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Abstract: Ship detection in panchromatic optical remote sensing images is faced with two major
challenges, locating candidate regions from complex backgrounds quickly and describing ships
effectively to reduce false alarms. Here, a practical method was proposed to solve these issues.
Firstly, we constructed a novel visual saliency detection method based on a hyper-complex Fourier
transform of a quaternion to locate regions of interest (ROIs), which can improve the accuracy of
the subsequent discrimination process for panchromatic images, compared with the phase spectrum
quaternary Fourier transform (PQFT) method. In addition, the Gaussian filtering of different scales
was performed on the transformed result to synthesize the best saliency map. An adaptive method
based on GrabCut was then used for binary segmentation to extract candidate positions. With respect
to the discrimination stage, a rotation-invariant modified local binary pattern (LBP) description was
achieved by combining shape, texture, and moment invariant features to describe the ship targets
more powerfully. Finally, the false alarms were eliminated through SVM training. The experimental
results on panchromatic optical remote sensing images demonstrated that the presented saliency
model under various indicators is superior, and the proposed ship detection method is accurate and
fast with high robustness, based on detailed comparisons to existing efforts.

Keywords: ship detection; hyper-complex Fourier transform; visual saliency; panchromatic optical
remote sensing images; rotation-invariant modified LBP

1. Introduction

Ships are important targets of real-time monitoring and wartime attacks at sea, and their accurate
and fast detection can play a key role in the analysis of enemy situations, precision guidance, and military
mapping. Ships also play an irreplaceable role in rescue, the safety management of fishing vessels,
and so on. However, automatic detection is prone to false alarm and missed detection due to complex
interference such as shooting weather, sea surface clutter, cloud, fog occlusion, and uneven illumination.
How ships can be quickly and reliably detected in and extracted from panchromatic remote sensing
images (with one channel) has become a critical issue [1–3].

At present, the ship detection method mainly includes three main stages [4–7]: the separation of sea
and land, the region of interest (ROI) location, and target feature description and false alarm elimination,
and the last two steps have received an increasing amount of attention. In the stage of locating ROIs (our
interest areas of the suspicious ship in the image), gray statistical features, edge detection, and visual
saliency are the most popular tools. The first two kinds of algorithm are simple to implement, but
when sea conditions become complicated because the wind and waves are strong, the contrast of
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targets and backgrounds is low, and the position effect is poor. Even a ship target could be submerged
into the background under these circumstances. In recent years, methods based on visual saliency
models have been successfully applied in target localization, and these methods simulate the human
visual system and quickly focus on the ROIs in the image. Visual saliency models can be mainly
divided into two types: top-down and bottom-up models. The top-down models, which use cognitive
factors such as pre-knowledge, context information, expectations, and motivations to perform a visual
search, are related to specific tasks and goals. This model belongs to an advanced cognitive process to
consciously calculate the characteristics according to the task, and the existing top-down models usually
bring in high computational costs and do not have a generic model. Therefore, the top-down models
are more complicated and are rarely used in engineering projects. Most of the saliency detection models,
including the spatial domain and transform domain, are bottom-up. In [8], ITTI constructed a saliency
map based on intensity, color, and orientation features. This method has a good implementation;
however, the model performed in the spatial domain is relatively complicated in structure and intensive
in computation. Guo proposed a phase spectrum quaternary Fourier transform (PQFT) method
for color images, and the edge detection performance was satisfactory, but the continuity of the
segmentation region was poor with respect to panchromatic images [9]. Hou proposed the spectral
residual method (SR), which is a significant detection model based on phase spectrum analysis in the
frequency domain [10]. Li proposed the hyper-complex frequency domain transform model (HFT)
with higher significant detection accuracy in simple scenes [11]. Dong proposed a novel visual saliency
detection method based on differences in statistical characteristics to locate ROIs [12]. Xu presented a
global saliency model based on high-frequency coefficients of multi-scale and multi-direction wavelet
decomposition for ship detection [13]. Generally speaking, the processing results of the aforesaid
algorithms were unsatisfactory with respect to panchromatic images. Specifically, these algorithms
were not only sensitive to the boundaries of the target areas, but the detected target area was also
incomplete in complex backgrounds.

With respect to the feature description and false alarm elimination phase [14–16], there are two
representative categories. One is the method based on the statistical analysis of targets and false alarm
characteristics. This kind of method requires the artificial design of multi-dimensional description
features and then classification by machine learning. For instance, Yang combined the LBP descriptor
of the image texture with the ship structure and used the adaptive boosting (AdaBoost) algorithm to
generate hypotheses for ships. The ideal detection results were obtained for large-scale ships in high
resolution images of calm sea surfaces; however, there was no difference in LBP distribution between
each part of the ship structure at low resolution and in complex backgrounds, and the performance
was degraded [17]. Qi designed a ship histogram of an oriented gradient (S-HOG) descriptor to
obtain rotation invariance and applied principal component analysis (PCA) to compute the orientation.
However, the complexity of the algorithm was high [18]. Shi used the learning algorithm based
on AdaBoost classification to extract histograms of an oriented gradient (HOG) for distinguishing
targets and false alarms [19]. Yang employed the compactness and length–width ratio to remove
false alarms. The two kinds of features related to shape description, and the method lacked sufficient
strong features [7]. It is important to design and select distinguished features. The other method can
detect features automatically via deep learning models. Liu used a convolutional neural network
(CNN) based on GPU acceleration to design feature layers of different depths, and completed real-time
detection for 704 × 704 images [20]. Wang proposed a CNN-based renormalization method to improve
the quality of object proposal with respect to very high resolution (VHR) remote sensing images [21].
Nie used a ship detection algorithm based on a transfer-learned single shot multi-box detector (SSD).
The SSD fully utilizes the feature expression of each convolution layer [22]. Deep learning has been
proven to fit big data and object detection extremely well in such databases as ImageNet (a large-scale
visual database for visual object recognition). Moreover, large-scale weight parameters in the network
can consume a great deal of computing and memory resources; for example, the AlexNet model (a deep
convolution neural network proposed by Alex) exceeds 200 MB, and the VGG-16 (the visual geometry



Remote Sens. 2020, 12, 152 3 of 24

group model) goes beyond 500 MB. The hardware migration of this kind of method is complicated
and is not suitable for real-time processing onboard. Hence, it is crucial to conduct in-depth research
on large-field and panchromatic remote sensing images in various complex conditions for fast and
effective ship detection.

