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Abstract. In order to effectively alleviate the pressure of high-resolution imaging and massive
data storage and transmission, it is of great practical significance to introduce compressed
sensing into remote sensing applications. From the perspective of imaging control strategy, the
typical block-based compressed sensing (BCS) system is optimized. Based on the fact that there
are generally significant differences between regions of remote sensing images, a self-adaptive
BCS method is proposed. Compared with the traditional BCS system, the prior information of
the imaging target is obtained first by adding a presampling process. On the one hand, it is used
to generate a saliency information map, which guides the reasonable allocation of self-adaptive
sampling ratios between blocks in the compressed sampling process, thereby improving the sam-
pling efficiency. On the other hand, it is used to generate the weighted sparse coefficient matrix,
which will be substituted into the theoretical model in the image restoration process, thus
improving the image restoration efficiency. The experimental results show that the imaging qual-
ity of the proposed method has a significant improvement compared with the traditional system
and is also superior to several existing self-adaptive methods. In addition, on the basis of the
above method, a multiangle image restoration strategy is proposed, which further improves the
image quality at the cost of four times the image restoration time. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.14.016513]
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1 Introduction

The compressed sensing theory developed in the recent years has challenged the traditional
cognition in the field of signal processing. It specifies that, based on the sparse property, the
original signal can be accurately restored from a small number of linear projections with high
probability, which breaks the constraint of Nyquist–Shannon sampling theorem.1–6 This theory
provides a new way to address the growing pressure in the field of signal processing. It has
shown great potential in reducing the performance requirements for sampling devices, reducing
the amount of sampling data, and thereby alleviating the pressure on data storage and transmis-
sion. Therefore, it has attracted wide attention in various fields, including data compression,7,8

medical imaging,9–12 radar,13,14 three-dimensional imaging,15 super-resolution imaging,16,17 and
remote sensing imaging.18,19

With the gradual improvement of temporal resolution, spatial resolution, and spectral res-
olution, the amount of data generated by remote sensing imaging systems has increased dra-
matically, which seriously conflicts with the limited on-board storage and data transmission
bandwidth. Therefore, it is of great practical significance to introduce compressed sensing into
remote sensing applications. As a typical application of compressed sensing theory in imaging
systems, Duarte et al.20 pioneered a single-pixel camera, which realized compressed sensing
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imaging based on the digital micromirror device. The single-pixel design reduces the photo-
detector array down to a single unit. However, with the expansion of imaging scale, the number
of sampling increases dramatically, resulting in a sharp increase in sampling time. In the mean-
time, the computational complexity of image restoration has also risen steeply due to the growing
matrix size. In order to alleviate the above problems, a block-based compressed sensing (BCS)
system is proposed, which decomposes the target image into several blocks and then performs
parallel compressed sensing on each sub-block. Parallel processing reduces the sampling time
and the computational complexity of image restoration, which improves the real-time perfor-
mance of the imaging system.21–23

At present, the research on BCS imaging systems mainly focuses on two parts: one is the
improvement of theoretical models, and the other is the optimization of imaging control strat-
egies. The research on theoretical models includes the improvement of measurement matrix,
sparse transform base, and restoration algorithm, which involves both single-parameter improve-
ment and multiparameter collaborative improvement. Gan24 proposed a BCS framework for
natural images, which offered a fast, good initial solution at the receiver side by using linear
minimum mean-square-error estimation. A deep neural network approach to BCS was proposed
by Adler et al.,25 in which the measurement matrix and the nonlinear reconstruction operator
were jointly optimized during the training phase. Coluccia et al.26 proposed a method to enforce
smoothness across block borders by modifying the sensing and reconstruction process so as to
employ partially overlapping blocks. In order to achieve a better reconstruction performance for
aerial imagery, Liu et al. proposed the adaptive-thresholding projected Landweber reconstruction
algorithm that leveraged the piecewise-linear thresholding model for wavelet-based image
denoising.27 Yang and Lin28 proposed a variation-based block compressed sensing restoration
method, which decomposed the image into several nonoverlapping blocks first, followed by the
scanning according to the column and measurement by blocks, so as to obtain several column
vectors of measurement value. A BCS scheme with matrix permutation was proposed by Zhang
et al.,29 which could be utilized to encode natural images effectively. Zhou et al. proposed a
collaborative BCS framework with dual-domain sparse representation, where local structural
information and nonlocal pixel similarity were jointly considered.30

Based on the characteristics of the BCS imaging system, the research on imaging control
strategies is mainly to complete the optimal allocation of sampling resources, thereby maximiz-
ing the imaging quality. In the traditional BCS system, the same sampling ratio and measurement
matrix are usually shared for different blocks of the imaging target without distinction. However,
the richness of the information contained in each region is inevitably different from each other,
thus resulting in a difference in compressibility. This indiscriminate processing method results
in the waste of compressed sampling resources and image restoration resources, which should
be exactly the advantage of compressed sensing imaging compared with traditional imaging.
Therefore, how to quantify the compressibility of different blocks in the target image, and then
to replan the allocation of imaging system resources is an important research content, which is
called self-adaptive compressed sensing.

