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Abstract
Depicting the multimode laser beam by modal decomposition can potentially assess light field
variations in the fiber, during propagation. The practical engineering conditions in the lab
however could not realize ideal levels, hence further research on factors influencing this method,
such as defocus, is especially necessitated. The grid spacing in observation plane by Fast
Fourier Transform is fixed and unchangeable within diffraction imaging, hence possibly
yielding erroneous data during obtaining light field intensities. Our research resolves these
issues via a Two-step ABCD algorithm, applied in the modal decomposition to characterize
various guided modes at the output of multimode fibers. A direct benefit is that the image plane
size can be altered, further refining laser facula clarity. Furthermore, the quantitative expressions
that analyze defocus factors impacting modal decomposition are acquired. The conclusions
thereby prove the modal decomposition algorithm can keep effectiveness in the range of
−0.25% to 0.25% of relative defocus for low order eigenmodes, having no suitable limited band
for high order eigenmodes, with reference value in engineering applications.

Keywords: modal decomposition, the two-step diffraction, mode detection

(Some figures may appear in colour only in the online journal)

1. Introduction

Further research and development have facilitated several laser
beams technology applications in engineering, hugely cap-
italizing on the high accuracy, efficiency and power. Laser
beam propagation in step optical fiber is a subject per-
sistently researched in recent years, such that the content
is resourcefully characterized for an enhanced and precise
propagation in several fields, such as fine mechanism [1, 2],

Original content from this workmay be used under the terms
of the Creative Commons Attribution 3.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

detection [3, 4] and transmission [5, 6], to name a few. Several
established methods are used to measure a range of light field
information to identify laser beams, in corresponding con-
ditions. The S2 measurement spatially and spectrally quan-
tifies the number and type of modes, to analysis the mode
components [7, 8]. Pu Zhou and Haibin LÜ and Liangjin
Huang proposed an approach based on stochastic parallel
gradient descent algorithm for a comprehensive optical fiber
modal decomposition [9, 10]. Maxim V. Bolshakov verified
a numerical algorithm based on the cross-correlation opera-
tion of light intensity for modal power decomposition [11].
Thomas Kaiser presented a computer-generated holographic
filter to characterize the laser beam, even if it had singularit-
ies [12, 13]. Amongst the above-mentioned methods, the dir-
ect light field description can potentially be applied to ana-
lyze optical physical peculiarity, and comprehend laser mode
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interactions, namely mode competition, curve loss and laser
beam quality.

Notwithstanding these advantages of laser beams, some
issues persist that need to be resolved. A power increase in the
optical fiber leads to nonlinear effects, such as Raman scatter-
ing and Brillouin scattering. Large-mode-area fibers can solve
this issue, however not without unexpectedly irradiating the
high-order modes. The mix of diverse modes worsens beam
quality, decreases stability, and destroys energy density. In
fact, when a laser beam comprises a few different modes, the
M2 factor is also close to one, and therefore cannot accur-
ately depict the same. This principle also applies to optical
fiber lasers. In the field of optical fiber laser [14–16], maintain-
ing high beam quality during propagation is of capital import-
ance and significant by various methods. Hence, identifying
the content of modes is essential, for an insight on their inter-
action. Field fluctuations, directed by the shifting of laser beam
mode content, are clearly observed and analyzed, particularly
when disturbances occur in the wave-guided device.

Mode decomposing is primarily essential, before laser
beam content can be identified. Thomas Kaiser et al (refer-
ence [13]) proposed an optical correlation analysis filter called
MODAN, short for Multimode Analysis, based on computer
generated hologram (CGH), to decompose and reconstruct
modes in fiber. The quintessence in Thomas Kaiser’s paper is
its unique and straightforward mathematical procedure. Meng
Lyu et al employs digital holography to measure the light field
at the output of the multimode optical fiber [17]. They calcu-
lated the modal coefficients of each mode based on the modal
orthonormal property. Nevertheless, the Fast Fourier Trans-
form utilized in most modal decomposition methods, cannot
alter the spacing in the frequency domain, which is limited
by Nyquist’s theorem. Consequently, the light field by FFT
in simulation was very tiny and concentrated, to distinguish
any distribution patterns. The two-step ABCD algorithm [18]
integrated Fresnel propagation with the Collins formula to
arbitrarily adjust the image plane sampling rate, via a single
alternation of a Fast Fourier transform and its inverse. In this
research, we aim to apply the Two-step ABCD algorithm in
modal decomposition theory to improve its accuracy. On this
basis, the influence of defocusing on modal decomposition
theory is analyzed by simulation.

