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a b s t r a c t 

Freeform surfaces are widely used in advanced optical systems. In order to accurately measure freeform surfaces, 

an adaptive interferometer with deformable mirror (DM) has been developed for the freeform surface metrology. 

To ensure the efficiency, a stochastic parallel gradient descent (SPGD) and Newton iteration mixed algorithm 

to drive the DM has been proposed, it can achieve the minimum value of the optimization and is suitable for 

the different interferograms. The simulation and experimental results verify the correctness and feasibility of the 

proposed DM driving algorithm. 
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. Introduction 

Compared with traditional spherical and aspherical elements,

reeform surface has more degrees of freeform for correcting optical

berrations and controlling ray directions [1] , enabling simple and com-

act optical systems with high performance. In recent years, a number

f advanced manufacturing technologies have been developed to man-

facture the highly accurate optical freeform surface [2] . 

During the manufacturing process, the freeform surface needs to

e tested to ensure the manufacturing accuracy. Although the inter-

erometry is the industry standard and has been used for freeform

urface metrology [3–5] , for freeform surfaces with large departure

rom the spherical surface, the special computer generated hologram

CGH) [6] or null lens is needed for each surface under test, it is time-

onsuming and expensive, hence, it is not suitable for the freeform sur-

ace in-situ metrology. At present, the scanning technologies, including

oordinate measuring machines (CMMs) [7] , profilometers [8] and con-

ocal microscopy [9] have been widely used in in-situ metrology. While

hese methods can test various types of surfaces, there are some lim-

tations. For contact metrology such as CMMs and profilometers, the

easurement process is relatively long and the measurement accuracy

s easy to be affected by the environmental factors, such as vibration,

n addition, the contact probe may damage the optical surface. For the

onfocal microscopy, the measuring range and vertical resolution are

imited by the numerical aperture of the objective, laser wavelength,

nd the sensitivity of the piezo-transducer (PZT) used. 
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To improve the performance of the interferometer and scanning tech-

ology, the adaptive interferometer [10–12] with deformable mirror

DM) has been developed, it can quickly and accurately test the opti-

al freeform surface without using CGH and null lens. 

For the adaptive interferometer, the control algorithm of DM is es-

ential. In 1998, the stochastic parallel gradient descent (SPGD) algo-

ithm was first designed [13] , and widely used in the adaptive optics

14–17] . In 2016, [11] researched the SPGD algorithm used in the adap-

ive interferometer, the SPGD algorithm is effective even if the phase

an’t be calculated by the interferogram, there are three steps of opti-

aztions in all, the first step used the sum-of-squares of the difference

f grayscale values between two adjacent pixels in the dark region with-

ut fringe as the system performance metric, the second and third steps

sed the RMS value of phase as the system performance metric, the sim-

lated and experimental results were well evaluated, but if the fringe

ensity of the interferogram is too large after the first optimazation, the

hase also can’t be calculated, hence the RMS value of phase can’t be

et as the system performance metric in the second step, especially for

he complex freeform surface, moreover, in the final step, the optimized

esult of SPGD algorithm can’t be achieved to a minimum value. Newton

teration algorithm can achieve the minimum value of the optimization,

nd it can converge after only two or three iterations, however, the op-

imization speed will be affected since the variables of the DM is large.

ence, in the adaptive freeform surface metrology, single control algo-

ithm is difficult to control the DM effectively, the integrated algorithm

s essential to drive the DM. 

In this paper, we will discuss the SPGD and Newton iteration

ixed algorithm used for the DM control in the adaptive freeform
du (R. Liang). 
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Fig. 1. Schematic layout of the adaptive interferometer: NDF, neutral density 

filter; HWP, half-wave plate; PBS, polarization beam splitter; QWP, quarter- 

wave plate; L, lens; M, mirror; DM, deformable mirror; DS, deflectometry sys- 

tem. 

