
Astronomy and Computing 32 (2020) 100408

a

b

i
W
o
c
t
t
s
s
t

s
f
i
s
t
m
(
f
(
H
s

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Space target extraction and detection forwide-field surveillance
D. Liu a,b, X. Wang a,∗, Z. Xu a,b, Y. Li a, W. Liu a

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o

Article history:
Received 7 January 2020
Accepted 28 July 2020
Available online 1 August 2020

Keywords:
Space target detection
Wide-field space surveillance
Morphological filtering
Multistage hypothesis testing

a b s t r a c t

A wide-field surveillance system with a long exposure time has a stronger capability of space
target detection. However, it also produces some complicated situations that make it difficult to
detect space targets; some stars appear as streak-like sources, countless object points, and possible
discontinuous or nonlinear target trajectories. We present a space target detection method with
high detection probability and low computational cost to overcome these obstacles. Firstly, the
improved adaptive threshold method and the omnidirectional morphological filtering method are
implemented to remove stars and noise. Secondly, the relative inter frame motion distance can
be used as the basis for predicting the valid state transition region in each image. Finally, a state
transition multistage hypothesis testing method is proposed to detect targets with linear, nonlinear,
continuous or discontinuous trajectories. As demonstrated by the experimental results in simulated
image sequences and real image sequences, the proposed algorithm can effectively detect space targets
in wide-field surveillance with long exposure time, and has a high detection probability and low
computational cost.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The number of man-made targets in space has been increas-
ng since Sputnik-1 was launched in 1957 (Castronuovo, 2011;
irnsberger et al., 2015; Esmiller et al., 2014). Only a fraction
f the detected targets are operational satellites, while the rest
an be classified as space debris. Sixty years ago, space seemed
o be infinite, but the space age has proven that the orbit around
he earth can be filled up very quickly. Space targets pose a
erious hazard to human space activities and properly functioning
atellites (Nunez et al., 2015). In order to predict and avoid these
hreats, it is very important to detect space targets.

Detecting faint space targets is problematic in many wide-field
urveillance systems. Given that the space targets are far away
rom the detector, they only cover a small number of pixels when
maged on the focal plane and appear as a low intensity point
ource. Thus, feature-based methods that perform well under
he condition of a homogeneous background, such as threshold
ethods (Chang et al., 2007; Xu et al., 2013), template matching

Liu et al., 2013; Bal and Alam, 2005; Liu et al., 2012), high-pass
iltering methods (Yang et al., 2004), morphological operators
Bai, 2013; Bai et al., 2009; Soni et al., 1993; Wei et al., 2018),
essian matrix (Chae et al., 2002; Jiang et al., 2008), fail to detect
pace targets in the complex background. Many methods have
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been proposed to detect faint targets in optical images. Based on
three-dimensional matched filtering, Reed et al. (1990) proposed
a recursive detection method for space targets with known veloc-
ity. However, the detection performance of this algorithm is not
satisfactory for targets with unknown velocities. Chu (1998) pro-
posed a target detection algorithm that downscales 3D detection
to 2D detection, called maximum value projection. Although the
calculation cost is reduced, the detection accuracy of this method
is reduced due to the velocity mismatch caused by the division of
the velocity space (Chu, 1989).

To eliminate the impact of the velocity problem on the tar-
get detection probability, many methods were proposed. Yao
et al. (2015) proposed a target detection method based on the
maximum projection method, and estimated the target motion
velocity by using time index and target centroid. Sun and Zhao
(2013) and Sun et al. (2015) proposed a processing pipeline that
can automatically detect objects. This method uses mathematical
morphological filtering and median filtering to remove stars and
noise and extract target positions. Kravchonok (2011) proposed
a detection method based on optical flow, which detects targets
by judging the change in the optical flow vector of the object.
The Dynamic Programming Algorithm (DPA) solves the problem
of faint target trajectory search by segmentation optimization,
which was first proposed by Barniv and applied to small target
detection (Barniv, 1985). This method combines the optimization
principle with the ballistic integration principle, and transforms
the problem of small space target detection into the problem of
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finding the line with the largest cumulative value of gray. Tonis-
sen and Evans (1996) eliminated the complex transfer function
by taking the sum of the measurements as the optimal value
function. The DPA is performed in an efficient manner, which is
equivalent to exhaustive search for all possible target trajectories
(Johnston and Krishnamurthy, 2000). The multistage hypothesis
testing (MHT) method, proposed by Blostein and Huang (1991),
is used to detect small and dim space targets. A large number
of candidate trajectories form a tree structure lookup table. This
method uses hypothesis testing to remove unverified trajectories
at any time to achieve the purpose of reducing the amount of
computing and storage. However, some obstacles still exist in
these algorithms. Firstly, under the condition of a long exposure
time, background noise increases, some stars image as streak-like
sources, and the target trajectory may be nonlinear or discontinu-
ous (points of space targets in the trajectories are missing because
of the interference of random background noise or the covering
of background stars); Secondly, the computational cost is high
(especially in wide-field surveillance), the number of objects is
numerous. These complicated situations bring difficulties to space
target detection.