2. Method

2.1. Theory of modal decomposition

The optical fiber guide modes are mathematical solutions of
Helmholtz and Wave equations. The transverse eigenmode
expressions, varying within stipulated conditions, include lin-
ear polarization (LP) scale mode in a weak guide fiber, Hermit-
Gauss (HG) mode in a resonant cavity with square mirror, and
Laguerre-Gauss (LG) mode in a circular mirror cavity, col-
lectively known as eigenmodes, and exhibiting orthogonality,
totality and stability. Any incident light field, owing to its char-
acteristics, can be expressed as superposition of eigenmodes.
The research we conducted is on the premise of a weak guide

fiber, wherein the refractive index of the core is approximat-
ing cladding’s number, with the difference being about 0.001.
This condition yields an LP scale eigenmode.

The illuminating field is designated as,

U(u) =
nmax∑
n=1

cnψn(u) (1)

where u is the Cartesian coordinate. The complex coefficient
Cn is the weight of modes, comprising the relative amplitude
and intramode phase.

cn = ρn exp(iϕn) = ⟨ψn,U⟩=
¨

R2

ψ∗
n (u)U(u)d

2u (2)

∑
|cn|2 =

∑
ρn

2 = 1. (3)

Hence, we can ascertain the modes permitted in fiber, based
on the V number. Eigenmodes are vectors with usually two dif-
ferent polarizations that do not affect the other; degeneracy in
the weakly guided fiber occurs along the polarizing direction,
forming the LP scale modes. The eigenmode orthogonality is
designated as

⟨ψn,ψm⟩=
¨

R2

d2uψ∗
n (u)ψm(u) = δnm (4)

where the asterisk denotes the complex conjugate. In the refer-
ences, a diffractive optical element is designed as a superpos-
ition of eigenmode conjugate, which conveys the calculated
frequency-Vn.

Tn =
nmax∑
n

ψ∗
n (u)exp(iVnu) (5)

where Tn is transmittance function of correlation filter. It
shows the transmittance function is the sum of all eigenmode
conjugate with different carried frequencies. The Fourier fre-
quency shift theorem, shown in equation (6), isolates the dif-
ferent frequency-shift modes in the spatial spectrum field. In
other words, theMODANfilter transmittance function is mod-
ulated via angular multiplexing. The mixture of modes passes
through the regular filter element directions and arrives at the
image plane, to realize mode decomposition.

F{f(x)exp(iv0x)}= f̃(kx− v0). (6)

We analyzed each optical path as a separate branch, so as
to simultaneously and synchronously comprehend a number of
channels, as also their interferometric superposition. Finally,
specifying different output patterns, primarily the near-field
and far-field distributions; near-field signifies the rear surface
of the filter, which is associated with the intensity of all modes,
whilst far-field is where the Fourier transform is achieved. We

2



Laser Phys. 30 (2020) 105101 Y Zhang et al

set up a lens for Fourier transform, so the back focal plane is
equivalent to the far-field distribution [13].

Wf(u) =
∑
n

[¨
d2u′ψ̃∗

n

(
k0
f
u′
)
Ũ

(
k0
f
[u−u′]−Vn

)]
(7)

where f is the focal length of the lens. The symbol ’ ~’ denotes
the frequency domain.

It is noteworthy that the far-field description comprises
several superpositions of cross correlations of each conjug-
ated eigenmode. The orthogonality satisfies the complex amp-
litudes of different modes at precisely the Un = Vn∗f/k spots,
and as a result, patterns do not entirely conform with the initial
eigenmodes. A CCD camera is placed at specific points on the
rear focal plane for light intensity, which is proportional to the
mode weight squared. The relative phase and M2 factor can
also be acquired via another algorithm, based on the intensity
data. Generally, LP01 is defined as basic mode, and its initial
phase is zero.

2.2. The two-step ABCD algorithm

In the Two-step ABCD algorithm, a virtual medium plane
was set during propagation, such that laser beams satisfy the
Fresnel diffraction, from both the source to the medium, and
medium to the image plane. The two-step Fresnel diffraction
can realize flexible spacing grid in image plane. From modal
decomposition theory, it reveals that the principle of separat-
ing eigenmodes is based on the Fourier transform with serval
carried frequencies. As defocus existing in detecting distance,
the function of lens is Fresnel transform, instead of the Fourier
transform. Hence, the Collin’s formula is more convenient and
more direct way to operate both two transforms, only changing
the distance between lens and detector. As a consequence, in
the case of this investigation, the Two-step ABCD algorithm
is more suitable way to change the sampling intervals and ana-
lyze the effect of defocus.