In recent years, the application research of self-adaptive BCS in imaging systems is mainly
manifested in two aspects: one is image data compression, the other is compressed sensing im-
aging, and more research focuses on the former. The characteristics of image compression are:
on the one hand, it is convenient to extract prior information because the image to be compressed
is known, on the other hand, image compression is mainly embodied in mathematical algo-
rithms, which is less constrained by hardware and easier to implement. A self-adaptive sampling
and reconstruction algorithm for BCS is presented in Ref. 31, in which the sampling ratio is
assigned depending on its texture complexity of each block.31 Wang et al. proposed a self-
adaptive sampling method. The spacial frequency is utilized to extract the textural features
of image blocks, and then each block is categorized into the smooth blocks or the textual blocks.
To the textural blocks, the sampling ratio is modified adaptively by combing with the statistical
characteristics of the coefficients in wavelet domain.32 Zhu et al. applied a self-adaptive sampling
mechanism to the reweighted BCS. The proposed self-adaptive sampling allocates the measure-
ments to each image block according to the statistical information so as to sample and restore the
image more efficiently.33 A reweighted compressed sampling for image compression was pro-
posed by Yang et al. It introduces a weighting scheme into the traditional compressed sensing
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framework whose coefficients are determined in encoding side according to the statistics of
image signals.34 Zhirong Gao et al. proposed two image compression methods. One is called
coefficient random permutation (CRP), and the other is termed adaptive sampling (AS). The
CRP method can be effective in balancing the sparsity of sampled vectors in discrete cosine
transform (DCT) domain of the image, thus improving the sampling efficiency. The AS is
achieved by designing a self-adaptive measurement matrix based on the energy distribution char-
acteristics of the image in DCT domain, which has a good effect in enhancing the performance.35

A jointly reweighted BCS scheme was developed by Zhu. By applying weighting factors to the
image data and sampling matrix simultaneously, the weighting efficiency of the traditional
reweighted BCS scheme is improved.36 Xu et al.37 proposed a perceptual rate-distortion opti-
mized compressed sensing image codec to achieve a maximal perceptual quality.

Compared with image compression, compressed sensing imaging is constrained by the fact
that the prior information of the imaging target cannot be obtained before imaging, and the com-
pressed sensing process needs to be implemented with the help of hardware. However, it not only
relieves the pressure on the detector and the front-end analog-to-digital sampling device in the
remote sensing system but also effectively reduces the amount of sampling data. These advan-
tages are not all available for image compression. Considering the similarity of the structure
contained in the image blocks, a simple but efficient self-adaptive structured compressed sensing
was proposed by Zhang. The proposed measurement matrix consists of two submatrices. The
premeasurement matrix aims to estimate the compressibility of the image blocks and ensure the
minimal measurements for restoration. The self-adaptive measurement matrix is relatively flex-
ible and depends on the compressibility estimated.38 Yu et al. proposed a saliency-based com-
pressed sampling scheme for image signals. The key idea is to exploit the saliency information
and allocate more sampling resources to salient regions but fewer to nonsalient regions. To
obtain the saliency information, they provided a saliency generation model, which employed
a low-resolution complementary sensor to acquire a sample image of the target.39 Based on the
fact that low-frequency components are relatively more crucial to the perceptual quality of
images than high-frequency components, Yang et al. proposed a novel sampling scheme for
compressed sensing by designing a weighting scheme for the measurement matrix. By adjusting
the weighting coefficients, they can tune the structure of the measurement matrix to favor the
frequency components that are important to human perception so that those components could
be more precisely restored in the restoration procedure. For two-dimensional (2-D) DCT, a con-
venient way is to derive the weighting coefficients from JPEG quantization table by taking the
inverse of the table entries and adjusting their amplitudes to a proper range.40

Based on the above research status, a self-adaptive block-based method for remote sensing
imaging is proposed in this paper, which adopts self-adaptive processing in both compressed
sampling and image restoration. Compared with the traditional BCS system, the prior informa-
tion of the imaging target is obtained first by adding presampling process. On the one hand, it
is used to generate a saliency information map, which guides the reasonable allocation of self-
adaptive sampling ratios between blocks in the compressed sampling process, thereby improving
the sampling efficiency. On the other hand, it is used to generate the weighted sparse coefficient
matrix, which will be substituted into the theoretical model in the image restoration process,
thus improving the image restoration efficiency.