Fig. 2. Simulated interferograms between the second and final steps when the 

tested phase distribution is generated by the response matrix of DM. (a) The 

original interferogram, (b) the interferogram after using SPGD algorithm (sec- 

ond step), (c) and (d) the final interferogram after further using Newton iteration 

and SPGD algorithms (final step). 
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J  
urface metrology. Section 2 presents the principle of the adaptive

nterferometer, then, the driving algorithm of DM is introduced in

ection 3 . In Section 4 , the simulation of driving algorithm is discussed,

ection 5 evaluates the driving algorithm with the experimental data.

inally, the conclusion is drawn in Section 6 . 

. Principle of adaptive interferometer 

The schematic layout of the adaptive interferometer is shown in

ig. 1 . The light is attenuated by the neutral density filter (NDF) and

ts polarization direction is tuned by a half-wave plate (HWP) to adjust

he fringe contrast of the interferogram, then p polarization and s polar-

zation beams are transmitted and reflected from the polarization beam

plitter (PBS) respectively, serving as the test wave (red line) and the

eference wave (green line), the reference arm includes a quarter-wave

late (QWP) and a reference mirror, and the test arm includes a QWP,

 deformable mirror (DM) which can change the test wavefront. The

eflected test beam and reference beam are transformed to oppositely

ircularly polarized after passing through the QWP and interfere at the

ocal plane of the polarization camera. 4-frame phase shifted interfero-
rams can be obtained simultaneously without the physical phase shift

18] . The adaptive interferometer also can test the aspherical surface,

he reference wavefront can be adjusted to the spherical wavefront using

he objective. 

When the tested optics is a freeform surface, we may obtain the initial

nterferogram with dark region without fringe or dense fringe area since

he surface departure from spherical surface could exceed the measuring

ange of the interferometer when the DM is flat. Therefore we need to

rive the DM to generate approximate no-fringe interferogram to get the

ccurate phase without large retrace errors in the interferometer data.

ith the surface shape of the DM measured by the deflectometry system

DS) [19 , 20] , we can obtain the phase distribution of the freeform sur-

ace W F using the tested phase distribution W T obtained by the adaptive

nterferometry and phase distribution of the DM W DM 

. 

. Driving algorithm of DM 

SPGD algorithm is a very mature algorithm and usually used to drive

he DM in adaptive optics. However, single control algorithm is difficult

o effectively control the DM in the adaptive interferometer, hence, the

ntegrated algorithm which mixes the SPGD and Newton iteration algo-

ithms is introduced to address the limitations of single SPGD algorithm,

uch as the number of iterations is relatively large and the result can’t

e optimized to a minimum value. 

SPGD algorithm evaluates the control voltage gradient by the small

andom perturbations of control voltages and the variation of system

erformance metric, searches and iterates in the gradient direction to

ptimize system performance metric. The optimization process is in the

ollowing: 

1) Initialize the voltage 𝑈 = 𝑈 0 , 𝑈 0 = ( 0 , 0 , ⋅ ⋅ ⋅, 0 ) ; 
2) generate random turbulence voltage 𝛿U with the mean as zero, and

𝛿U needs to satisfy Bernoulli distribution; 

3) establish the system performance metric J ; 

4) add random turbulence voltage to the control voltage to obtain 𝑈 +
𝛿𝑈 and drive the DM; 

5) obtain the value of the system performance metric 

𝐽 + = 𝐽 ( 𝑈 + 𝛿𝑈 ) . (1)

6) add random turbulence voltage to the control voltage to obtain 𝑈 −
𝛿𝑈 and drive the DM; 

7) obtain the value of the system performance metric 

𝐽 − = 𝐽 ( 𝑈 − 𝛿𝑈 ) . (2)

8) calculate the control voltage for next iteration, and drive the DM 

𝑈 

′ = 𝑈 − 𝛾
(
𝐽 + − 𝐽 − 

)
𝛿𝑈. (3)

here 𝛾 is the gain coefficient. When the system performance metric

s optimized to the minimum value, the gain coefficient 𝛾 is positive,

therwise it is negative. 

1) repeat 4) to 8) until the result meets the convergence condition. 

At the beginning, there may exist relatively dark region with only

ackground intensity and no fringe in the interferogram, so before we

pply SPGD algorithm, we need to establish the system performance

etric J as 

 = 

∑
𝑎𝑙 𝑙 ( 𝑖,𝑗 ) 

𝐼 ( 𝑖, 𝑗 ) . (4)

here I ( i, j ) is the grayscale value of one pixel in the relatively dark

egion without fringe, J represents the sum of the grayscale values in

his region. 