Aiming at these addressed problems, a novel approach based on visual saliency and
multi-dimensional descriptor is proposed. The three stages in the framework are similar to those in [23]:
sea-land segmentation, ROI extraction, and target discrimination, as shown in Figure 1. However,
the last two steps have been improved. In the second stage, a visual saliency model based on an
improved PQFT algorithm is constructed. Firstly, the image spatial correlation feature, the contrast
feature, and the multi-direction feature are considered to establish the quaternion. Secondly, a
hyper-complex Fourier transform is executed. Gaussian filtering of different scales is performed on the
transformed result to synthesize the best saliency map. Finally, an adaptive binary segmentation of
ROIs based on GrabCut (interactive foreground extraction using iterated graph cuts) is used to locate
candidates. The presented saliency model has a high detection accuracy and obtains more complete
target contours, regardless of the variety of scenes. In the last stage, the rotation-invariant modified
LBP feature is constructed to make up for the poor discrimination of different regions caused by the
lack of contrast description in the original LBP. At the same time, shape, texture, and moment-invariant
features are extracted and concatenated as a feature description for SVM classification to eliminate
false alarms and identify targets.
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The novel method makes the following contribution:

(1) A novel saliency map is proposed based on multiple features of quaternion transform, and it is
shown to obtain more complete ROIs under complex sea backgrounds. The gray distribution of
the saliency map is more uniform, which improves the accuracy of the detection algorithm for
panchromatic optical remote sensing images.

(2) In the ROI extraction stage, we propose an adaptive segmentation algorithm based on GrabCut
to obtain a more accurate binary region.

(3) The rotation-invariant modified LBP (MLBP) feature is employed to make up for the contrast
description of different regions.

(4) Using shape, texture, and moment-invariant features to construct a strong target description
operator achieves better performance in both detection accuracy and efficiency.

(5) It is an efficient and convenient model for hardware transplantation and engineering applications
on the basis of ensuring detection accuracy.

The rest of this paper is structured as follows: Section 2 mainly introduces the method of extracting
ROIs based on saliency map detection. Section 3 introduces the rotation-invariant MLBP features and
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other combined features for false alarm elimination. Experimental results and analysis are provided in
Section 4. Section 5 reports the conclusion and possible extensions.

2. ROI Extraction

It is well known that the size of one panchromatic optical remote sensing image is very large,
and the number and area of ships in the image are lower, resulting in redundant background information.
Moreover, ship targets can be described by high-level semantics such as texture, shape, direction,
and other features. Therefore, ships can be considered as significant targets on the image and use
saliency map extraction to locate them in a large image. In this section, we will introduce the two
stages of ROI extraction: the detection of saliency maps and the method of obtaining target candidates
by binary segmentation. In the first step, a multi-frequency domain significance map model based on
the improved hyper-complex frequency domain and quaternion Fourier transform based on PQFT is
designed. In the second step, an adaptive segmentation is proposed to obtain binary images of saliency
maps to extract some basic parameters of the ROIs and determine potential targets.

2.1. The PQFT Model

Guo proposed the PQFT in the hyper-complex frequency domain [9]. The generalized coordinated
color features are used to construct the quaternion. The hyper-complex quaternion matrix is represented
as follows:

q(x, y) = f0 + f1µ1 + f2µ2 + f3µ3 (1)

where µ1, µ2, and µ3 are the imaginary units, µ2
1 = µ2

2 = µ2
3 = µ1µ2µ3 = −1, and f0 is the real part. If

the value of the real part is 0, it is called a pure quaternion.
By combining the multi-feature components of the color image, the hyper-complex quaternion is

formed as follows:
f0 = I(x, y, t) − I(x, y, t− 1) (2)

f1 = (r + g + b)/3 (3)

f2 = RG = R−G (4)

f3 = BY = B−Y (5)

where R = r− (g + b)/2, G = g− (r + b)/2, B = b− (r + g)/2, and Y = (r + g)/2−
∣∣∣r− g

∣∣∣/2− b. r, g,
and b are the three channels of the color image. f0 is the motion characteristic component and is used
to express the brightness difference between two adjacent frames. I(x, y, t) and I(x, y, t− 1) represent
the current frame and the previous frame image in the video. f0 = 0 when it is used for a single-frame
static image.

The hyper-complex Fourier transform Q[u, v] of the quaternion q(x, y) of the input image is
computed, and the polar coordinate transformation form is described as follows:

Q[u, v] = ‖Q[u, v]‖eµΦ( u,v ) (6)

where ‖.‖ is the module of each element in the hyper- complex matrix, and Q[u, v] is the frequency
domain expression of q(x, y).

The amplitude spectrum A( u, v ) , phase spectrum P( u, v ) , and Eigen spectrum χ( u, v ) are
calculated as follows:

A(u, v) =‖Q[u, v]‖ (7)

P(u, v) = tan−1
(
‖V(Q[u, v])‖

S(Q[u, v])

)
(8)

χ(u, v) =
V(Q[u, v])
‖V(Q[u, v])‖

(9)
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where S and V represent the real and imaginary part of the Q[u, v], respectively.
The phase spectrum is preserved, the inverse quaternion Fourier transform is carried out, and the

saliency map of PQFT is obtained:

S = g ∗ ‖Q−1
{
A(u, v)eXP(u,v)

}
‖

2
(10)

where g represents the Gaussian filtering function, and Q−1 is the inverse quaternion Fourier transform.
S is the saliency map.