To overcome these obstacles, this paper presents a high de-
tection probability and low computational cost target detection
method named State Transition Multistage Hypothesis Testing
(STMHT) method. Firstly, image preprocessing is performed to
remove stars and noise. The improved adaptive threshold method
is applied to eliminate the background. After analyzing the imag-
ing characteristics of stars, noise, and space targets in the time
index image, we propose an omnidirectional morphological fil-
tering method to remove stars and noise. Compared with space
or frequency domain filtering, omnidirectional morphological fil-
tering has a lower computational cost. The intensities of the
stars are estimated to further eliminate them from the maximum
value projection image. Secondly, the relative inter frame motion
distance can be used as the basis for predicting the valid state
transition region in each image. We only need to search for
targets in the valid state transition region rather than at every
pixel in every image. Therefore, the space targets with different
orbital altitudes and nonlinear trajectories can be effectively de-
tected; and the computational cost is greatly saved. Thirdly, the
state transition multistage hypothesis testing method is adopted
to detect space targets. The multistage hypothesis testing crite-
rion guarantees the detection probability of space targets with
discontinuous trajectories.

The proposed method is not suitable for detecting space ob-
jects that move relatively slowly or rapidly respect to field stars,
as well as objects that rotate rapidly. Our image is obtained
in sidereal tracking mode and long exposure time. For objects
with relatively slow speed, they will form short streaks with
length comparable to width during optical observation, which
will impact the prediction accuracy of the algorithm in the valid
state transition stage. For objects with relatively fast speed, they
have short pass duration, so they only appear in a few frames
during shooting. Due to the limitation of the number of frames,
the performance of the algorithm in the multistage hypothesis
testing stage is affected. For long streaks of space objects with
rapidly changing brightness, streak length in general is not a char-
acteristic of the target’s apparent velocity since the ends or any
other part of the streak may fall below the detection threshold,
which will impact the prediction accuracy of the algorithm in the
valid state transition stage.

2. Image preprocessing

An optical image can be roughly divided into four compo-
nents: the background, the star, the noise, and the space target.
So it can be modeled as:

f i, j, k = B i, j, k + S i, j, k + T i, j, k + n i, j, k (1)
( ) ( ) ( ) ( ) ( )
Fig. 1. Block diagram of the proposed image preprocessing method.

here f is an N × N optical image. (i, j) represents the integer
space coordinates, k refers to the frame index of image sequence.
f(i, j, k) represents the gray-scale value at coordinate (i, j). B(i, j,
k) represents the background. S(i, j, k) and T(i, j, k) denote stars
and space targets, respectively. The noise, n(i, j, k), is considered
to contain two categories: one is the internal noise generated by
the imaging system, and the other is the external noise which
is generated by the external environment (Liu et al., 2017). The
block diagram of the proposed image preprocessing method is
shown in Fig. 1.

2.1. Principle of a time-index image

Chu (1998) proposed a target detection method called max-
imum value projection. If a frame set contains K frame images,
the maximum value projection image can be obtained by the
following equation:

z (i, j) = max [ f (i, j, k)] , (1 ≤ k ≤ K) (2)

Where z(i, j) is the maximum value projection image (see
Fig. 2(a)).