For the regions without fringe due to the large surface departure

rom spherical surface, the value of J will be very small because those

egions with only background intensity are relatively dark. The value of

 will increase when fringes appear and become more dense. During the



Y. Zhang, X. Tian and R. Liang Optics and Lasers in Engineering 129 (2020) 106050 

Fig. 3. Simulated convergence curves between 

the second and final steps when the tested 

phase distribution is generated by the response 

matrix of DM. (a) The convergence curve using 

SPGD algorithm (second step), (b) and (c) the 

convergence curves using Newton iteration and 

SPGD algorithms (final step). 
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ringe search, the voltage of the actuators will be updated until J meets

he convergence condition which depends on the practical situation. 

The fringes are typically very dense when they are recovered in the

reviously dark regions since the entire metrology system is largely de-

iated from the null condition. The second step is needed to relax the

ringe density. In this step, SPGD algorithm will be used in the whole

nterferogram, and the system performance metric J needs to be reset

s Eqs. (5) –(8) . 

 

′( 𝑖, 𝑗 ) = 𝐼 ( 𝑖, 𝑗 ) − 𝐼 𝑚𝑒𝑎𝑛 . (5)

𝑢𝑚 1 = 𝐶𝑜𝑢𝑛𝑡 

( 

((
𝐼 ′( 𝑖, 𝑗 ) > 0 

)
&&

(
𝐼 ′( 𝑖, 𝑗 + 1 ) < 0 

))
∥
(
𝐼 ′( 𝑖, 𝑗 ) < 0 

)
&&

(
𝐼 ′( 𝑖, 𝑗 + 1 ) > 0 

)) 

. (6)

𝑢𝑚 2 = 𝐶𝑜𝑢𝑛𝑡 

( 

((
𝐼 ′( 𝑖, 𝑗 ) > 0 

)
&&

(
𝐼 ′( 𝑖 + 1 , 𝑗 ) < 0 

))
∥
(
𝐼 ′( 𝑖, 𝑗 ) < 0 

)
&&

(
𝐼 ′( 𝑖 + 1 , 𝑗 ) > 0 

)) 

. (7)

 = 

(
𝑁𝑢𝑚 1 

2 
+ 

𝑁𝑢𝑚 2 
2 

)
∕ 𝑁𝑢𝑚 . (8)

here Num is the number of the effective points, before the interfero-

ram optimization, the effective domain of the interferogram needs to

e identified, or a mask needs to be made to obtain the effective domain,

he points in the effective domain are the effective points, I ( i, j ) is the

rayscale value of one pixel, I mean is the mean of all I ( i, j ), I ′ ( i, j ) is the

rayscale value after subtracting I mean , Num 1 is the number that nega-

ive or positive symbols of I ′ ( i, j ) and 𝐼 ′( 𝑖, 𝑗 + 1 ) are different, Num 2 is

he number that negative or positive symbols of I ′ ( i, j ) and 𝐼 ′( 𝑖 + 1 , 𝑗 ) are

ifferent, and J represents the proportion of the number of the different

ymbols to the number of the effective points in the interferogram. 

In the second step, the driving voltage of the DM actuators are tuned

o reduce the fringe density. The proportion which represents the fringe

ensity is used as the system performance metric J , and the gain coeffi-

ient 𝛾 in Eq. (3) can be set as a constant for the different fringe density.

f the number of the different symbols is set as the system performance

etric, 𝛾 may need to be set as a variable due to the different situations,
ence, the proportion is more suitable than the number of the different

ymbols to be the system performance metric. 

After the second step, the RMS value of the tested phase distribution

an be used as the system performance metric since it can be calculated

rom the phase shifted interferograms with relatively sparse fringes. If

PGD algorithm is still used, it is difficult to reduce the RMS value to a

inimum value because the interferogram can’t be optimized to approx-

mate no-fringe after the iteration converges, when the fringe density is

elatively large and there is large noise in the interferogram, the accu-

ate result couldn’t be obtained finally. To address this limitation, the

ewton iteration algorithm [21] is used to further fine tune the voltage

f the actuators to obtain approximate no-fringe interferogram. 