By the above calculation, the PQFT model can quickly achieve a saliency map of color video
images and obtain good detection results. The PQFT is established by using two kinds of features
(color and motion information) to construct the quaternion in the RGB or CIE Lab mode. However,
the panchromatic remote sensing image has only one gray channel, and a single image has no motion
information, which can result in a great reduction in the extraction accuracy for PQFT. The method
adopts single-scale filtering and does not take into account the multi-scale phenomenon of different
target sizes.

2.2. The Proposed Saliency Map Detection Method

Aiming at these addressed problems, a novel saliency map detection method is proposed based
on the improved PQFT algorithm, called the modified PQFT (MPQFT). The method improves the
PQFT in two aspects: one regards how the quaternion is constructed for the panchromatic remote
sensing image to obtain uniform and complete target areas; the other regards how the saliency map is
generated to ensure that differently sized targets can be detected at the same time. As shown in Figure 2,
the proposed algorithm in the process of the MPQFT mainly consists of four steps: constructing
the quaternion using different feature maps, carrying out hyper-complex Fourier transform to the
quaternion, calculating multi-scale saliency maps, and generating the best saliency map. The process
of the MPQFT is shown in Figure 2.

Remote Sens. 2020, 11, x FOR PEER REVIEW 5 of 23 

 

( )
( )

[ ]
(  ,

,
)

[ ]
,uV Q

V Q
v

u v
u v

χ =  (9) 

where S and V represent the real and imaginary part of the [ ],Q u v , respectively.  
The phase spectrum is preserved, the inverse quaternion Fourier transform is carried out, and 

the saliency map of PQFT is obtained: 

{ } 21 (u,v)* (u, v) XPS g Q A e−=  (10) 

where g  represents the Gaussian filtering function, and 1Q −  is the inverse quaternion Fourier 
transform. S  is the saliency map.  

By the above calculation, the PQFT model can quickly achieve a saliency map of color video 
images and obtain good detection results. The PQFT is established by using two kinds of features 
(color and motion information) to construct the quaternion in the RGB or CIE Lab mode. However, 
the panchromatic remote sensing image has only one gray channel, and a single image has no motion 
information, which can result in a great reduction in the extraction accuracy for PQFT. The method 
adopts single-scale filtering and does not take into account the multi-scale phenomenon of different 
target sizes.  

2.2. The Proposed Saliency Map Detection Method  

Aiming at these addressed problems, a novel saliency map detection method is proposed based 
on the improved PQFT algorithm, called the modified PQFT (MPQFT). The method improves the 
PQFT in two aspects: one regards how the quaternion is constructed for the panchromatic remote 
sensing image to obtain uniform and complete target areas; the other regards how the saliency map 
is generated to ensure that differently sized targets can be detected at the same time. As shown in 
Figure 2, the proposed algorithm in the process of the MPQFT mainly consists of four steps: 
constructing the quaternion using different feature maps, carrying out hyper-complex Fourier 
transform to the quaternion, calculating multi-scale saliency maps, and generating the best saliency 
map. The process of the MPQFT is shown in Figure 2.  

Quaternion 
construction

The original image

spatial and texture
Correlation image

Hyper-complex
 Fourier Transform

The final
 saliency map 

Multi-scale
 saliency Map

The original image
（2m resolution）

The Gabor 0° image

The first level

The second level

The N-th level

...

The phase spectrum

The amplitude 
spectrum

The contrast image

 
Figure 2. Procedure for the modified phase spectrum quaternary Fourier transform (MPQFT) 
algorithm. 
Figure 2. Procedure for the modified phase spectrum quaternary Fourier transform (MPQFT) algorithm.



Remote Sens. 2020, 12, 152 6 of 24

For the ship target itself, it usually has a large change in intensity and obvious boundaries
compared with clouds, fog, islands, and other scenes. In addition, texture and spatial similarity of
ships are also conducive information in the complex background. Combining the two aspects would
benefit the extraction process. Therefore, in the process of constructing the quaternion, we adopted
the contrast map, the Gabor filtering map, and the fusion feature map that is established through
combining spatial correlation with texture feature. The construction process of these feature maps is
shown in detail below.

Firstly, the contrast value of one pixel is measured by the Euclidean distance of regions R1 and R2,
and the calculation formula is as follows:

c(i, j) = D[
1

N1

N1∑
k1=1

pk1,
1

N2

N2∑
k2=1

pk2] (11)

where pk1 and pk2 are gray values of pixels in R1 and R2, respectively. D[.] indicates the Euclidean
distance. R1 and R2 are the square regions centered on the same pixel (i, j). i and j are the position
of the row and column in the image. N1 and N2 are the number of pixels in R1 and R2, respectively.
The size of regions R1 and R2 are 5 × 5 and 41 × 41 pixels, respectively. Both of them are empirical
parameters. We c obtain the contrast map of the whole image by Equation (11).

Secondly, the Gabor filtering map that is sensitive to the scale and direction of the images is
introduced [24,25]. The Gabor kernel function is multiplied by a Gaussian and sine function as follows:

g(x, y,λ,θ, σ,ϕ,γ) = exp(−
x′2 + γ2y′2

2σ2 ) exp(i(2πx′/λ+ ϕ)) (12)

where x′ = x cosθ+ y sinθ, y′ = −x sinθ+ y cosθ. λ is expressed in pixels when participating in the
calculation. In general, it is less than one-fifth of the size of the input image and greater than or equal
to 2. θ represents the direction of Gabor filter fringes, and ranges from 0◦ to 360◦. ϕ is the phase offset
that ranges from −180◦ to 180◦. γ is used to adjust the elliptic aspect ratio after the Gabor transform and
when γ equals 1, and the shape is approximately circular. σ is the standard deviation of the Gaussian
function in the Gabor function. We selected the following parameters: λ = 2, θ = 0

◦

, γ = 0.5, ϕ = 0
◦

,
and σ = 0.5. As shown in Figure 3, one example with different parameters is given.
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of λ = 2, θ = 0

◦

, γ = 0.5, ϕ = 0
◦

, and σ = 0.5. (c) The result of λ = 2, θ = 45
◦

, γ = 0.5, ϕ = 0
◦

,
and σ = 0.5. (d) The result of λ = 10, θ = 45

◦

, γ = 0.5, ϕ = 0
◦

, and σ = 0.5. (e) The result of λ = 2,
θ = 0

◦

, γ = 0.1, ϕ = 0
◦

, and σ = 0.5.

