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Abstract: Fourier ptychographic microscopy (FPM) is a recently developed computational
imaging technique that has high-resolution and wide field-of-view (FOV). FPM bypasses the NA
limit of the system by stitching a number of variable-illuminated measured images in Fourier
space. On the basis of the wide FOV of the low NA objective, the high-resolution image
with a wide FOV can be reconstructed through the phase recovery algorithm. However, the
high-resolution reconstruction images are affected by the LED array point light source. The
results are: (1) the intensities collected by the sample are severely declined when edge LEDs
illuminate the sample; (2) the multiple reconstructions are caused by wavevectors inconsistency
for the full FOV images. Here, we propose a new lighting scheme termed full FOV Fourier
ptychographic microscopy (F3PM). By combining the LED array and telecentric lens, the method
can provide plane waves with different angles while maintaining uniform intensity. Benefiting
from the telecentric performance and f–θ property of the telecentric lens, the system stability is
improved and the relationship between the position of LED and its illumination angle is simplified.
The excellent plane wave provided by the telecentric lens guarantees the same wavevector in the
full FOV, and we use this wavevector to reconstruct the full FOV during one time. The area
and diameter of the single reconstruction FOV reached 14.6mm2 and 5.4mm, respectively, and
the diameter is very close to the field number (5.5mm) of the 4× objective. Compared with the
traditional FPM, we have increased the diameter of FOV in a single reconstruction by ∼ 10 times,
eliminating the complicated steps of computational redundancy and image stitching.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-resolution and wide field-of-view (FOV) microscopic imaging plays an important role in
biological and physical sciences. However, it is difficult to obtain both of them at the same time
by conventional microscope. People usually have to divide the whole region of interest (ROI)
into pieces that match the FOV of microscope, capturing the high-resolution images one by one,
and then stitching them together to reconstruct the complete ROI image. It is time consuming
and device complex. In recent years, benefiting from the development of digital equipment and
computational imaging, researchers have developed a variety of new imaging methods to solve this
problem [1–10]. Fourier ptychographic microscopy (FPM) [11,12] is one of the most important
methods, which combines wide FOV with high resolution. Besides, it can also reconstruct the
phase information of sample. FPM achieves high resolution beyond the diffraction limit of the
objective, which equals to the sum of the objective and illumination NAs. Although the spatial
resolution of each measurement is low, the images collected with high illumination angles (dark
field) contain sub-resolution information [13]. After all illumination NAs having been scanned,
high-resolution complex image is reconstructed by nonlinear optimization algorithms [11,14,15].
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A serious problem faced by FPM is the signal-to-noise ratio degradation under large angle
illumination for high frequency information acquisition. The reason is that the intensities
collected by the sample decrease sharply with the illumination angles increase. For a planar
LED array, the intensity falloff can be approximately expressed as ∼I= I0 cosθ4 [16], where I0
is the central intensity under normal illumination and θ is the illumination angle. The second
problem is that we cannot get an identical wave front vector over the whole FOV with the LED
direct illumination. The only way is to divide the whole FOV into pieces to ensure that each
sub-FOV could be regarded as a single wave front vector for reconstruction [11,17], and then
stitched together to construct the whole image. In addition, in order to meet the needs of image
stitching and light intensity correction, the overlap rate between adjacent sub-fields should be
guaranteed to be 30% or more. These post-processing steps are cumbersome and bring more
calculation consumption.
In terms of intensity fluctuation, some schemes have been proposed to solve it. For a planar

LED array, one can modulate the camera exposure time to balance the illumination between the
central LED and the external LEDs. However, it is time consuming and more vulnerable to noise.
Changing the spatial arrangement of LEDs [16,18] can improve its energy utilization rate to
∼I= I0 cosθ. However, these ways need precise machining, higher installation accuracy and the
wavevectors are still different in full FOV. Condenser or lens [19–23]can collect the illumination
lights from LEDs and transfer them into plane waves, and the intensity falloff has been changed
to ∼ I= I0 cosθ. But there are still some problems in use. First, the size of illumination beam and
imaging FOV were limited by the exit pupil diameter. Second, a calibration process is needed
before reconstruction, because of the non-linear relationship between the position of LED and its
illumination angle. Furthermore, the condensers and lenses have some level of field curvatures
[24]. Affected by field curvatures, the illumination light wave fronts will be distorted. Then the
distorted wave fronts will lead to a deterioration in quality of reconstruction images.
In this paper, a new illumination method based on telecentric lens (TL) is introduced. We

termed this method as Full FOV Fourier ptychographic microscopy (F3PM). It can provide the
uniform illumination intensity for different angle and excellent plane wave front for the whole
FOV. Furthermore, the relationship between position of LED and its illumination angle is simpler,
because of the f–θ property of the TL. Profiting from the telecentric performance of the lens, the
accuracy of the distance between the LED array, the sample and the lens has been greatly reduced,
which can significantly improve the reliability of the system [25,26]. Based on the excellent
plane wave front, the same wavevector is obtained over the full FOV, and the full FOV image can
be reconstructed during one time. Section 2 introduced the principle and its structure of F3PM.
Section 3 illustrated the performance results, which indicated that the system could achieve a
resolution of 0.78µm and a single reconstruction FOV of 14.6mm2 with 5.4mm in diameter. The
diameter is very close to the field number (5.5mm) of 4× the objective lens. Compared with
traditional illumination methods, we not only correct the illumination intensity, but also improve
the diameter of FOV in a single reconstruction by ∼ 10 times.

