration result. However, the value of the
inner diameter ring gauge changes more drastically, because its size is relatively small(3.003mm),
and the change of the edge position will have a very large impact on the dimensional measurement.
In this part, as a comparison, we introduce erf function fitting algorithm to perform the

same edge detection and dimensional measurement on the two tested objects. Erf function
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Fig. 8. The measured pictures taken on the machine vision measurement device

Table 1. Calibration based on intensity integration threshold

Threshold k q of rectangle standard gauge (q1) q of inner diameter ring gauge(q2) q1
q2

0.1 0.0390 0.0379 1.0290

0.2 0.0390 0.0380 1.0263

0.3 0.0389 0.0381 1.0236

0.4 0.0389 0.0382 1.0209

0. 5 0.0389 0.0382 1.0209

0.6 0.0389 0.0383 1.0183

0.7 0.0389 0.0385 1.0130

0.8 0.0389 0.0387 1.0078

0.9 0.0389 0.0389 1.0000

1.0 0.0389 0.0391 0.9974

1.1 0.0388 0.0394 0.9898

1.2 0.0388 0.0396 0.9848

1.3 0.0388 0.0398 0.9799

1.4 0.0388 0.0400 0.975

1.5 0.0388 0.0402 0.9701

1.6 0.0388 0.0403 0.9677

1.7 0.0388 0.0404 0.9653

1.8 0.0387 0.0405 0.9630

fitting method is a sub-pixel edge detection algorithm widely used in machine vision and image
processing with high accuracy and great robustness. An important point is that the principle of
erf function fitting is to take the position where the gray level changes the most as the edge point.
This feature determines that the erf function fitting algorithm cannot be calibrated by modifying
a threshold like the IIT method. Therefore, here we merely measured the average dimension
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pixels of the two test objects using the 8 images each, and obtain the q values corresponding to
the actual size for comparison. The result is listed in Table 2.

Table 2. Calibration test of Erf function fitting method

Actual dimension Average pixels q = pixel number
size

Rectangle standard gauge 40.000mm 1028.7 0.0389

inner diameter ring gauge 3.003mm 77.7904 0.0386

When using the erf function fitting algorithm to measure the edges of two different objects, the
measured value of q = pixel number

size is different. This shows that the erf function fitting algorithm
needs more corrections to ensure the consistency of dimensional measurement for objects of
different sizes and different types of edges.

3.3. Accuracy evaluation

The error source of edge detection and size measurement in machine vision mainly lies in the
image acquisition process: the resolution of the detector is limited, and the true edge of the object
cannot be reproduced completely and smoothly on the test pictures. In a machine vision system,
the edges of objects in the image always present discrete grayscale changes and oscillatory
effect. In the context of dimensional measurement, this discrete gray-scale change and oscillatory
effect will magnify the error caused by the object displayed at different positions in the view
field, thus affects the repeatability accuracy. In addition, lens distortion and adjustment errors,
unevenness of the light source, and lack of flatness of the stage can also cause errors in edge
detection and dimensional measurement. Since the vision measurement device in this article has
been calibrated, the error generated by the hardware facility can be ignored within the central
field of view. At this time, most of the errors come from the discrete grayscale changes and the
oscillatory effect. A high-precision edge detection and dimensional measurement algorithm can
greatly smoothen the oscillatory effect, make the detected edge closer to the actual contour of
the object, and eliminate the error caused by the movement of the object in the field of view
as much as possible. Therefore, in this article, the standard for evaluating the accuracy of the
algorithm is mainly the repeatability accuracy. Based on this, we designed the following accuracy
experiments.

3.3.1. Experiments on inner diameter gauge

For each ROI in the 8 test pictures taken from the inner diameter gauge [Fig. 7(b)], we use both
Sobel+ erf function fitting and our IIT algorithm to obtain sub-pixel edges and least-square fit
the edge points into circles. We obtain the radius (in pixels), and calculate the errors compare to
the average. The test results are shown in Table 3 and Table 4.

Table 3. Radius values (in pixels) of the inner diameter ring gauge in different positions

Radius (in pixels)

Sobel+ erf function fitting 77.8060 77.9308 77.7498 77.9667 77.8507 77.6944 77.6667 77.6582

Errors 0.0156 0.1404 -0.0406 0.1763 0.0603 -0.0960 -0.1237 -0.1322

Sobel+ Intensity integration threshold 77.0259 77.2118 77.2296 77.1775 77.3329 77.0670 76.9603 77.1614

Errors -0.1199 0.0660 0.0838 0.0317 0.1871 -0.0788 -0.1855 0.0156

According to Table 4, the MSE of the proposed algorithm is very close to that of the erf
function algorithm. However, the dimensional measurement result of the algorithm in this paper
is closer to the actual dimension 3.003mm.
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Table 4. Average radius and MSE (in pixels) of the inner diameter ring gauge

Average pixels Corresponding dimension MSE

Sobel+ erf function fitting 77.7904 3.0260mm 0.0123

Sobel+ Intensity integration threshold 77.1458 3.0001mm 0.0128

3.3.2. Experiments on more complicated situations

In this part, we use 4 different algorithms (Sobel operator, Sobel operator + Zernike moment,
Sobel operator + erf function fitting and Sobel operator + IIT algorithm) to detect edges in more
complicated situations, and calculated the MSEs between the fitted shapes and the detected edges.
Figure 9(a) is a picture of six identical electronic components. Figure 10 is a picture of the

backplane of the cameras on a cellphone. Both of the test pictures are taken by the measurement
device in this paper.

Fig. 9. Test pictures of electronic components (a) six test objects. (b) ROIs of each test
object.

For the picture of electronic components, the target objects are marked as (a)-(f) in Fig. 9(a),
and the ROIs (regions of interest) are marked as (1)-(3) in Fig. 9(b). The MSEs between the
fitted edges and the detected edges are listed in Table 5.