The medium plane herein could rest between the source
and observation planes, or even be far-removed. For simpli-
city, we derived the field in only one instance, wherein the
propagations considered are from source plane U1 to medium
plane Ud, and from observation plane U2 to medium plane Ud,
as indicated in figure 2. A Fresnel diffraction from U1(x,y)
presents Ud(u,v) as:

Ud(u,v)=
1

iλZ1
eik(Z1+

u2+v2

2Z1
)
ˆ ∞̂

−∞

U1(x,y)e
ik x

2+y2

2Z1 e−ik xu+yv
Z1 dxdy

(8)

where k is the wave number, and Z1 the propagation distance.
We similarly ascertain Ud (u,v) from U2 (ξ,η), via the expres-
sion

We designate ∆1 as sampling length in U1 and ∆d,1 as
sampling length in Ud. N∗N is the grid dimension in all planes.
L1 denotes the width of the subject plane, and Bx its cut-off
frequency in the spectrum domain of the image plane.

Figure 1. Set up of simulation for modal decomposition. Laser
source- Nd:YAG laser; BS-beam splitter; CCD1-detecting far-field
intensity, CCD2-detecting near-field intensity. In simulation, we
supposed that the laser beam is collimated and broadened input and
output from optical fiber. MODAN is the filter based on
self-correlation theory.

∆1 =
L1
N

(9)

∆d,1 =
λ

N∆1
Z1. (10)

Equating the right-hand sides of equations (1) and (2) helps
correlate U2(ξ,η) and U1(x,y), at the exclusion of Ud(u,v). We
can obtain the U2(ξ,η) field via the expression

U2(ξ,η) =
Z2
Z1
e−ik(Z2−Z1+ ξ2+η2

2Z2
)×

F−1

[
eik

u2+v2

2 ( 1
Z1
− 1

Z2
)F

[
U1(x,y)e

ik x
2+y2

2Z1

]] (11)

where F is the Fourier-transform operator, and F−1 its inverse.
Equation (11) is the outcome of a two-step Fresnel diffraction
for scale paraxial propagation. A similar equation for sampling
distance in Ud replaces∆1 with ∆2.

∆d,2 =
λ

N∆2
Z1. (12)

The two-step method works numerically, only with Ud in
the same position, starting from either U1 or U2. Equations
(10) and (12) must therefore be equal, so we can acquire

m=
∆2

∆1
=
Z2
Z1
. (13)

We adjust the sampling distance∆2 to ultimately obtain the
variable reconstruction image size, which also connects with
the distances Z1 and Z2.

Here, we combine this two-step diffraction algorithm with
the Collin’s formula to adjust the system parameters more eas-
ily. The laser beam transferring through the optical system can
be represented as the Collin’s formula in polar coordinate sys-
tem. In while context, the bold terms are vector and containing
the angular information, such as r1 and r2. We set two variables
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Figure 2. Schematic diagram of variable sampling display system.
U1 is incident field; Ud is the visual middle plane; U2 is the imaging
plane. Both from U1 and U2 to Ud are Fresnel diffraction.

Figure 3. Patterns of six lowest order LPmn modes. These modes
propagating in the optical fiber, V = 5.107. Symbol ‘o’ and ‘e’
present two angular orientations, in which the difference of electric
field directions is 90 degrees.

α =
A
λB

, β =
AC
λ

(14)

where A,B,C and D are the elements of system matrix and sat-
isfy that AD-BC= 1. It is worth to know that this is valid only
for optical system with azimuthal symmetry. We refer the Col-
lin’s formula to calculate the light field in polar coordinates as
follow.

E(r2,θ2) =
eikz

iλB
eiπβ(

r2
A )

2
ˆ ˆ E

(r1,θ1)e
iπα| r2A −r1|2r1dr1dθ1

(15)
where r1, r2 is vector containing the amplitude and azimuth.
This equation can be calculated by convolution and the output
coordinate r2 can be enlarged as Ar2.

E(Ar2) = eikz
eiπβr

2
2

iλB

[
E(r1)⊗ exp

(
iπαr21

)]
(16)

we set ‘m’ to change the size of both source plane and image
plane.∣∣∣ r2
A
− r1

∣∣∣2 = m
A

(
r1 −

r2
m

)2
+
(
1− m

A

)
r21 +

(
1
A2

− 1
mA

)
r22.