The time-index image t (i, j) can be obtained as follows:

z (i, j) = f (i, j, k) H⇒ t (i, j) = k (3)

When the same gray value appears at the same coordinate in
different images, the smaller frame index is to be recorded (see
Fig. 2(b)). (The color bar in Fig. 2(b) only accepts integer values
on the scale, and this principle applies to subsequent images of
the same type.)

In order to effectively implement the proposed method, an
improved adaptive threshold algorithm is applied to the max-
imum value projection image. Due to the interference of stars
and space targets, the mean and standard deviation of the entire
image are significantly higher than those of the noise. If the
threshold calculated by the mean and standard deviation of the
entire image is used to segment the image, the faint target will be
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Fig. 2. (a) Example of the maximum projection of five sequential images. (b)
Time-index image generated from (a).

incorrectly classified as the background. Therefore, an improved
adaptive method based on row calculation, with the following
steps, is proposed:

(1) The segmentation threshold is calculated as

Thi = µi + ασi (1 ≤ i ≤ N) (4)

where α is a coefficient, α = 1.5 is selected to detect the space
target with low SNR.

(2) The estimated mean and standard deviation of the ith row
f the image can be obtained by:

i =
1
N

N∑
j=1

z(i, j) (5)

σi =

√∑N
j=1(z(i, j) − µi)2

N − 1
(6)

where

z (i, j) = z (i, j) (i = 1) (7)

z (i, j) =

{
z (i, j) z (i, j) < Thi−1

Thi−1 z (i, j) ≥ Thi−1
(i > 1) (8)

(3) The mean and standard deviation usually stabilize at rows
i = 3–5.

Compared with the adaptive threshold algorithm and the local
adaptive threshold algorithm, the proposed algorithm has lower
computational cost. The experiment was performed on the same
dataset. The average running time of the adaptive threshold al-
gorithm, the local adaptive threshold algorithm and the proposed
algorithm are: 0.2988 s, 0.2011 s, 0.0141 s.

The binary image b(i, j) of z (i, j) is obtained as:

b(i, j) =

{
1 z (i, j) ≥ Thi

0 z (i, j) < Thi
(9)

The time-index image is given by:

t (i, j) = t (i, j) b(i, j) (10)

Fig. 3 shows the time-index image after threshold segmenta-
tion.

The single time-index image t0 (i, j, k) can be obtained as
follows:{
t (i, j) = k H⇒ t0 (i, j, k) = k

t (i, j) ̸= k H⇒ t0 (i, j, k) = 0
(11)

.2. Omnidirectional morphological filtering

Under the conditions of a long exposure time and sidereal
racking mode, in the time index image, the space target is a
Fig. 3. (a) Time-index image after threshold segmentation. (b) (c) (d) (e) Space
targets, stars, and noise in the time-index image.

Fig. 4. Time-index image after traditional morphological filtering. (a) Symmet-
ric 4-connected structuring element. (b) Symmetric 8-connected structuring
element.

connected region with the same time index, while the discrete
noise has a random isolated time index, and the stars are regions
with different time indices (see Fig. 3, (b), (c), (d) and (e)), because
the discrete noise is randomly distributed, and the intensities of
the stars are not constant in different images. According to the
difference between space targets, stars and noise, an omnidirec-
tional morphological filtering is proposed to eliminate the stars
and noise.

The traditional opening operation in morphological filtering
can remove the region that is less than the structuring element.
The morphological opening is defined as:

t (i, j) ◦ b = [t (i, j) ⊖ b] ⊕ b (12)

where b is the structuring element, ⊖ refers to the erosion op-
eration, ⊕ refers to the dilation operation. In the case of a long
exposure time, the shapes of space targets in different mov-
ing directions are changing. The traditional opening operation
only adopts a single structuring element (a symmetric 4- or 8-
connected structuring element) to process the image, which will
not produce the best results in detecting targets, removing stars
and noise (see Fig. 4).

In this paper, we adopt the omnidirectional morphological
opening in single time-index image, which is defined as follows:

on (i, j, k) = t0 (i, j, k) ◦ bn = [t0 (i, j, k) ⊖ bn] ⊕ bn (13)

Eight omnidirectional structuring elements bn (n=1, 2,. . . ,8)
are designed and two-point clusters are selected to extract the
space targets with low SNR, the dimensions of these structuring
elements are 3 × 3 (see Fig. 5).