2. Principle of F3PM

As shown in Fig. 1(a), the optical setup of F3PM consists of five major components: a LED array,
a TL, an objective, a tube lens and a CCD camera. A LED array light source (SMD 1919, size
of LED is 1.9mm×1.9mm) is used to provide illumination at different angles, and the central
wavelength is 520 ± 10nm. The objective (4× magnification, NA=0.1, field number of 5.5mm,
Olympus) and the tube lens (focal length of 18mm) are used to image the sample. The CCD
(Lumenra, infinity 4, 2650×4600 pixels, 9µm) is used to capture the images. The focal length of
TL is 12cm, the FOV is 64mm, and the exit pupil diameter is 1cm. The LED array and the sample
are located at the focal plane and the exit pupil position of the TL, respectively. The maximum
illumination angle of TL is 19°, so the synthetic aperture and the full-pitch resolution of F3PM
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are 0.42 and 1.24µm, separately. The TL collects light emitted from the normal direction of each
LED and collimates it to maintain a uniform plane wave front vector throughout the FOV, shown
in Fig. 1(b). Benefiting from the telecentric character of TL, the light emitted from the normal
direction of each LED can be collected by TL. Thus, there is a more standard intensity falloff
I= I0 cosθ when TL provides plane waves with different angles. In addition, the telecentric
character of TL reduces the z-axis adjustment accuracy of LED array greatly and improves the
stability of the system [25,26]. When the LED array is slightly defocused, its main light can still
pass through the sample plane and its illumination angle does not change.

Fig. 1. (a) 3D schematic of F3PM. (b) Telecentric character and f–θ property of TL.

TL also has the advantage of f–θ property, which simplifies the relationship between position
of LEDs and its illumination angle. There is a θ=x/f relationship between the position of LED
and its illumination angle, where x is the position of LED, f is the focal length and θ is the
illumination angles, shown in Fig. 1(b). The illumination angle of each LED can be expressed as
(θix, θiy)= (xi/f, yi/f ), where (xi, yi) is the position of ith LED, shown in Fig. 1(b). The wavevectors
for full FOV can be expressed as

(µi, νi) =
2π
λ
(sin(

xi
f
), sin(

yi
f
)) (1)

where (µ, ν) is the wavevector of the plane wave, λ is the illumination wavelength. The
wavevectors of F3PM are only related to the x–y coordinate of LEDs and more simplified than
traditional method. Although the wavevector of F3PM is more linear and not affected by the
distance between the LEDs and the sample, it is still affected by some unexpected misalignments
of LED array, such as shift, tilt and rotation. Fortunately, this problem can be solved by the
recently proposed calibration method [26,27].
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The excellent plane wave with the samewavevector provided by TL facilitates the reconstruction
process of F3PM. Affected by wavevectors inconsistency, traditional FPM has to divide the
full FOV into segments and then reconstructs them sequentially during reconstruction process.
For F3PM, the wavevector is the same in the full FOV and the multiple reconstructions are
unnecessary. Therefore, F3PM reconstructs the high-resolution image with full FOV directly.
Although the parallelism of single reconstruction is lower than the multiple reconstructions when
calculated in GPU, the full FOV images reconstruct process of traditional FPM is consists of
multiple reconstructions, intensity correction for different patches and image stitching. On the
contrary, for F3PM, the computational redundancy caused by image stitching is avoided and the
efficiency of reconstruction is improved. The segment size of raw image used by traditional
FPM mostly less than 500µm [12]. In contrast, F3PM reconstructs high-resolution images with
FOV of 3.82mm×3.82mm, breaking the limitation of wavevector inconsistency and improving
the size of single high-resolution reconstruction nearly ten times. The size of FOV of single
reconstruction of F3PM is limited by the field number of 4× objective, which can be larger by
employing an objective with larger field number. In addition, if one’s hardware is limited, they
can choose a reconstruction size smaller than whole FOV but larger than traditional method used.
The reconstruction process becomes more flexible. Moreover, based on some single-shot FPM
methods [28,29], there are only a few low-resolution images, a reconstruction for full FOV is
faster and more advantageous in real time imaging.