The Newton iteration algorithm is 

 𝑛 +1 = 𝑍 𝑛 − 

𝑓 
(
𝑍 𝑛 

)
𝑓 ′
(
𝑍 𝑛 

) = 𝑍 𝑛 + Δ𝑍 𝑛 . (9)

here Z n is the voltage of the actuators in every iteration, 𝑍 𝑛 +1 is the

ew voltage of the actuators after every iteration, f ( Z n ) is the tested

hase distribution in every iteration, and f ′ ( Z n ) is the partial derivative

f f ( Z n ), ΔZ n is the variation of the voltage. 

 = 𝑓 ′
(
𝑍 𝑛 

)
= 

𝜕 
(
𝑓 1 , 𝑓 2 , ⋯ , 𝑓 𝑙 

)
𝜕 
(
𝑧 1 , 𝑧 2 , ⋯ , 𝑧 𝑘 

) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕 𝑓 1 
𝜕 𝑧 1 

𝜕 𝑓 1 
𝜕 𝑧 2 

⋯ 

𝜕 𝑓 1 
𝜕 𝑧 𝑘 

𝜕 𝑓 2 
𝜕 𝑧 1 

𝜕 𝑓 2 
𝜕 𝑧 2 

⋯ 

𝜕 𝑓 2 
𝜕 𝑧 𝑘 

⋮ ⋮ ⋱ ⋮ 
𝜕 𝑓 𝑙 

𝜕 𝑧 1 

𝜕 𝑓 𝑙 

𝜕 𝑧 2 
⋯ 

𝜕 𝑓 𝑙 

𝜕 𝑧 𝑘 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

[ 
𝜕 𝑓 𝑖 

𝜕 𝑧 𝑗 

] 
𝑘 ×𝑙 

. 

(10) 

here l is the number of the pixels, k is the number of DM actuators, and

 = 1 , 2 ⋯ , 𝑙; 𝑗 = 1 , 2 ⋯ , 𝑘 , z j represents the voltage of j th DM acutuator.

We approximate the partial derivative in the Jacobian as 

𝜕 𝑓 𝑖 

𝜕 𝑧 𝑗 
≈

𝑓 𝑖 
(
𝑧 1 , 𝑧 2 , ⋯ , 𝑧 𝑗 + Δ𝑧, ⋯ , 𝑧 𝑘 

)
− 𝑓 𝑖 

(
𝑧 1 , 𝑧 2 , ⋯ , 𝑧 𝑗 , ⋯ , 𝑧 𝑘 

)
Δ𝑧 

. (11) 

here Δz is a small increment of the voltage. Notice that 
𝜕 𝑓 𝑖 

𝜕 𝑧 𝑗 
represents

he element J ij in Jacobian 𝐽 = 

𝜕( 𝑓 1 , 𝑓 2 , ⋯ , 𝑓 𝑙 ) 
𝜕( 𝑧 , 𝑧 , ⋯ , 𝑧 ) . 
1 2 𝑘 
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Fig. 4. Simulated interferograms between the second and final steps when the 

tested phase distribution is generated by the Zernike polynomials. (a) The orig- 

inal interferogram, (b) the interferogram after using SPGD algorithm (second 

step), (c) and (d) the final interferogram after further using Newton iteration 

and SPGD algorithms (final step). 
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In general, the convergence speed of Newton iteration is relatively

ast, it can converge after two or three iterations. We can use Eq. (9) to

pdate the voltage of the actuators until 𝑅𝑀𝑆( 𝑓 𝑛 +1 − 𝑓 𝑛 ) < 𝜀 , where ɛ

s the predefined converging threshold of iteration, i.e., 0.001 𝜇m, f rep-

esents the tested phase distribution calculated from the interferograms,

nd n represents the number of iterations. 

After the three steps of optimizations, the approximate no-fringe in-

erferogram can be obtained, and the phase distribution of the freeform

urface under test can be calculated. 