Each on (i, j, k) may contain candidate space targets
distributed in the detection direction, so we add these eight
on (i, j, k) together to form a large O (i, j, k), which is calculated
as follows:

O i, j, k = o i, j, k + o i, j, k + · · · + o i, j, k (14)
( ) 1 ( ) 2 ( ) 8 ( )
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Fig. 5. Eight-direction structuring elements (b1 → 135◦, b2 → 90◦, b3 →

5◦, b4 → 180◦, b5 → 0◦, b6 → 225◦, b7 → 270◦, b8 → 315◦).

Fig. 6. Time-index image after omnidirectional morphological filtering.

The adaptive threshold is used to deal with the above O
i, j, k), and then the candidate space targets are extracted. In this
aper, 4k is selected to detect the space targets with low SNR.

O (i, j, k) =

{
k O (i, j, k) ≥ 4k
0 O (i, j, k) < 4k

(15)

where k refers to the frame index of image sequence.
The time-index image after omnidirectional morphological fil-

tering is:

to (i, j) = O (i, j, 1) + O (i, j, 2) + · · · + O (i, j,K) (16)

The result is shown in Fig. 6.

2.3. Bright star removal

Although discrete noise is randomly distributed, and the in-
tensities of the stars are not constant in different images, they
may still form connected regions with the same time index as
space targets. Therefore, the stars and noise cannot be removed
completely by omnidirectional morphological filtering alone (see
Fig. 6). Due to their large number of pixels and high intensities,
bright stars are more likely to stay in the time-index image.
Estimating the intensities of the stars and then subtracting them
from the maximum value projection image is one way to remove
stars. The median value projection in a frame set is used to
estimate the intensity of stars. The median value projection image
can be obtained by computing the median value of K images at
each pixel (i, j):

m (i, j) = median [ f (i, j, k)] , (1 ≤ k ≤ K) (17)

where m (i, j) is the median value projection image, in which the
tars and noise are still present, while the space targets are ab-
ent. The image after removing the stars and noise is represented
s follows:

i, j = z i, j − m(i, j) (18)
m ( ) ( )
Fig. 7. Time-index image after further removal of bright stars.

However, as discussed before, the intensities of the stars are
not constant; there will be some residual background in the
above image. Therefore, the threshold method is adopted again
to remove the residual background, and the binary image bm(i, j)
of zm (i, j) is obtained.

After the bright stars and noise are further removed, the
time-index image is given by:
=

t o (i, j) = to (i, j) bm(i, j) (19)

The result is shown in Fig. 7, which demonstrates that most of
the stars have been removed, leaving only candidate point targets
and a few false alarms in the time-index image.

3. Space target detection

3.1. Valid state transitions

Kouprianov (2015) proposed a space debris detection pipeline
method, which uses some natural criteria (residuals of the model
path, the object’s velocity and the curvature of its path) to quickly
cut the search tree, discarding candidate trajectories that do not
correspond to any real objects. The principle is to extract a set
of trajectories that can be approximated by linear or quadratic
motion models. Due to the uniqueness of the conditions set in
this paper, more information can be used to improve and simplify
the above method, but the generality of the method is reduced.

Under the conditions of a sidereal tracking mode and long
exposure time, the space target is seen as a streak-like source
in random direction. In this situation, the space target makes
an apparent motion in the inter-frame (See Fig. 8). When the
exposure time te and the time interval ts between two adjacent
frames are known, the relative inter frame motion distance is
obtained as follows:

dx(k,k+1) =
te + ts

te
dex (20)

dy(k,k+1) =
te + ts

te
dey (21)

here dex, dey are the streak length components of the target
n the horizontal and vertical directions, respectively. dx(k,k+1),
dy(k,k+1) are the relative inter frame motion distance components
in the horizontal and vertical directions, respectively, which can
be used as the basis for selecting the transfer region.