3. Result

To verify the performance of F3PM, USAF 1951 target was imaged. In order to satisfy the
sampling criteria and the overlap rate [30,31], the gap of LEDs is 4mm and the overlap rate in
frequency domain is 64%. During the capture process, the central 17×17 LEDs are switched on
sequentially to capture 289 images. The reconstruction results of USAF 1951 reconstructed by
traditional FPM and F3PM are shown in Fig. 2. We selected 1700×1700 pixels for reconstruction.
The diameter of reconstructed area corresponding to the sample plane is 5.4mm which is close
to the field number (5.5mm) of the objective lens. From Fig. 2(a1)-(a2), as the increases in
diameter of reconstruction area, the reconstruction quality of traditional FPM declines rapidly.
From Fig. 2(b1)-(b2) and Fig. 2(c1)-(c2), in spite of the size of image reconstructed by F3PM
is larger than the traditional FPM, the reconstruction result of edge FOV does not degrade and
without wrinkling artifacts [17,32]. In terms of the resolution of reconstruction results, shown in
Fig. 2(b3)-(c3), the element 3 of group 9(645 lp/mm, resolution of 0.78µm) can be distinguished.
However, influenced by the aberration of objective lens [32], the quality of Fig. 2(c2) which
corresponding to the edge region is not as good as the Fig. 2(b2) which corresponding to the
center. Fortunately, this difficulty can be overcome by using an objective lens with higher
magnification [33].

To demonstrate the full-FOV resolution consistency of F3PM, a biological specimen experiment
is carried out using cervical smear cells. The conditions are the same as the above experiments.
Intensity and phase map of the cervical smear cells are reconstructed with FOV of 14.6mm2,
as shown in Fig. 3(a1) and Fig. 3(b1), respectively. The details of intensity image are shown
in (a2)-(a5) and the details of phase image are shown in (b2)-(b4). The ground truths are
captured by the conventional microscope (×20 magnification, NA=0.46) and used for comparison.
The raw data are the low-resolution images taken by F3PM. The reconstruction quality of
Fig. 3(a4)-(a5) are the same as the quality of the ground truths. Therefore, F3PM can perform a
single reconstruction of the images with full FOV while maintaining consistent resolution.

Traditional FPM is approximately coherent imaging, and the size of reconstruction images of
F3PM does not meet the requirements of coherent imaging. In our work, the coherence length
does not make troubles for us. First, the requirement of spatial coherence for FPM is reduced by
capturing the images in spatial domain [34]. FPM only need to maintain the spatial coherence
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Fig. 2. 1951 USAF resolution target imaging using traditional FPM and F3PM. (a1) Full
FOV reconstruction image of traditional FPM. The high-resolution target is located at
the FOV boundary. (b1) Full FOV reconstruction image of F3PM. The high-resolution
target is located at the FOV center. (c1) Full FOV reconstruction image of F3PM. The
high-resolution target is located at the FOV boundary. The magnified intensity images
(a2)-(c2) are corresponding to the regions of red, green and blue boxes in (a1)- (c1). The
magnified intensity images (a3)-(c3) are the high-resolution target zoom-in of (a2)-(c2).
(a4)-(c4) are the low-resolution images corresponding to the (a3)-(c3).

over the scale of the point spread function at the object plane and thus the partially coherent LED
illumination can be used for FPM [35]. Second, we use an apodized transfer function [36] model
for reconstruction, this model is closer to the real partial coherent imaging model [37]. By taking
a fitting value α, the apodized transfer function can close to the real transfer function generated
by light source with different size. Because of the small size of the lighting area of the LEDs, we
choose the fitting value α equal to 0.2. Finally, the reconstruction results of small patch and full
FOV are the same, shown in Fig. 4. Therefore, the coherence does not influence the single full
FOV reconstruction under apodized transfer function model.
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Fig. 3. The cervical smear cells reconstruction result. High resolution (a1) intensity and
(b1) phase images, with full FOV of 14.6mm2. The magnified (a2)-(a3) intensity images and
(b2)-(b3) phase images corresponding to the yellow and blue boxes in (a1) and (b1). (a4)-(a5)
intensity images and (b4)-(b5) phase images are the zoom in of (a2)-(a3) and (b2)-(b3).
The ground truth images are captured by a conventional microscope (×20 magnification,
NA=0.46).

Fig. 4. (a) Reconstruction result of small patch. (b) Zoom-in of the reconstruction result of
full FOV.
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4. Conclusions

We present a new illumination method for FPM, named F3PM. F3PM obtains plane wave
illumination with uniform intensity and different angels by combining the TL and LED array.
TL has three advantages: telecentric character, f–θ property and excellent plane wave front.
The method overcomes the difficulties of intensity fluctuation and wavevectors inconsistency.
Based on the same wavevector in full FOV, F3PM reconstructs images with FOV of 14.6mm2

during one time, which is nearly ten times larger than traditional FPM. Furthermore, F3PM
reduces calculation redundancy and post processing steps. The performance of F3PM has been
demonstrated by imaging USAF 1951 and biological specimen. In our perspective, this method
has huge potential in wide FOV, high NA illumination and dynamic imaging of FPM.
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