Next, a fusion feature map is established through combining spatial correlation with texture to
enhance the quaternion. The lower the spatial correlation, the more likely a candidate it is. The spatial
correlation of the region x to the domain X′ for the pixel (i, j) is defined as follows:

Correlation(i, j) =
cov(x, x′)
σx ∗ σx′

=
E(x� x′) − E(x)E(x′)√

E(x) − E2(x)
√

E(x′) − E2(x′)
(13)
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where x and X′ are the square regions centered on the pixel p(i, j) and p(i, j + N), respectively. I and
j are the row and column coordinates of the image. N is set to 5 in this paper. x and X′ are areas
represented by the black and blue borders in Figure 4. The sizes of them are both k × k pixels.σx and
σx′ are standard deviations of the corresponding areas. E(x) and E(x′) are the mean value of the region
x and X′, respectively. x� x′ represents the dot product of the gray value in the corresponding position
of the two regions, and the size of x� x′ is k × k pixels. E(x� x′) is the mean value of the x� x′.
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Figure 4. Schematic diagram of the spatial correlation regions.

We then calculate the unified LBP [17] to reflect texture properties of points, line corners, and flat
areas in the image.

LBPriu2
N,R =


N−1∑
n=0

s(gn − gc) i f (U(LBPN,R) <= 2)

N + 1 otherwise
(14)

where s(.) is a binary symbol, s(x) = 1, x > 0, and s(x) = 0, x ≤ 0. U(LBPN,R) represents the number
of exchanges between 0 and 1 on the N-bit binary number [17], gc and gn are the gray values of the
central and the domain pixel, respectively. It was found that the LBP value of the background was
higher than the target. The LBP map is processed as follows.

LBP(i, j)coeff =

∣∣∣∣∣∣LBP− LBP(i, j)

LBP

∣∣∣∣∣∣ (15)

where LBP is the mean value of the LBP map, and |.| represents the absolute value. The final fusion
feature is obtained by multiplying the correlation value Correlation(i, j) and the coefficient in the
LBPcoeff(i, j) in the corresponding position:

Fusionmap= Correlation(i, j) � LBPcoeff(i, j) (16)

Through the above steps, we completed the construction of the feature maps. f0~ f3 in Equation (1)
can be assigned: f0 is the original image, f1 is a contrast map by Equation (11), f2 is a Gabor transform
map based on Equation (12), and f3 is a blend feature map combining spatial correlation with the
texture feature based on Equation (16). Therefore, the quaternion is q(x, y) = f0 + f1µ1 + f2µ2 + f3µ3.

Q[u, v] is obtained by performing the hyper-complex Fourier transform in Equation (6).
The amplitude spectrum A( u, v ) and phase spectrum P( u, v ) of Fourier transform is calculated by
Equations (7) and (8). At the same time, in order to enhance the significant part, the Gaussian kernel
function with different scales is used to obtain the scale space of the amplitude spectrum.

Ai(u, v) = gi(u, v) ∗A(u, v) (17)

gi(u, v) =
1

√
2π2k−1t0

e
−

u2+v2

22k−1t20 (18)
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where k is a spatial scale parameter, k = 1, . . . , K, K =
⌈
log2 min{H, W}

⌉
+ 1, and H and W are the

height and width of the image, respectively, t0 = 0.5. We built a series of saliency maps at different
scales as follows:

Sk = g ∗ ‖Q−1
{
Ai(u, v)eXP(u,v)

}
‖

2
(19)

The best saliency map is selected by methods according to the theory of minimum information
entropy, and other saliency maps are discarded [26]. However, the discarded saliency maps also
contained significant information at different scales for differently sized ships. Therefore, we linearly
synthesized the saliency maps according to the entropy:

S = Smin +
1

Hk(x)
Sk (20)

Hk(x) = −
n∑

i=1

pi log pi (21)

where Hk(x) represents the information entropy of one saliency map. Smin is the saliency map that the
entropy is the minimum of Sk. S is the saliency map we obtained.

We provide one example to show the process of the quaternion construction and the result of
saliency map. The image comes from the satellite GF-2 and has a 2 m resolution. We can see from
Figure 5 that the proposed method achieves a better locating result when it is subjected to complex
interference and that each feature map suppresses the background interference effectively. Moreover,
the gray value distribution of the saliency map is relatively uniform, so the binary value leads to a more
complete target contour in the process of binary segmentation. The color images should be converted
into grayscale images, and the following processing is similar to gray images.
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2.3. Target Candidates Extraction 

After the detection of saliency maps, saliency regions are enhanced, and the background is 
suppressed. In order to locate positions of candidate targets in the image, binary segmentation is 
needed. Furthermore, these areas include ships and false alarms. We can eliminate some simple false 
alarms by characteristic parameters and obtain ROI candidates. In order to extract the characteristic 
parameters of saliency regions, such as length and width, it is necessary to obtain binary images of 
saliency maps. Therefore, an adaptive segmentation based on the Otsu method and GrabCut [28,29] 
was executed to extract candidate target regions. 

The original GrabCut algorithm is an interactive segmentation model with high precision. In this 
algorithm, the Gaussian mixture model (GMM) is used to model the foreground and background 
region of the image through annotating artificially. The foreground and background areas of the 
model need to be defined in advance. The foreground should include the complete target as much as 
possible. The rest of the image will be the background. Any point in the image corresponds to a 
Gaussian component of the target or background. This obviously requires too many manual inputs 

Figure 5. The process of the quaternion construction, and the result of the proposed saliency model.
(a) The original image covered by thick cloud. (b) The contrast map generated by Equation (11). (c)
The Gabor transform map generated by Equation (12). (d) The blend feature map combining spatial
correlation with texture feature generated by Equations (13)–(16). (e) The final saliency map based on
Equation (20).