(17)

We substitute it into equation (17) and obtain

E(r2) =
eikz

iλB
Q1 (r2)Q2 (r2)

ˆ
E′ (r1)

[
h
( r2
m

− r1
)]
dr1 =

eikz

iλB
Q1 (r2)Q2 (r2)E

′′ (r2)

(18)
where Q represent phase factor and E” represent convolution
formula.

Q1 (r2) = exp

[
iπβ

( r2
A

)2
]
,Q2 (r2)

= exp

[
iπα

(
1
A2

− 1
mA

)
r22

]
(19)

E′ (r1) = E(r1)exp
[
iπα

(
1− m

A

)
r21
]
,E′′ (r2)

=

ˆ
E′ (r1)h

( r2
m

− r1
)
dr1 (20)

h
( r2
m

− r1
)
= exp

[
iπα

m
A

∣∣∣ r2
m

− r1
∣∣∣2] . (21)

We define scale coordinate r’2 as follow and substitute it
into equation (21). We obtain

r’2 =
r2
m

(22)

E ′ ′(mr ′2) =
ˆ
E ′(r1)h(r ′2 − r1)dr1 = E ′(r1)⊗ h(r1) . (23)

It could be taken into the equation (18). Finally, we acquire
the formula of output field as:

E(r2) =
eikz

iλB
Q1 (r2)Q2 (r2) IFFT

[
f,
r2
m

]
×

iA
αm

exp

(
− iA
αm

f2
)
×FFT [r1, f]E

′ (r1)
(24)

where FFT is the Fourier transform and IFFT is the inverse
Fourier transform. Now that we have get the expression of
angular-spectrum propagation, we can test the grid spacing η1
in the source plane and η2 in the image plane.

From F [f1, r1]:

ηf,1 =
1
Nη1

. (25)

From F−1 [f1, r2/m]

η2=
m

Nηf,1
= m/N÷

(
1
Nη1

)
. (26)

Above all, we can control over the observation plane
grid spacing η2 to overcome the fixed spacing grid by FFT.
Moreover, adjusting the optical system matrix parameters can
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operate both the Fourier transform and the Fresnel transform,
which analysis of defocus use the Fresnel transform.

The simulation analysis with proposed algorithm is seen
as a test run for experiments to get clear results, not the main
guidance. By simulation, we can try to find the suitable sample
cell size and match it with the parameter of CCD camera exis-
ted in market. The proposed algorithm is helpful to know what
size the sampling unit is suitable. It has reference value to
choose CCD camera for experiment on aspect of resolution.

3. Results

3.1. Simulation of flexible spacing grid for modal
decomposition

In this part, we proved by simulation that this algorithm
applied inmodal decomposition can alter the spacing grid flex-
ibly and improve resolution of output patterns. The simulation
background was that the Large Mode Area fiber (LMA fiber)
was excited by an Nd:YAG laser (λ0 = 1064 nm). We assumed
the waist radius w0 was 3 millimeters, and the NA close to
0.01, which the weak guide fiber satisfies. The V= 5.167 para-
meter clearly establishes that the fiber supports the six lowest-
order eigenmodes, namely LP01, LP02, LP11e, LP11o, LP21e,
and LP21o, at the same instance, each mode exhibits two differ-
ent polarizations, with o and e representing the specific angular
distributions, as shown in figure 3. For simplicity, we reviewed
only one polarization state, so as to decompose a known field
into its spatial eigenstates.

The second stage of our simulation deployed the MODAN
[13] filter for modal decomposition, as well as the Two-step
ABCD algorithm to characterize the light field in variable
grid coordinates. The simulation system setup, as displayed
in figure 1, can be experimentally established via an easy 2 f-
setup. The incident light beam is a coherent superposition of
six lowest order modes, with similar polarization. The dif-
fraction optical element MODAN, comprising corresponding
mode conjugations, can be prepared via a liquid crystal spa-
tial light modulator (SLM) as a digital hologram element. The
liquid crystal SLM ensures diffractive efficiency and common
applicability, relative to microlithography gratings. MODAN
size is assumed as triple that of the optical fiber, and the grid
count is N∗N. A Fast Fourier transform was realized at the
back focal plane, wherein the far-field image was a cross-
correlation of the incident beam U1(x1, y1) and the eigenmode
Ψ (x1, y1), recorded via CCD1.On the diffraction optical ele-
ments (MODAN) rear surface, it indicated a near-field intens-
ity distribution, which is the mix of six lowest-order mode
intensities, recorded by the CCD2. The comparation of near-
field distribution shown as figures 4(c)–(d). We picked the
desired intensity points, u = Vn∗k/f, from the far-field distri-
bution, to subsequently calculate other significant parameters.
The initial parameters and calculated results were recorded in
table 1 and shown as figures 4(a)–(b).