. Simulation of driving algorithm 

To validate the performance of the driving algorithm, we perform

wo groups of simulations. One phase distribution is generated by the

esponse matrix of DM since we want to verify the effectiveness of the

riving algorithm, and the other phase distribution is generated by the

ernike polynomials. Note that, we can’t simulate the first step since the

elatively dark region without fringe can’t be simulated, we can only

imulate the second and third optimization steps. 

Figs. 2 and 3 are the simulated results between the second and final

teps when the tested phase distribution is generated by the response

atrix of DM. Fig. 2 (a) is the original interferogram, after the SPGD opti-

ization ( 𝛿𝑈 = 0 . 01 , 𝛾 = 200 ), the interferogram becomes Fig. 2 (b), and

he convergence curve is shown in Fig. 3 (a), we can see that the fringe

ensity in the interferogram decreases after the SPGD optimization, and

PGD algorithm can converge through a relatively large number of it-

rations. After this step, we can calculate the RMS value of the phase

istribution from Fig. 2 (b) directly and use it as the system performance

etric in the final step, in order to demonstrate the performance of the

ewton iteration algorithm, we separately use the Newton iteration and

PGD algorithms to optimize Fig. 2 (b) in the final step, the optimized

nterferograms after using the Newton iteration and SPGD algorithms

re shown in Fig. 2 (c) and (d) respectively, and the convergence curves

re plotted in Figs. 3 (b) and (c). It is clear that the Newton iteration al-

orithm can converge to the minimum value quickly ( Fig. 3 (b)), and the

nterferogram can achieve ideal no-fringe ( Fig. 2 (c)), but the RMS value

f phase distribution can be only converged to 0.4959 𝜇m by further us-

ng SPGD algorithm ( Fig. 3 (c)) and the fringe density of the optimized

nterferogram ( Fig. 2 (d)) is still relatively high. This simulation demon-

trates that, in the final step, the Newton iteration algorithm has the

etter performance than the SPGD algorithm. 

As a second example, we simulate the phase distribution with the

ernike polynomials. The original interferogram is shown in Fig. 4 (a),

he fringe density is relatively high. With SPGD optimization ( 𝛿𝑈 = 0 . 01 ,
= 200 ), we can see that the fringe becomes more sparse as shown in

ig. 4 (b), and the convergence curve is relatively flat after 100 iterations

 Fig. 5 (a)). Similarly we also use Newton iteration and SPGD algorithms

eparately to optimize Fig. 4 (b). After two iterations ( Fig. 5 (b)), the RMS

alue of the phase distribution using Newton iteration algorithm can’t

e reduced to zero, but to a minimum value ( 𝑅𝑀𝑆 = 0 . 0186 𝜇𝑚 ), the in-

erferogram is shown in Fig. 4 (c). However, SPGD algorithm cannot fur-

her reduce RMS value to approximately zero ( Fig. 5 (c)) and the fringe

ensity in the interferogram almost remains the same ( Fig. 4 (d)). 

In the above two simulations, we use the same gain coefficient 𝛾

nd random turbulence voltage 𝛿U in the second step, and the results

oth converge since the proportion of the number of the different sym-

ols to the number of the effective points in the interferogram is used

s the system performance metric, the value of J changes slightly due

o the different interferograms, however, if we use the number of the

ifferent symbols between I ′ ( i, j ) and 𝐼 ′( 𝑖, 𝑗 + 1 ) or 𝐼 ′( 𝑖 + 1 , 𝑗 ) in the in-

erferogram as the system performance metric, the value of J will change

normously, the gain coefficient needs to be changed with the different

ituations, otherwise, the optimization may be too early convergence,

low convergence or no convergence. In the following, we will compare

he results of these two different system performance metrics. 
We simulate 5 groups of phase distributions with different RMS val-

es, and two different system performance metrics are used to optimize

he interferogram in the second step, Fig. 6 (a) describes the convergence

urves with different phase distributions when the proportion is used as

he system performance metric, we can see that all the simulations can

onverge very well even use the same gain coefficients, different phase

istributions don’t affect the convergence, Fig. 6 (b) shows the conver-

ence curves with different phase distributions when the number of the

ifferent symbols is used as the system performance metric, not all the

ptimizations converge, only the optimizations with 𝑅𝑀𝑆 = 2 . 8507 μm
nd 𝑅𝑀𝑆 = 3 . 0289 μm can converge very well, for 𝑅𝑀𝑆 = 2 . 1173 μm
nd 𝑅𝑀𝑆 = 1 . 8846 μm , the results are too early convergence, and for

𝑀𝑆 = 1 . 5573 𝜇𝑚 , the result is no convergence, hence, if we use the

umber as the system performance metric, we need to change the gain

oefficient according to the different situations to ensure the good con-

ergence. Through the comparison, the proportion is more suitable to

e the system performance metric than the number in the second step. 