For the picture of the backplane of a cellphone, the ROIs are marked as (h)-(n) in Fig. 10. The
MSEs between fitted shapes and the detected edges are listed in Table 6. Figure 11 is the upper
right corner of the small circle (n) and the edges detected with 4 different algorithms.

According to the MSEs in Table 5, IIT together with Erf function fitting performs better than
Sobel and Sobel+Zernike moment. The proposed IIT algorithm performs better than erf function
fitting in detecting circles in Fig. 9, but it is not as good as erf function fitting in detecting straight
lines. On the situation in Table 6, the IIT algorithm performs better than Erf function fitting in
(h), (i), (j), (l) and (m).

Figure 6 helps illustrating the difference between the test algorithms. The green curves are the
fitted outline and the red curves are the edge detected by algorithms. Sobel operator performs
well in Fig. 6(a), but it can only extract pixel-accuracy edges. As Zernike moment method
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Fig. 10. Test pictures of the backplane of a cellphone

Table 5. MSEs (in pixels) of the electronic components

Algorithm Sobel Sobel+Zernike moment Erf function fitting IIT

MSE 1 2 3 1 2 3 1 2 3 1 2 3

(a) 0.2744 0.0744 0.0643 0.1857 0.0571 0.0798 0.0357 0.0252 0.0156 0.0557 0.0384 0.0258

(b) 0.1432 0.0431 0.0578 0.2055 0.0527 0.0920 0.0904 0.0265 0.0358 0.0599 0.0135 0.0466

(c) 0.1452 0.0181 0.1036 0.2592 0.0087 0.2137 0.1197 0.0446 0.0395 0.0763 0.0372 0.0496

(d) 0.1281 0.0170 0.0259 0.1725 0.0320 0.0521 0.0906 0.0362 0.0152 0.0521 0.0168 0.0383

(e) 0.1328 0.0639 0.0576 0.1927 0.0760 0.0663 0.0551 0.0198 0.0335 0.0677 0.0615 0.0298

(f) 0.1256 0.0567 0.0771 0.2461 0.2248 0.0933 0.0717 0.0517 0.0391 0.0647 0.0545 0.0538

Average 0.1582 0.0454 0.0644 0.2103 0.0752 0.0995 0.0772 0.0340 0.0296 0.0627 0.0370 0.0407

Table 6. MSEs (in pixels) of the backplane of a cellphone

MSE Sobel Zernike moment Erf function fitting IIT

(h) 0.0514 0.0638 0.0283 0.0258

(i) 0.0951 0.1307 0.0799 0.0476

(j) 0.0456 0.0637 0.0322 0.0232

(k) 0.1611 0.1810 0.0805 0.1164

(l) 0.0990 0.1025 0.0991 0.0523

(m) 0.1247 0.2029 0.0812 0.0471

(n) 0.0769 0.1388 0.0128 0.0222
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Fig. 11. the upper right corner of the small circle (n). (a). Sobel operator (b). Zernike
moment (c).erf function fitting (d). IIT

is taking more account of the neighbor intensity, it tends to extract an edge with more local
characteristics. Therefore, the oscillatory effect cause by the discrete detector pixels has been
tested through it according to Fig. 6(b). Erf function fitting is better than Sobel method. The IIT
algorithm shows a smooth outline and therefore verified the data in Table 6.

In general, the error level of the IIT algorithm when detecting edges is equivalent to that of the
erf method. But according to the content in 3.2 and 3.3.1, the advantage of the IIT algorithm
lies in its accuracy and the consistency of detection of inner and outer edges. And in 3.4, it also
showed better efficiency than the erf method.

3.4. Efficiency Evaluation

The test image is the picture of an inner diameter ring gauge. The size of the test picture is
820px × 820px (Fig. 12). In this part, we use 4 algorithms (Sobel operator, Sobel operator +
Zernike moment, Sobel operator + erf function fitting and Sobel operator + IIT algorithm) to
extract edges, then we compared the time they spend. Due to the instability of time consuming in
the first few times of running a program in MATLAB, the efficiency results we list in Table 1
come from the stable situation after running the program several times. Before every efficiency
test, we cleared all data. We collect 4 time consuming results for each algorithm.

Fig. 12. The picture used in efficiency evaluation (820px × 820px)
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According to Table 7, although only use Sobel operator have high computational efficiency, it
can’t locate edge in sub-pixel accuracy and it is difficult to meet the requirements of high-precision
measurement. Zernike moment cost more time than Sobel operator. The erf function method
has high accuracy, but the fitting process is more complicated and takes a long time. The IIT
algorithm proposed in this paper has easy implementation, high accuracy, and relatively high
computational efficiency as it only taking 46.58% of the time of erf function fitting method.

Table 7. Efficiency evaluation

Algorithm Sobel
Sobel + Zernike

moment
Sobel+ erf

function fitting
Sobel+ Intensity

integration threshold

Time spent/seconds

0.021630 0.185399 1.892403 0.896478

0.022248 0.188130 1.944752 0.846993

0.020890 0.188375 1.851850 0.861300

0.022535 0.181659 1.807678 0.886847

Average time spent 0.021826 0.185641 1.874171 0.872905

4. Conclusions

In this paper, we proposed a dimensional measurement algorithm based on intensity integration
threshold (IIT). This algorithm can extract edges in sub-pixel accuracy efficiently, and obtain
precise dimensions by fitting the edges into geometric shapes. Compare to the erf function
fitting method, our algorithm greatly increases the efficiency (53.42%) without reducing the
detection accuracy. It is a practical, relatively cheap and efficient edge detection and dimen-
sional measurement algorithm which can meet the actual needs of high-precision dimensional
measurement.
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