In simulation, the date of modal decomposition is presen-
ted in table 1, wherein we assumed beforehand the weights of
all six modes were the square root of 1/6, such that the coef-
ficient squares aggregate as 1. We initially simulated mode

decomposition via a Fast Fourier transform and results named
as initial data in next parts. The modal weights and relative
phase are calculated via the Two-step ABCD algorithm sub-
sequently, named as calculated data. The comparison dia-
grams of the initial data and the calculated data were shown
at figures 4(a)–(b). Comparing 2 sets of data, we defined the
error rate as ‘(initial date-calculated data)/initial date’. From
table 1 and figure 4, they revealed that the calculated data con-
formed to the initial data within the margins of error, thereby
validating the method as precise, effective and practicable.

Furthermore, the two-step ABCD algorithm accomplished
FFT operation, and reconstructed the light field in variable
sizes, as shown in figure 5. Both figures involve a 512∗512
coordinate grid in the spectral domain (fx,fy), with variable
cell sizes; however, any such adjustments should consider the
corresponding image plane dimensions, as well Fourier fre-
quency shifts. The image plane spectrum range, on the other
hand, corresponds with the wavelength and detection distance.
Hence, the sampling gird overall correlates with the carrier
frequency, wavelength, and detection distance. With the Two-
step ABCD algorithm, we can adjust the parameter ‘m’ in the
project of Matlab software to change the grid sizes of image
plane (x2,y2), in which the grid size was δ2 =m∗δx. The range
of image plane was x2 = (-N/2:N/2-1)∗δ2. So was y2. Accord-
ing to the relationship between the x2 and fx in Fraunhofer
diffraction, fx = x2/(λ∗f), we can get the range of fx was (-
N/2:N/2-1)∗δ2/(λ∗f). We eventually adjusted the grid size of
image plane .

The abovementioned theory and formulas in the part of
2.1 specify that the laser beam is in accord with eigenmode
orthogonality only at the point of frequency-shift position. It
is worth noting that the pattern of each mode is exactly not
the same as the initial six lowest-order modes, and every inde-
pendently separated light spot is effectively the single-mode
self-correlation pattern.

Figure 5 illustrates the light far-filed patterns in simula-
tions in the frequency domain (fx, fy). Figure 5(a) indicates the
direct FFT results are too tiny and centralized to discern any
significant mode pattern or positions. Figures 5(b)–(c) present
simulation of the same content based on the two-step ABCD
algorithm. The far-field results in figures 5(b) and (c) exhibit
size-tunable light field distributions. The grid cell length and
width are identical, in the two-dimensional coordinate system.
The positional shift in spatial frequency coordinates (fx, fy)
corresponds to what we initially set. The initial data and cal-
culated date were recorded in table 1 and figure 4. From them,
we can know that the modal weights and the relative phase
calculated by the algorithm agreed with the initial date with
a tiny error. It has proved that the two-step algorithm applied
in modal decomposition can observe the light field patterns in
variable size and characterize laser beam correctly.

3.2. Numerical analysis for effect of defocus on the modal
decomposition

As we established, only a precise rear focal plane distribu-
tion can realize the Fourier transform. However, engineering
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Table 1. The measured data of simulation by two-step ABCD.

Number 1 2 3 4 5 6

Mode LP01 LP11o LP11e LP21o LP21e LP02
Frequency-shift position (0,0) (0,1.5) (0, −1.5) (−1.5,0) (1.5,0) (−3, −3)
Initial weight 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
Calculated weight 0.4093 0.4103 0.4065 0.4093 0.4075 0.4066
Error of weight 0.269% 0.514% −0.416% 0.269% −0.171% −0.392%
Initial relative phase(/π) 0 0.1667 0.6667 0.25 0.25 0.75
Calculated relative phase(/π) 0 0.1649 0.6671 0.2487 0.2487 0.7502
Error of phase 0 −1.08% 0.056% −0.88% −0.88% 0.027%

Figure 4. Comparing calculated data by Two-step ABCD algorithm with initial date (a)-(b). (a)modal weights; (b) relative phase of modes.
Comparing reconstructed light field by Two-step ABCD algorithm with initial mixture of all modes(c)-(d). (c) initial near-field
distribution;(d) reconstructed near-field distribution.

applications define the focal plane based on the smallest cir-
cular spot size, whilst shifting the observation plane. General
engineering applications do not provide strict operation, or
high-precision elements, to calibrate the focal position. Mean-
while, the detection system defocus degenerates the perform-
ance such that the light spot would be a diffused facula. In
our example, the spectrum width of each mode progressively
increased, causing overlaps. These could potentially be aver-
ted via large frequency shifts; however, those are difficult to
set in practical applications. The errors ensuing from defo-
cused/overlapped modes being inevitable, we theoretically
derived formulas to quantify those. The generated expression
specifically helps to analyze how defocus influences character-
izing, based on the modal decomposition algorithm, which in
any case has a positive reference value in engineering applic-
ations.