Compared with the current existing methods, the advantages of the method proposed in this
paper are as follows.

a. This method is implemented on the basis of the original BCS architecture without increasing
the hardware complexity.

b. In the process of compressed sampling, a presampling stage for obtaining prior information
is added. The presampled data are used to extract image features while also being used for
image restoration without causing a waste of sampling resources.

c. Based on the prior information extracted from the presampled data, self-adaptive algorithms
are adopted in the process of compressed sampling and image restoration simultaneously,
so the final imaging quality is superior to the current variety of self-adaptive methods, which
adopt self-adaptive algorithm only in one of the above two processes.
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The structure of this paper is organized as follows: Section 2 introduces the typical BCS
theory model and its corresponding imaging system. The self-adaptive BCS imaging method
proposed in this paper is elaborated in Sec. 3, which includes two parts of self-adaptive com-
pressed sampling and self-adaptive image restoration. In Sec. 4, we proposed the multiangle
integrated image restoration strategy. Based on the proposed self-adaptive BCS method and
image restoration strategy, the working path of image restoration process is combed in Sec. 5.
The experimental verification and result analysis are presented in Sec. 6. After summarizing the
above contents, the conclusions are given in Sec. 7.

2 Block-Based Compressed Sensing

2.1 Block-Based Compressed Sensing Theory Model

It is assumed that the imaging target can be divided into B blocks, each of which has a size of
r × c. When the number of compressed sampling for each block is m, the whole compressed
sensing process can be expressed as

EQ-TARGET;temp:intralink-;e001;116;537Yb ¼ ΦbXb ¼ ΦbΨΘb ¼ ΛbΘb ðb ¼ 1: : : BÞ; (1)

where b is the ordinal number of each block. For any block b, Yb ∈ Rðr·cÞ is the measurement
result vector, Φb ∈ Rm×ðr·cÞ is the measurement matrix, Θb ∈ Rðr·cÞ is the sparse representation
of the target signal vector Xb ∈ Rðr·cÞ under the sparse basis Ψ ∈ Rðr·cÞ×ðr·cÞ, and Λb ¼ ΦbΨ is
called the sensing matrix. Each element in the vector Xb corresponds to the gray value of one
pixel in the target image.

For any block b, the sparse coefficient vector Θ̂b can be obtained based on the measurement
result matrix Yb by solving the optimization problem shown in the following equation:

EQ-TARGET;temp:intralink-;e002;116;413Θ̂b ¼ argmin kΘbkl1
Θb∈RN

subject to Yb ¼ ΛbΘb ðb ¼ 1: : : BÞ: (2)

Further, the restored image X̂b ¼ ΨΘb of each block can be obtained, and then all the blocks
are integrated into a complete restored image.

2.2 Block-Based Compressed Sensing Imaging System

As shown in Fig. 1, the typical BCS imaging system is mainly composed of optical lenses, a
coded aperture, and an area array detector. The imaging target is first incident on the coded
aperture template through the front-end optical lens, and then the encoded optical signal is

Fig. 1 The composition of BCS imaging system.
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incident on the detector through the back-end optical lens. There is a strict correspondence
between the detector and the encoded template. One detector pixel corresponds to the encoded
template with the size of r × c, and the pixel number of the detector corresponds to the number of
image blocks.

Taking any block b in the actual imaging system as an example, assuming that the imaging
target is Gb ∈ Rr×c, the measurement result is Yb, and the coded aperture template is CðpÞb ∈
Rr×cðp ¼ 1: : : mÞ, in which p represents the p’th coded sampling, then the whole compressed
sensing process can be expressed as

EQ-TARGET;temp:intralink-;e003;116;639Yb
p;1 ¼ sumðGb :× CðpÞbÞ ðp ¼ 1: : : m; b ¼ 1: : : BÞ; (3)

where sumð·Þmeans the sum operation of each element in the matrix, and Yb
i;j represents the i’th

row and j’th column element of the measurement result matrix Yb.
The elements in the measurement matrix Φb can be organized as follows:

EQ-TARGET;temp:intralink-;e004;116;566Φb
p;ði−1Þ×cþj ¼ CðpÞbi;j ði ¼ 1: : : r; j ¼ 1: : : cÞ