. Experiment 

To demonstrate the proposed driving algorithm of DM, we measured

n unknown freeform surface. Fig. 7 (a) is the interferogram when DM

s flat, there is no fringe in the upper right region of the interferogram.

n the first step, the relatively dark domain without fringe as identi-

ed, and the grayscale values of the interferogram were normalized to

asily calculate the sum of grayscale values, then the SPGD algorithm

as applied ( 𝛿𝑈 = 0 . 01 , 𝛾 = 200 ), the no-fringe region was recovered as

hown in Fig. 7 (b). From the convergence curve in Fig. 8 (a), we can

ee that the sum of the grayscale values increased with the recovery of

he fringe, and the SPGD algorithm converged after 50 iterations. After

he first step, the fringe density was still relatively high and should be

elaxed, then the SPGD algorithm was also used in the second step, after

00 iterations, the fringe in the interferogram became sparse, as shown

n Fig. 7 (c), and the SPGD algorithm converged as shown in Fig. 8 (b).

hrough the simulation, we knew that the Newton iteration algorithm is

etter than the SPGD algorithm in the final step, so we used the Newton

teration algorithm to optimize the interferogram in Fig. 7 (c), the ap-

roximate no-fringe interferogram was obtained, as shown in Fig. 7 (d).

rom the convergence curve in Fig. 8 (c), we can see that the Newton

teration algorithm can achieve fast convergence, and it can converge

o a minimum value ( 𝑅𝑀𝑆 = 0 . 1815 𝜆, 𝜆 = 0 . 6328 𝜇𝑚 ), the interferogram
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Fig. 5. Simulated convergence curves between 

the second and final steps when the tested 

phase distribution is generated by the Zernike 

polynomials, (a) The convergence curve using 

SPGD algorithm (second step), (b) and (c) the 

convergence curves using Newton iteration and 

SPGD algorithms (final step). 

Fig. 6. Simulated convergence curves with dif- 

ferent phase distributions and system perfor- 

mance metrics. (a) The convergence curves 

with different phase distributions using the 

proportion as the system performance metric, 

(b) the convergence curves with different phase 

distributions using the number of the different 

symbols as the system performance metric. 

Fig. 7. Experimental interferograms between 

the first and final steps. (a) The original inter- 

ferogram, (b) the interferogram after recover- 

ing dark domain without fringe by SPGD al- 

gorithm (first step), (c) the interferogram after 

using SPGD algorithm (second step), (d) the in- 

terferogram after using Newton iteration algo- 

rithm (final step). 
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Fig. 8. Experimental convergence curves be- 

tween the first and final steps. (a) The conver- 

gence curve using SPGD algorithm (first step), 

(b) the convergence curve using SPGD algo- 

rithm (second step); (c) the convergence curve 

using Newton iteration algorithm (final step). 
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s not perfect no-fringe since the original phase distribution is not gen-

rated by controlling the actuators of the DM as the second simulation,

owever, it doesn’t affect the accurate calculation of the phase distribu-

ion. 

. Conclusion 

In this paper, we introduce the principle of the adaptive interferome-

er firstly, then a SPGD and Newton iteration mixed algorithm has been

eveloped to drive the DM in the adaptive interferometer. The SPGD

lgorithm first recovers the relatively dark region of the interferogram

nd then reduces the fringe density, the Newton iteration algorithm is

tilized in the final step to obtain the nearly no-fringe interferogram,

hese three steps use the different system performance metrics. We have

emonstrated the proposed DM driving algorithm with the simulated

ata and experimental data. This algorithm has the potential applica-

ion in freeform surface metrology. 
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