As initially mentioned, select intensities of frequency-shift
positions helped depict the image plane. We would like to
know how the defocus affect the propagation of modes. It
was assumed that the simulation had only a single mode in
the incident field, such as LP01, and the frequency domain
coordinate system was fx = x2/(λ∗B) and fy = y2/(λ∗B).
We almost achieved maximum intensity at the frequency-shift
position, even if within the defocus range. Hence, in this
coordinate, we assumed defocus barely influenced frequency-
shifts, and continued selecting intensities on these specific
positions as well. The Collins formula helps analyze laser
beam propagation in optical systems. We therefore adopted
this method, and expressed the output Eout as:

Eout =
¨

Ein× e
ik
2B×[Ar

2
1+Dr

2
2−2r1r2 cos(θ1−θ2)]× r1dr1dθ1

(27)
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Figure 5. Modal decomposition of a beam with higher-order mode
content. (a)-power distribution by FFT algorithm. (b)-power
distribution by Two-ABCD algorithm. grid cell size
1.2 µm∗1.2 µm. (c)-power distribution by Two-ABCD algorithm.
grid cell size 0.6 µm∗0.6 µm. The resolution of image has been
improved a lot by Two-ABCD algorithm.

where Ein was the lens front surface(figure 3 Fourier lens) light
field, Eout was the light far-field distribution tested by CCD1 in
figure 3. The input Ein complex amplitude is the superposition
of eigenmodes with different phases.

Ein =
∑
n

cn×ψn×ψ∗
n × exp(i2πVn). (28)

Taking the equation (27) into the equation (26), the integ-
rated formula is expressed as:

Eout =

¨ (
c1LP01 ×LP∗

01 × ei2πV0r1 cosθ1

+c2LP11o×LP∗
11o× ei2πV1r1 cosθ1 +

)
× exp{ ik

2B
[Ar21 +Dr22 − 2r1r2 cos(θ1 − θ2)]}× r1dr1dθ1.

(29)

Each eigenmode should consider intensity normalized in
polar coordinates; taking LP01 mode as an example,

LP01=q1
J0(u01r1/w0)

J0(u01)
(30)

⟨LP01,LP01⟩=
¨

LP01 × conj(LP01)× r1 = 1 (31)

where q1 is the normalized constant. The optical system is a
simple 2-f setup, and its ABCD matrix is specified as,[

A B
C D

]
=

[
1 z
0 1

]
×
[

1 0
−1
f 1

]
=

[
1− z

f z
−1
f 1

]
(32)

where z is the distance between the lens and the image plane.
The derivative progression refers to the integral formulas

listed herewith.

J0 (a) =
1
2π

ˆ 2π

0
exp [−iacos(θ−ϕ)]dθ (33)

ˆ
J0 (xy)(xy)

1/2x1/2J2v (ax/2)

= { 2π−1y−1/2
(
a2 − y2

)−1/2
cos

[
2vsin−1 (y/a)

]
0

0< y< a
a< y<∞

(34)

where Re v >-1/2, y > 0.

∫ Jv(αt1/2)Jv(βt1/2)× e−ptdt= p−1e
−1
4 (α2+β2)/pIv(

αβ

2p
)

(35)
where Re v > 0, Re p > 0.

ˆ
tv−1J2µ1(2a

1/2
1 t) . . .J2µn(2a

1/2
n t1/2)e−ptdt

=
Γ(v+m)p−v−maµ1

1 . . .aµn
n

Γ(2µ1 + 1) . . .Γ(2µn+ 1)

×Ψ2(v+m;2µ1 + 1, . . .2µn+ 1;
a1
p
, . . .

an
p
) (36)

where M= µ1+ µ2+…+ µn, Re(p) > 0, Re(v+M) > 0.ψ2

is bivariate hypergeometric functions. Generally, LP01 mode
is almost referred as basic mode, defined V1 = 0. In the back
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focal plane, A = 0, and at the point (0,0) in spectrum domain,
the output distribution according to the reference integral for-
mula equation (29) is