Because the detector used to capture the star background
image is discrete. In addition, the requirement for the accuracy
of target centroid positioning will be reduced if the target motion
is predicted in the discrete state space. Therefore, the successive
space is quantized as ∆×∆ cells, whose size is equal to the mea-
surement resolution unit. The relationship between continuous
and discrete states is as follows:{
x (k) ∈ [(x − 1) ∆, x∆)

(22)

y (k) ∈ [(y − 1) ∆, y∆)
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Fig. 8. Motion model for space target and star in the inter-frame during long
exposure time.

Fig. 9. Valid state transitions.

where x and y represent discrete coordinates in quantized pixel
space.

The adaptive valid state transitions of the target in the next
frame are:{
x (k + 1) ∈ [

(
x + dx − 1 − dxx

)
∆,

(
x + dx + dxx

)
∆)

y (k + 1) ∈ [
(
y + dy − 1 − dyy

)
∆,

(
y + dy + dyy

)
∆)

(23)

here dx, dy are discretized relative interframe motion distances.
he discrete state expansions dxx and dyy are introduced to ensure

the detection probability of targets with nonlinear trajectories.
The value of dxx and dyy are

⌈
0.5dx

⌉
and

⌈
0.5dy

⌉
, respectively.

The outer parentheses indicate rounding up.
This method only needs to search for space targets in the

valid state transition region of each frame (see Fig. 9, dxx = 1,
dyy = 1). On the one hand, space targets with different orbital
altitudes and nonlinear trajectories can be effectively detected;
on the other hand, computational cost is greatly saved. These are
the advantages of this method.

3.2. State transition multistage hypothesis testing

After image preprocessing and valid state transition, the state
transition multistage hypothesis testing (STMHT) method pro-
posed in this paper is performed. Five images are used at a time
to detect space targets. The proposed STMHT method is initiated
with the candidate space targets with frame index 1 in time-
index image as the starting points to search for the trajectory
Fig. 10. STMHT search. This diagram only shows some typical candidate
trajectories.

points with frame indices 2, 3, 4, and 5 in the valid state transition
region. Because the streak length of target in a single frame image
is used to predict the valid state transition region, the moving
direction cannot be determined. In other words, for the same
target, we should carry out forward and reverse bidirectional
detection (see Fig. 10). The blue rectangle represents the valid
state transition region, and the targets appearing in the rectangle
are recorded in Table 1. The columns in Table 1 indicate the
candidate trajectory points tkk1 , where k refers to the frame index
number, k1 refers to the ordinal number of the candidate target
among all the candidate targets with frame index k. The total
number of frames in which the target appears in the valid state
transition region of the candidate trajectory starting from target
tkk1 is denoted by N.

In order to balance the target detection probability and calcu-
lation cost, two stages of STMHT are proposed.

First stage of STMHT: the first stage of STMHT uses the number
of frames that the target appears in a candidate trajectory.

N =

K∑
k=1

nk

⎧⎨⎩
≤ C1

≥ C2

choose T0
choose T1

∈ (C1, C2) undecided
(24)

where
∑K

k=1 nk refers to the number of frames in which the
target appears in the valid state transition region of the candidate
trajectory. If a target is detected in the valid state transition
region, the value of nk is equal to 1, otherwise nk is equal to 0. C1
and C2 are determined by the number of images in the frameset,
K. T1 indicates that the candidate target is a real space target, T0
indicates that the candidate target is not a real space target. In
this study, K = 5, C1 = 2, C2 = 4.

Second stage of STMHT: For the undecided targets, increase the
number of frames used for detection, as follows:

N =

K2∑
k=1

nk

{
< C3 choose T0
≥ C3 choose T1

(25)

where K2 = 2 × K = 10, C3 = 6.
According to the determination conditions, the candidate tra-

jectory 1 and candidate trajectory 4 in Table 1 are respectively
determined as the true trajectories for t11 and t12 in Fig. 10.
However, the space target may not be detected in the first frame,
thus the algorithm should be executed starting from frame index
2 and frame index 3 (both the first and second targets are lost)
when the number of frame set is 5. The multistage hypothesis
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Table 1
Candidate trajectories of t11 and t12 in the time-index image.
Candidate trajectories 1 2 3 4

First frame image t11 t11 t12 t12
Second frame image t22 0 t24 0
Third frame image t31 0 0 t36
Fourth frame image t41 t43 0 t45
Fifth frame image t51 0 0 t55
Total number N 5 2 2 4

Fig. 11. Simulated space targets with different SNR.

esting criterion guarantees the detection probability of space
argets with discontinuous trajectories.