2.3. Target Candidates Extraction

After the detection of saliency maps, saliency regions are enhanced, and the background is
suppressed. In order to locate positions of candidate targets in the image, binary segmentation is
needed. Furthermore, these areas include ships and false alarms. We can eliminate some simple false
alarms by characteristic parameters and obtain ROI candidates. In order to extract the characteristic
parameters of saliency regions, such as length and width, it is necessary to obtain binary images of
saliency maps. Therefore, an adaptive segmentation based on the Otsu method and GrabCut [27,28]
was executed to extract candidate target regions.

The original GrabCut algorithm is an interactive segmentation model with high precision. In this
algorithm, the Gaussian mixture model (GMM) is used to model the foreground and background
region of the image through annotating artificially. The foreground and background areas of the model
need to be defined in advance. The foreground should include the complete target as much as possible.
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The rest of the image will be the background. Any point in the image corresponds to a Gaussian
component of the target or background. This obviously requires too many manual inputs in advance.
Otsu is a classical threshold segmentation algorithm that is simple to calculate, but its accuracy is
low in complex scenes. Therefore, we propose an adaptive segmentation method combining the two
algorithms to obtain more accurate binary regions.

(1) Initial binary segmentation: Slices of ROIs are segmented to obtain binary images by the Otsu
algorithm. One example (2 m resolution) is displayed in Figure 6 to show how the algorithm is
executed. Figure 6b is the binary result of the Otsu method. We can see that the target region is
not complete.

(2) External moment calculation: The external moment of the binary image is computed. The upper
left point is (xupper, yupper), and the lower right point is (xlower, ylower). The region of the red border
is the external moment. The upper left point (pink point) and lower right point (blue point) can
be obtained, as shown in Figure 6c.

(3) As regards the definition of foreground and background regions, the external moment is extended
10 pixels to establish the foreground and background regions. The inside of the white solid line
is the foreground, and the other part is the background, as shown in Figure 6d. In this way,
the foreground and the background can be obtained by expanding the external moment without
manual input.

(4) As regards GrabCut calculations, the GrabCut model iterates the energy model according to the
input foreground and background region until the energy tends to be stable [27].

(5) As regards the final binary segmentation, the final binary segmentation image is obtained by a
GarbCut model. In the saliency map, the region above the threshold is defined as the ROIs, while
the other is considered to be the background. The external moment is recalculated to facilitate the
subsequent application.
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Figure 6. The adaptive segmentation proposed by our method.

Figure 7 shows the ROI extraction of images in complex backgrounds with a 2 m resolution. We can
obtain many ROIs with different sizes, including ship targets, broken cloud blocks, sea waves, and other
false alarms, as shown on the second column in Figure 7. The third column is the segmentation results
obtained by the adaptive segmentation. Some false alarms can be eliminated by relevant simple shape
features including length, width, area, aspect ratio, and tightness. By applying simple shape analysis,
large clouds, islands, and small waves can be ruled out.
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Figure 7. The regions of interest (ROIs) are extracted by the proposed method. (a) Test images.
(b) Saliency maps generated by our MPQFT in Section 2.2. (c) Image segmentation by the method in
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3. Target Discrimination

Although some sea surface background interference can be suppressed after the ROI extraction
stage, there are still some false alarms, such as coastal buildings and thick clouds, due to the complexity
of the sea surface. Therefore, it is necessary for us to use the feature extraction and machine learning
technique to confirm real ships. In this section, we introduce the description operator MLBP combined
with SVM training to eliminate false alarms and confirm real targets.

3.1. The MLBP Feature Description

The LBP operator is gray rotation-invariant [29]. However, the LBP method only considers the
size relationship between the central and neighboring pixel, with no contrast relationship. Therefore,
different contrast distributions have the same LBP value as shown in Figure 8.

The modified LBP feature (MLBP) is proposed in this paper to solve this problem. The following
process is for any pixel (i, j) in the image. Firstly, the local contrast between the central pixel and
neighbor pixels is calculated:

gp = Ip − I(i, j) (22)

where I(i, j) denotes the gray value of the i-th row and the j-th column of the image. Ip is the gray value
of the neighbor pixel centered in the pixel (i, j), and p = 1, 2, . . . N. N represents the number of pixels in
the neighbor field, and it is set to 8 in this paper. gp is a contrast value between the central pixel and
one neighbor pixel.
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very high.

Secondly, the maximum (maxC) and minimum (minC) of gp(p = 1, 2, ... N) can be found.
The range of values between maxC and minC is then divided into L levels. Therefore, each contrast
value corresponds to a certain level. The level of gp is calculated as follows:

lp =

⌈
gp −minC

(maxC−minC)/L

⌉
(23)

where p = 1, 2, ... N. d.e is a symbol of rounding in the small direction, maxC and minC represent the
maximum and minimum contrast values, respectively. L represents the number of levels and is set to 4
based on a large number of experiments. If lp > L, then lp = L.

The contrast level lp is transformed in to a binary description of 0 or 1:

Sp =

{
1, lp = L
0, lp , L

(24)

For the pixel (i, j), the binary descriptor MLBP is a series of numbers of 0 and 1 constructed with
Sp, MLBP =

{
Sp

}
, and p = 1, 2, . . . , N. In order to obtain rotation invariance, the number of exchanges

between 0 and 1 is used to describe it again, and the rotation-invariant MLBP proposed in this paper is
finally obtained as follows:

MLBPriu =


N∑

p=1
Sp, i f (U(MLBP) <= 2)

N + 1
(25)

U(MLBP) =
N∑

p=2

∣∣∣ f (sp − sp−1)
∣∣∣+ ∣∣∣ f (sN) − f (s1)

∣∣∣ (26)

f (x) =
{

1, x ≥ 0
0, x < 0

(27)

where U(MLBP) represents the number of exchanges between 0 and 1 for the series. MLBPriu is a
rotation invariance binary descriptor.