Eout =

ˆ
c1J0

(
u01
w0

r1

)2

dr1 =
ˆ
c1LP01 ×LP∗

01dr1. (37)

The result reveals that the complex distribution of LP01 at (0,0)
is satisfied with mode normalization. On the other hand, it
proved the above theory of modal decomposition in the way
of Collins formula. So as to other modes. When the detection
plane did not fix the back focal plane(A ̸= 0), the variable ∆f
denoted defocusing, such that ∆f = z-f. According the ref-
erence integral formulas equation (36), the output Eout with
defocus is

Eout = p−1 ×Ψ2

1;1,1,1;
(
u01
2w0

)2

p
,

(
u01
2w0

)2

p
,

(
πr2
λB

)2
p


+

Γ(2)p−2 u11
2w0

2

Γ(2)Γ(2)Γ(1)
×Ψ2

2;2,2,1;
(
u11
2w0

)2

p
,

(
u11
2w0

)2

p
,

(
πb2
λB

)2
p


−

Γ(3)p−3 u11
2w0

2

Γ(2)Γ(2)Γ(3)
×Ψ2

3;2,2,3;
(
u11
2w0

)2

p
,

(
u11
2w0

)2

p
,

(
πb2
λB

)2
p

 +

(38)
where p = k∗A/(i2B), Ψ2 is bivariate hypergeometric func-
tion. The equation (38) describe the change of intensity at
frequency-shift positions, via a formula that primarily factors
B/A and its power function, wherein A and B are elements
in the ABCD matrix; B/A approaches infinity, when defo-
cus approaches zero. We therefore avoided the intensity at
the focus, which otherwise would render the simulation res-
ult infinite. The above formulas yield the integral result as a
sum of infinite polynomials. In mathematic theory, the lengthy
hybrid Bessel integration is tuff to acquire analytic solutions.
For simplicity, we calculated the numerical integration of the
hybrid Bessel integration in simulation. In numerical integra-
tion method, the error of results is maybe caused by the limited
condition, the simplicity of sum and avoiding focus position.

3.3. Results of two methods

3.3.1. Simulation with two-ABCD algorithm. As simulating
the effect of defocus on intensity with relative defocus (∆f/f)
range from −0.5 to 0.5, we discover that the error of mode
weights is especially large based on the intensities data. The
larger relative defocus, the lager error rate. Only between
−0.01 and 0.01, the data is effective for analysis. During the
propagation with defocus, we picked up the intensities at the
specific positions and made the LP01 mode as basic mode. The
results of simulation are as follow.

The simulation results revealed similar trends for all modes
that at specific position, the defocusing was lesser, and the
light intensity was stronger, establishing the figure 6(a) pro-
file. The radios of every max light intensity were nearly close

to 1 around ∆f = 0, agreed with the proportion of initial
mode weight squared. On account of the carried defocus, the
propagation is Fresnel diffraction not Fourier transform, and
the output patterns is a superposition of the six modes Fres-
nel diffraction with different phase factors, such as two sub-
images in figure 6(a). Obviously, defocus has a significant
effect on the relative light intensity, which means the modal
decomposition algorithm is strict with the defocus.

3.3.2. Comparison of results from twomethods. We showed
the effect of defocusing on modal decomposition detailly in
defocusing range of 1% to−1%. The mode weights error per-
centage was selected as the element to reflect the result of
modal decomposition. Figures 6(b)–(g) detailly highlighted
error percentage of mode weights profiles for each eigenmode
based on two methods. The comparison of the two methods
was not only helpful to analyze their respective characterist-
ics, but also obtained more accurate defocusing influence rule.
According to results, the trend of intensity for all modes with
the increase of relative defocus at specific positions in spec-
trum domain was same as figure 6(a), while the profiles for
low-order modes and high-order modes were not identical.

From the figures, it revealed that both in two methods, at
the position of∆f= 0, back focal plane, the mode decompos-
ition and characterizing can be realized exactly, which were
consistent with patterns in figure 5. When there was defo-
cus error in testing distance, the result of mode decomposi-
tion would be affected terribly, in which the range keeping
precisely correct radio did not appear. the results observed
both in two methods helped establish that the defocus signi-
ficantly influenced the modal characterizing algorithm. Bey-
ond this, the effect of defocusing was variant with the order of
mode and worse in high-order mode. From the numerical ana-
lysis, it can be discovered that within a small range of relative
defocus, from −0.25% to 0.25%, the error of mode weights
can almost around 0 for LP01, LP11o, LP11e. However, as for
higher-order mode, the order is higher, the range of keeping
error rate around zero is smaller.