Computational cost: In the original MHT method, we need to
search for space targets at every pixel in every sequence image.
In the experiment, there are Nsets frame sets, and each set has K
images with M × N pixels. Thus the total computational cost of
HT is proportional to MNK0 , where K0 = NsetsK. In the STMHT

method, if the maximum number of candidate space targets (in-
cluding false alarms) in all K0 images is Nmax, the size of the valid
state transition region is (2dxx + 1)(2dyy + 1), then Nmax ≪ MN,
[(2dxx + 1)(2dyy + 1)] ≪ MN. The maximum computational cost
f the STMHT method is proportional to:

NsetsNmax(K − 1)[(2dxx + 1)(2dyy + 1)] ≪ MNK0 (26)

In short, the computation cost of the STMHT method is con-
siderably lower than that of the MHT method.

4. Experiments

Under the conditions of a sidereal tracking mode and long ex-
posure time, the star appears as a point source and the space tar-
get is seen as a streak-like source. The image size is 1024 × 1024
pixels. For clearer display, only 512 × 512 pixels are clipped for
demonstration. The method is programmed using Matlab, and
the PC specifications include an i7-6700M CPU (3.40 GHz), 8 GB
memory.

According to the Tycho-2 catalogue, the intensity and position
of background stars are simulated. The targets with different
motion angles and streak lengths (ranging from 3 to 8) are added
to 800 star images. These images are divided into four sets, and
 u
Fig. 12. Simulated space targets with different motion angles and streak lengths.

the SNRs of the simulated targets in each set are 7, 5, 3, and 1.5.
The simulated space targets with different SNRs, motion angles
and streak lengths are shown in Figs. 11 and 12, respectively.

To validate the detection performance of the STMHT method,
two indicators of detection probability (Pd) and false alarm rate
(FAR) are introduced. The Pd and FAR are calculated based on the
true target (TT), missing target (MT), and false target (FT).

Pd =
TT

TT + MT
(27)

AR =
FT

FT + TT + MT
(28)

here TT, MT, and FT represent the numbers of detected space
argets, the true space targets that missed detection, and false
larms that are misidentified as space targets, respectively.

.1. Space target detection using STMHT

In this section, we analyzed the STMHT algorithm in terms of
etection and false alarm rejection. The preliminary results before
sing the STMHT method are shown in Fig. 13, which represent
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Fig. 13. Space target detection results before using the STMHT.

Fig. 14. (a) Detection results, (frames 1–5). (b), (c) Enlarged area of the targets
t1 and t2 . (b-1) to (b-5), (c-1) to (c-5) detection results of targets t1 and t2 in
five frames.

the detection results under four different star backgrounds, and
the green circles in the image represent the detected candidate
points. In different backgrounds, false alarms generated by stars
and noise with different positions have no continuous trajectory,
which can be eliminated through the STMHT algorithm.

Then, STMHT algorithm is used to further detect candidate
points. Fig. 14 shows the detection results and the enlarged re-
gions of the targets t1 and t2, respectively. It can be seen that the
false alarms have been removed. The green circles in the image
represent the detected space targets and undecided targets. In
frame set 2, the undecided target is checked. Undecided target
t1 has eight trajectory points in frame sets 1 and 2; therefore, it
is confirmed as a real space target. Fig. 15 shows the detection
results of the discontinuous trajectories. All five simulated space
targets are detected successfully.

The nonlinear situations of the target trajectories are further
tested. The detection results are shown in Fig. 16.
Fig. 15. Space target detection results of the discontinuous trajectories. (a)
Frame set 2 (frames 6–10), (b) Frame sets 1–2 (frames 1–10).

Fig. 16. Space target detection results of the nonlinear trajectories.