One example of the MLBP description process is given in Figure 9. The value of the central
pixel is 120, N = 8, L= 4, and the size of the neighbor is 8 pixels, displayed in blue in Figure 9.
The surrounding pixel values are compared with the central value to obtain the contrast map as shown
in Figure 9b. The level of each neighbor pixel is calculated according to Equation (22) as shown in
Figure 9c. The initial binary description of this area is 00000101, according to Equation (23), and the
number of exchanges between 0 and 1 is 4. The rotation invariance binary descriptor of this area is 9.
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Figure 9. One example of the MLBP description process. (a) The original image. (b) A contrast map 
calculated using Equation (22) (c) The contrast level calculated using Equation (23). (d) Initial binary 
description 00000101. 

The square neighbor area is used as an example above. In the actual application, a circular area 
can be adopted, and the bilinear interpolation method is applied for the estimation of the value that 
is not at the center of the pixel. According to the method proposed in this paper, the binary 
description of area (a) and (b) in Figure 8 are 11101111 and 00001111, respectively. The rotation-
invariant MLBP is 1 and 2. Obviously, the MLBP of different contrast distributions is different. 

3.2. SVM Training 

Figure 9. One example of the MLBP description process. (a) The original image. (b) A contrast map
calculated using Equation (22) (c) The contrast level calculated using Equation (23). (d) Initial binary
description 00000101.

The square neighbor area is used as an example above. In the actual application, a circular area
can be adopted, and the bilinear interpolation method is applied for the estimation of the value that is
not at the center of the pixel. According to the method proposed in this paper, the binary description
of area (a) and (b) in Figure 8 are 11101111 and 00001111, respectively. The rotation-invariant MLBP is
1 and 2. Obviously, the MLBP of different contrast distributions is different.

3.2. SVM Training

The main aim of the SVM classification is to discriminate the real ship targets from candidates
based on different features. We have already obtained the texture description in Section 3.1. In addition,
we use the other 10 feature descriptions, including shape description, contrast and texture description,
and invariant moment features. The shape feature includes length, width, area, and the perimeter of
the minimum external moment. Furthermore, we selected three morphological features to eliminate
false alarms, including length–width ratio, compactness, and rectangularity, which are calculated
as follows:

RH = H/W (28)

RT = P2/S (29)

RR = S/(H × W) (30)

where H and W are the length and width of the minimum external moment in pixels; P is the perimeter
of the contour in pixels; S is the number of the connected area points in pixels.

At the same time, we analyzed the texture characteristics of a large number of ships and
non-ships. The texture of waves and clouds changed slowly, and that of ships varied greatly. Therefore,
we introduced the histogram variance of MLBP (proposed by Section 3.1) and the correlation and
contrast of the grey-level co-occurrence matrix (GLCM) [23] to strengthen the ability to distinguish
ships and non-ships. The contrast and correlation of the GLCM are calculated as follows.

M_contrast =
∑

i

∑
j

(i− j)2Pi j (31)

M_correlation =
∑

i

∑
j

Pi j
(i− µ)( j− µ)

σ2 (32)

where Pi j is an element of GLCM; µ is the average of GLCM, µ =
∑
i

∑
j

i · Pi j; σ2 is the standard deviation,

σ2 =
∑
i

∑
j
(i− µ)2Pi j. The contrast reflected the degree of the depth of the texture. The lighter the

texture groove, the lower the contrast, and the more blurred the visual effect is. The correlation
measured the degree of similarity between the spatial GLCM elements in the row or column direction.
If that value of the matrix is equal in size, the value of the correlation value is small.
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We randomly extracted 20 samples (as shown in Figure 10) from the dataset for statistical analysis
of the correlation and contrast of GLCM and the histogram variance of MLBP, as shown (a), (b), and (c)
in Figure 11. The resolution of images from the satellites GF-2 and ZY-3 was 2 m. We can see that the
characteristics of ships are distinguished from those of clouds and waves. This is because of the fact
that the internal texture of ships is quite different compared with that of clouds and waves.
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The Hu moment is a highly concentrated image feature with translation, rotation, and scale
invariance. The first two moments M1 and M2 of Hu were used as a set of parameters to describe
the characteristics of ships. We rotate the 20 ships by 5◦, and the second moment of Hu changes little
after the rotation, as shown (d) in Figure 11 From the above analysis, it can be seen that the feature
description selected in this paper is strong and robust.

We used the SVM to discriminate real ship targets from candidates based on the obtained
features. Eleven features should be feature-transformed and mapped to a high-dimensional space.
Here, the radial basis function (RBF) is used as the kernel function of the SVM binary classifier,
K(x, x′) = exp(−‖x− x′‖2/σ2),σ > 0. Before training, each feature is first normalized to the range of
0–1 to reduce the dominant role of a certain dimension feature due to its large magnitude. The RBF
function has two key parameters: the penalty factor c and the kernel parameter σ. We obtained the
best parameter through the cross-validation method and set c = 1 and σ = 0.7 [29]. Training images
come from the satellites GF-2 and ZY-3 2 m resolution.

4. Experimental Results and Discussion

4.1. Subjective Visual Evaluation of Saliency Models

In order to test the performance of saliency map extraction proposed in this paper for panchromatic
optical remote sensing images, four typical algorithms were compared and analyzed, and they were
ITTI, SR, PQFT, and one found in [12]. The ASD and MSRA10K datasets were not used in the evaluation
of various algorithms, because these two datasets are mostly color images [30]. Images with a 2 m
resolution from the satellites GF-2 and ZY-3 were used to construct 300 test sets under various sea
conditions such as different shooting time, conditions, and sea surface false alarms. The slice size is
200 × 200 pixels. In addition, in order to evaluate the performance of various algorithms objectively,
we extracted precise ground-truth images of contours in advance.

Figure 12 shows the ROI extraction in a set of typical cases, including the calm sea surface, low
contrast, obvious sea clutter, and a similar texture.