The principle of this phenomenon is that the Fourier trans-
formation is changed as Fresnel transformation because of the
introduction of defocus, which leads to larger spot width for
each mode and adjacent patterns overlap. Consequently, the
light intensity at special positions contain one part generated
bymode orthogonality and the other part generated by overlap.
The intensity data have lost the correctness for calculating the
mode weights and relative phase. Furthermore, the fact is that
higher order eigenmodes by Fraunhofer diffraction are bottle
beam, wherein the transvers image is concentric circles with
different light and shade. The power of light is mostly concen-
trated on the outer ring, not equally in every ring. According
this, the light intensities will up and down, maybe which is dif-
ficult to find an accurate universal law for defocus effect. But
expect for zero point in error percentage of mode weights at
∆f= 0, others are no physical meaning, they are just a coincid-
ence about pure number. Overall, we infer that defocus would
have worse effect on modal decomposition algorithm, espe-
cially for higher-order modes.

8
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Figure 6. (a) Relative intensity of six eigenmodes changing with relative defocus. At focus position (∆f = 0), intensities of each mode at
frequency-shift positions are strongest.

Figure 7. (b)-(g) Error of mode weights for six eigenmodes with increasing defocus. For one single mode, the error of mode weights
calculated by two methods change with defocus. For all modes, the higher order modes, the narrower band of error of mode weights around
zero.

3.3.3. Error analysis of twomethods. The First method, Two
-ABCD algorithm simulation, the source of error is maybe
caused by theMatlab software and the intensity of single point.
On one hand, the pixel in simulation is limited. we desire
to choosing the intensities at frequency-shift position, such

as (1.5, 0) in spectrum domain. On account of the limited
pixel, the spectrum domain (fx,fy) has (1.49,0) or (1.52,0),
not exact (1.5,0). Even if picking (1.5,0), the results will out
of calculation of Matlab software, stopping program running.
So, the error can be decreased but not disappearing. Second,
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we only pick up the intensity of single point, while the size
of single point is out of the resolution of CCD camera. Lim-
ited by the CCD camera resolution, when we want to measure
the light intensity at (1.5,0) in frequency domain, the actual
data displayed by the camera is the mean value of the light
intensity within a small radius centered on (1.5, 0). Picking
up single point intensity does not be realized in engineering
application, maybe it contributes to much error of intensity
data. The second method, numerical analysis, the mathem-
atical model of eigenmode was Bessel function in my work,
whose integral result is not analytic solution. In the reference
integral formula (equations (34–36)), it is an infinite integral
region. However, software Matlab cannot work out the integ-
ral in infinite region. For the feasibility of integral operation,
we set a few limited conditions and approximate expressions.
So is the sum of infinite polynomials (equation 36). It is redu-
cible to the sum of limited polynomials. Even if the operation
process has been simplified much, the running time by Mat-
lab software is too long, which cannot be applied in instant
feedback optical system.

Combined with the above reasons, the Two-step ABCD
algorithm is more rapid and effective to analyze the defo-
cus effect in the relative defocus range of −0.25% to 0.25%.
Beyond this range, defocusing has a terrible effect on modal
decomposition, and we also try to minimize defocusing in
engineering applications. This range also indicates that find-
ing accurate back focal plane is tuff and vital work in absolute
coordinate.

4. Conclusion

This research has demonstrated that the Two-step ABCD
algorithm in simulation can realize modal decomposition and
characterization of laser modes based on correlation filer,
allowing image plane size modifications. Choosing the suit-
able grid size needs to consider the carried frequency and the
size of light filed for variable optical setup situations. It is pos-
sible to observe the light facula more clearly and ensure the
correctness and accuracy of light intensities at desired pos-
itions. Combining the algorithm and numerical analysis, we
analyze the effect of defocus on modal decomposition based
on correlation filter and discover that error of mode weights
increases with the defocus. If the relative defocus between
−0.25% and−0.25%, the correctness ofmodal decomposition
and characterization can still be kept for LP01, LP11o, LP11e.
The higher-order eigenmodes does not have the similar lim-
ited band of relative defocus, which effect of defocus is worse
than lower-order eigenmodes. This research verifies feasibility
and effectiveness of Two-step ABCD algorithm and analyzes
effect of defocus by simulation and numerical analysis, with
a view to provide a more reliable data and references for the
engineer applications later.

In nature, the Bessel beam has the feature of focal shift,
which brings more problems to define the back focal plane.
In later work, we will continue studying and researching
these error problems and solutions to improve accuracy and

applicability of modal decomposition based on correlation fil-
ter for more engineer situations.
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