Table 2
Statistical results of simulated space target detection.
Method Detection probability (%) False alarm rate (%)

SNR=7 SNR=5 SNR=3 SNR=1.5 SNR=7 SNR=5 SNR=3 SNR=1.5

MHT 97.7 96.3 91.5 77.1 2.2 2.6 3.9 20.7
NTH 98.6 97.6 96.5 80.7 4.5 5.2 18.9 63.3
IMTI 98.5 97.1 95.8 82.4 0.6 0.9 2.1 16.3
Ours 100 100 100 92.1 0 0 0 6.5

We further verified the detection probability and false alarm
rate of the STMHT algorithm, and the statistical results are shown
in Table 2.

To prove the advantages of the proposed method, we com-
pared it with the multistage hypothesis testing method (MHT)
(Blostein and Huang, 1991), the new top-hat method (NTH) (Bai
and Zhou, 2010), and the improved maximum value projection
method (IMTI) (Yao et al., 2015) under the same frame sets. When
the SNR is higher than or equal to 3, the STMHT algorithm can
successfully detect all the space targets without any false alarms.
Even when the SNR is as low as 1.5, the detection probability is
still higher than 90%. As shown in Table 2, compared with other
methods, the proposed method has performed better in terms of
detection and false-alarm rejection between frame sets in the SNR
range of 7 to 1.5.

4.2. Real space target detection

To evaluate its performance in detection and false-alarm re-
jection, the STMHT algorithm was further tested on a real image
sequence of 500 images collected by the telescope equipped with
a CMOS sensor. The exposure time is 3 s, the field of view 10◦

×

10◦. These real images have 10K × 10K imaging pixels, 12 bits
of grayscale. They are captured on the ground in the sidereal
tracking mode. The telescope is installed on a turntable which can
counteract the rotation speed of the earth. Space targets appear as
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Table 3
Statistical results of real space target detection.
Method Detection probability False alarm rate Running time

MHT 86.9% 16.2% 35.81 s
NTH 91.6% 71.4% 0.52 s
IMTI 90.5% 13.6% 2.59 s
Ours 98.5% 5.1% 1.58 s

streak-like objects. Some stars also appear as streak-like objects
due to the influence of platform vibration. The most intuitive way
to determine the ground truth is through the eyes, so the test
results in Table 3 are for reference, and the results in Table 2 are
more accurate.

To validate the advantages of the STMHT method, MHT
Blostein and Huang, 1991), NTH (Bai and Zhou, 2010), and
MTI (Yao et al., 2015) are used to detect the same real im-
ge sequences. Table 3 shows the statistical results of different
ethods.
The MHT method does not use the prior information of moving

arget, thus the detection is performed at every pixel in every
equence image; in addition, the candidate trajectories will in-
rease rapidly when the number of test stages increases, resulting
n a large computational cost. It can be seen from the statistical
esults that the NTH method is simple and fast. However, under
he conditions of a long exposure time and wide field of view, the
etection result of the NTH method is affected by the streak-like
ackground stars, resulting in an extremely high false alarm rate.
he IMTI method is also affected by the streak-like background
tars and noise, which has a high false alarm rate; and in the
arget detection stage, at least 15 images are needed; therefore,
5 test images should be stored until the detection process is
ompleted.
The STMHT method overcomes the shortcomings of the above

ethod, including a large computational cost, a high false alarm
ate and a low detection probability in the case of wide-field
urveillance and long exposure time.

. Conclusions

In this paper, we propose a methodology for detecting space
argets in wide-field surveillance. Under the conditions of a long
xposure time and wide field of view, some stars image as streak-
ike sources, and there are many resident objects in the field
f view. The proposed omnidirectional morphological filtering
ethod can effectively eliminate stars and noise at a low com-
utational load. After removing stars and noise, the valid state
ransition region in each image is predicted. The relative inter
rame motion distance can overcome the obstacles for the detec-
ion of targets with different orbital altitudes, and the discrete
tate expansion can overcome the obstacles for the detection of
argets with nonlinear trajectories. Finally, the STMHT method is
dopted to detect space targets. The multistage hypothesis testing
riterion guarantees the detection probability of targets with dis-
ontinuous trajectories. As demonstrated by the experimental re-
ults in simulated image sequences and real image sequences, the
TMHT method overcomes the obstacles of space target detection
n wide-field surveillance, and has a high detection probability
nd low computational cost.
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