It is not difficult to find through a large number of experiments that, for panchromatic images,
the performance of the frequency domain method is better than the spatial domain method. The spatial
domain method cannot suppress the clutter interference and is greatly affected by strong waves and
clouds. The SR and PQFT show no significant differences in performance. For the second image in
Figure 12c,d, the ship target is completely submerged into the background and cannot be distinguished.
The performance of the method found in [12] is better than other frequency domain algorithms, but
the detected target area is incomplete, and the target easily melts into the background, as shown in
the third, fourth, and fifth images in Figure 12f. The method from [12] only uses gray information,
so ROIs cannot be accurately detected. Compared with other algorithms, the method of the saliency
map extraction proposed in this paper obtained a better effect, despite a low contrast or a complex
background. The detection result was more complete and clearer. Moreover, the brightness value
distribution of the target area was uniform, which also helps to detect completed targets in the binary
process. This will prevent to some extent incomplete target slices caused by too much brightness or too
much darkness.

We selected the PR curve and the comprehensive evaluation index F measure to evaluate the
accuracy of various algorithms. Ground-truth images (manual marking) and binary images of saliency
maps were recorded as G and M. In the PR curve, P and R refer to the precision and recall of the
methods, respectively. Their calculation formulas are as follows:

Precision =
|M∩G|
|M|

=
TP

TP + FP
(33)

Recall =
|M∩G|
|G|

=
TP

TP + FN
(34)
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Among them, the pixels belonging to G and M are simultaneously called TP. The pixels belonging
to G and not to M are called FN. The pixels belonging to neither G nor M are called FP.

Recall and precision cannot be discussed in isolation. The F metric is introduced to comprehensively
evaluate the detection performance of the saliency model as follows:

Fβ =
(1 + β2)Precision ∗Recall
β2Precision+Recall

(35)
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Among them, the value of β is different, and the requirements of recall and precision are different.
Combined with actual engineering requirement, this paper pays the same attention to recall and
precision, β = 1.

After experimental analysis, we selected ITTI in the spatial domain and the method in [12] in
the frequency domain for comparison with our method. The performance of the two algorithms was
relatively good in their domains. Because the test database contains all kinds of complex, typical sea
conditions, the threshold T of the binary processing increased from 0 to 255 when the PR curve was
drawn. The average value of recall and precision in different cases was obtained as shown below.

It can be seen from the Figure 13 that the PR and F curves of our algorithm are obviously higher
than those of the other two methods. From the PR curve, it can be seen that, when the recall rate is
80%, the precision of ITTI and the method in [12] is about 40% and 73%, respectively. The precision
of our algorithm is about 84%, which is 11% higher than the method in [12]. Our algorithm has an
obvious advantage in the case of complex sea conditions because it has constructed a contrast map,
a Gabor map, and a spatial and texture correlation feature to facilitate the integrity of target edge
detection. At the same time, MPQFT constructs a multi-scale space, which is helpful for detecting
targets of different sizes.Remote Sens. 2020, 11, x FOR PEER REVIEW 16 of 23 
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4.2. Overall Detection Performances

Finally, we compared our overall detection method with three typical methods, and the evaluation
criteria are defined as follows:

Accuracy =
The number o f ships detected

The number o f all targets(ships and non− ships) detected
(36)

Missed alarm rate(MA) =
The number o f ships judged as background

The number o f all ship targets
(37)
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False alarm rate(FA) =
The number o f non−ships judged as ship targets

The number o f all targets(non− ships and ships)detected
(38)

We selected 500 typical panchromatic optical remote sensing images with a size of 8192 × 4096
pixels under different imaging conditions from the satellites GF-2 and ZY-3 and with a 2 m resolution.
(Some images can be downloaded from the website: www.cresda.com/CN/). In addition, other
panchromatic satellite images from various sea surfaces were collected and used as the testing dataset
from the publicly available Google Earth service with a resolution of 2 m. These images are very large
in size and we have subdivided them into 120 sub-images with 8192 × 4096 pixels. A total of 620
images contain ship targets of different sizes and shapes. We tested our approach on three groups of
different sea surfaces: calm sea with little interference, a complex sea surface influenced by clouds
and waves, the cloud area percentage of which is about 20%, −30%, and worse imaging conditions,
the cloud area percentage of which is more than 50% and as high as 85%. The images contained ships
of different types and sizes.

The proposed method was implemented in C++ with Intel (R) Core (TM) i7-4770K CPU at 3.40
GHz and 64.0 GB RAM. The objective evaluation indices of the detection results are listed in Table 1.
Because these images are so large in size that they will be compressed in this paper, we provided some
local parts of the original images, as shown in Figures 14 and 15. Red borders indicate the ship targets
we detected, and the yellow border areas indicate ships we missed with our method. In some cases,
we lost some targets, as shown in of Figure 15a,d. In Figure 15a, one ship is almost completely obscured
by clouds, making it difficult to locate the target, and another one is lost because the contrast of the
ship and the background is too low, making it difficult to distinguish by the human eye. In Figure 15d,
more than five ships are connected and docked, making it different from the conventional training
model in terms of the shape and area; therefore, the targets were not recognized.

Table 1. Detection results of our method in various situations.

Different Situations Accuracy FA MA

Calm sea 98.10% 1.90% 1.43%
Textured sea 93.40% 6.60% 5.43%
Clutter sea 86.80% 13.20% 10.88%

In Table 1, we can see that with the increasing amount of interference, the accuracy of our method
decreases slightly from Group 1 to Group 3. As shown in Figures 14h and 15h, our method lost some
ships (areas indicated by yellow dotted lines) submerged under clouds, but the average accuracy
reached up to 92.8% for different sea surfaces, and the average false alarm rate was 7.2%. Considering
the existence of ships with different sizes in an image, the multi-scale saliency map extraction was
designed so that the method can accurately identify ships of different sizes simultaneously. Images used
in the experiment had a 2 m resolution. For ships smaller than 20 m (10 pixels), detection accuracy
decreased, and in this case, targets would be so small that their feature parameters were sometimes
inaccurate, affecting detection results.

At the same time, we compared our method with state-of-the-art methods proposed in [7,13,17].
Table 2 was obtained by averaging the evaluation indices under different sea conditions, showing the
average performance of the four methods. Table 3 shows a comparison of four methods under
different sea conditions. The precision of the methods from [13,17] is high with respect to calm sea
surfaces, but for complex sea surfaces, detection performance is greatly reduced, as shown in Table 3.
The method proposed in this paper is optimal for detection accuracy. On average, the detection time of
our method is 1.6 s. The efficiency of our algorithm is not the highest. Compared with the method
from [13], which has comparable accuracy, our efficiency is almost double.

www.cresda.com/CN/
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Table 2. Average detection performance of different methods.

Method Accuracy FA MA Time Consumed

Method from [7] 80.2% 19.8% 20.3% 1.2 s
Method from [17] 83.9% 16.1% 11.1% 1.5 s
Method from [13] 88.4% 11.6% 7.3% 3.1 s

Our method 92.8% 7.2% 5.9% 1.6 s

Table 3. Detection results of different methods in various situations.

Method Different Situations Accuracy FA MA

Method from [7]
Calm sea 92.20% 7.80% 4.40%

Textured sea 81.30% 18.70% 12.40%
Clutter sea 67.00% 33.00% 44.20%

Method from [17]
Calm sea 98.30% 1.70% 1.40%

Textured sea 83.20% 16.80% 6.70%
Clutter sea 70.20% 29.80% 25.20%

Method from [13]
Calm sea 97.30% 2.70% 1.80%

Textured sea 85.30% 14.70% 5.60%
Clutter sea 82.60% 17.40% 14.60%

Our method
Calm sea 98.10% 1.90% 1.43%

Textured sea 93.40% 6.60% 5.43%
Clutter sea 86.80% 13.20% 10.88%

A linear function combining pixel and region characteristics was employed to select ship candidates
in [7]. When the background was covered by clouds, the location of ROIs would fail, resulting in
missed alarms. Compactness and the length–width ratio were considered to remove false alarms.
The description features were not enough to distinguish between targets and background when the
background became complex. The detection performance was greatly reduced. Regarding the calm sea,
the method in [17] achieved the best performance. The accuracy was 98.3%, and the false and missed
alarm rates were very low. However, this method only adopted intensity distinctness to find ROIs
and led to omissions in complex backgrounds. In the false alarm exclusion stage, the LBP histogram
features of the bow, stern, left hull, and right hull were used. The algorithm could achieve better results
in distinguishing large ships from false alarms, but when the ships were small or the background
became complex, the false alarm rate was higher, because there was little difference between each



Remote Sens. 2020, 12, 152 21 of 24

LBP part of a ship. In [13], the saliency map based on the multi-scale and multi-direction wavelet
decomposition was detected to extract ROIs, and the pixel distribution discrimination was designed
to eliminate false alarms. Compared with the two previous methods, this method showed a great
improvement in accuracy and the false alarm rate. However, this method was designed for color
images, and its performance is degraded when applied to panchromatic images. Moreover, the pixel
distribution can only remove targets that vary widely in shape. Compared with other algorithms,
the performance of our method is a great improvement. In order to improve recall and accuracy,
in the extraction of the ROI stage, the MPQFT was designed for panchromatic remote sensing images.
The quaternion was constructed with the full consideration of image contrast and edge structure.
In addition, in order to find candidates in complex backgrounds, texture and spatial similarity were
also adopted. In the latter stage, we proposed the MLBP method combined with 10 other features
to reduce false alarms. Figure 14 shows our detection results in some typical sea conditions. On the
whole, the algorithm achieved ideal detection results and detected ship targets under complex sea
conditions. At the same time, if the sea surface is calm, our method can basically ensure that false
alarms and missed detections are less than 5%.

Using the method proposed by this paper, color images should be transformed into gray-scale
images for processing. We tested our approach on different sea surfaces in color images. These color
images were synthesized from the three spectrums (RGB) from the satellite GF-2 and had an 8 m
resolution. Some detection results for color images are shown in Figure 16. The first row contains
color images. The second row contains the corresponding gray-scale images and detection results.
On the whole, a good performance was achieved. The red border is the target detected by the method.
However, it is generally said that the resolution of color images for remote sensing multi-spectral
images is much lower than that of panchromatic images. Therefore, the accuracy of this method will
be reduced for small ships. As shown in Figure 16, the yellow border is the lost target because the ship
is too small in the image with an 8 m resolution.
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A platform of FPGA combined with DSP was built, and the method of ship detection proposed in
this paper was optimized and embedded into a hardware platform. DSP used a TMS320C6678 with
an 8-core processor. FPGA adopted the VIRTEX-7 chip produced by the company Xilinx. We carried
out a large number of hardware tests of large-field optical remote sensing images. The image size
was 8192 × 4096 pixels -2 m resolution. The processing time of one image was 242 ms on average.
Compared with the performance of the original software method, the efficiency of the method was
greatly improved, and the system has strong versatility and expansibility, which lays the foundation
for practical engineering applications.

5. Conclusions

In this paper, we present a novel ship detection method for panchromatic optical remote sensing
images consisting of saliency map extraction and target discrimination in complex backgrounds.
We adopted an efficient frequency-domain model based on the hyper-complex Fourier transform of
the quaternion to locate candidate regions, which made the brightness distribution of ROIs more
uniform and complete and effectively reduced missed detections. Meanwhile, to determine whether
the candidate target was a ship or not, multi-dimensional description features were extracted and
designed by the characteristics of ships and no-ships. In addition, an improved LBP, which takes into
account contrast information between pixels, was presented and provided more powerful descriptions.
Finally, we built a database through actual panchromatic remote sensing images, and used SVM
training to obtain a more stable model for ship confirmation. The experimental results under various
sea backgrounds demonstrate that the proposed ship detection method can obtain high precision and
detection robustness.

Although our method has achieved promising results, several issues remain to be further settled.
With the development of satellite remote sensing, the hyper-spectral data should be fully used to
construct a ship description operator, which can be combined with the advantages of visible and SAR
images, making ship detection methods more robust and easily implemented in hardware.
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