ðp ¼ 1: : : m; b ¼ 1: : : BÞ
(4)

The elements in the signal matrix Xb to be measured are organized as follows:

EQ-TARGET;temp:intralink-;e005;116;499Xb
ði−1Þ×cþj ¼ Gb

i;j ði ¼ 1: : : r; j ¼ 1: : : cÞ: (5)

3 Self-Adaptive Block-Based Compressed Sensing Imaging Method

3.1 Overall Composition of the Method

The imaging flow of traditional compressed sensing imaging method is shown in the solid frame
part of Fig. 2, which can be divided into two stages: compressed sampling and image restoration.
In contrast, the self-adaptive method proposed in this paper adds presampling process to the
compressed sampling stage, and then the priori information extracted by presampling can guide
the subsequent self-adaptive compressed sampling and image restoration process so that a higher
quality image can be acquired, as shown in the dotted frame part of Fig. 2.

It can be seen from the figure that the proposed method includes two processes: self-adaptive
compressed sampling and self-adaptive image restoration. Both of them will be elaborated
separately below.

3.2 Self-Adaptive Compressed Sampling

3.2.1 Compressed sampling method

Due to the pressure of massive image data storage and transmission, as well as the constraints
imposed by the system hardware and application environment, there is usually a certain sampling
ratio limitation in the practical application of compressed sensing system. For traditional BCS
imaging systems, the average allocation of sampling resources is usually adopted, that is, the
same sampling ratio is used for each block of the imaging target without discrimination.
However, for actual images, especially for remote sensing images, there are bound to be

Self-adaptiveSelf-adaptive

Compressed 
sampling

Image 
restoration

PresamplingTarget
Restored

image

Fig. 2 The imaging flowchart of self-adaptive compressed sensing imaging method.
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differences in the richness of feature information between regions, which results in unreasonable
allocation of sampling resources, thus limiting the improvement of imaging quality.

Based on this, we propose a self-adaptive compressed sampling method. First, the feature
information map of the imaging target is extracted based on the presampled data, and then it is
used as the weight value of different blocks to guide the reasonable allocation of compressed
sampling resources, so as to improve the compressed sampling efficiency.

Figure 3 shows the schematic diagram of self-adaptive compressed sampling. The com-
pressed sampling process can be divided into three stages: presampling, basic sampling, and
additional sampling. The number of presampling and basic sampling are equally allocated
by each block, and both of them are preset values. The additional samplings of each block are
obtained based on a specific algorithm. There is a problem of limited channel capacity in remote
sensing imaging system, so it is necessary to calculate the average sampling ratio based on the
data bandwidth and imaging scale, and then the total samplings can be obtained. After being
allocated to the presampling and basic sampling, respectively, the remaining will be reserved for
additional sampling. In the presampling stage, the low-resolution image is obtained directly by
uncompressed sampling. Based on this image, saliency information map can be generated, and
then it will be used to generate the sampling allocation results of each block in the additional
sampling stage.

The lower part of Fig. 3 shows the workflow of self-adaptive compressed sampling, in which
the saliency information map generation based on presampled data and the sampling allocation
strategy are executed in parallel with the basic sampling to ensure the continuity of the sampling
process.

Unlike the compressed sampling method used in basic sampling and additional sampling,
presampling adopts the uncompressed sampling method instead, and the specific implementa-
tion is shown in Fig. 4. Assuming that the size of any block in the BCS system is r × c, and it can
be redivided into r∕l × c∕q parts in the case that each l × q is integrated into one part, which
can be used as the encoding unit for uncompressed sampling. The presampling process can be
expressed as

EQ-TARGET;temp:intralink-;e006;116;400Y 0 ¼ Φ 0 · X 0 ¼ I · X 0 ¼ X 0; (6)

Fig. 3 The schematic diagram of self-adaptive compressed sampling.
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where Φ 0 is the measurement matrix, X 0 is the target image, and Y 0 is the sampling result. Since
Φ 0 is the unit matrix, there is Y 0 ¼ X 0, that is, the sampling result is the low-resolution version
of the imaging target, and no image restoration is required.

It should be noted here that although the presampling takes up a small amount of sampling
resources, the sampling data are effectively utilized, which is manifested in three aspects. First,
it is used to generate a saliency information map to guide the self-adaptive sampling process.
Second, the weight coefficient matrix used for image restoration is generated to guide the self-
adaptive image restoration process. Third, as a part of the sampling process, it can also be treated
as valid sampling data for a subsequent image restoration process. As the key components of
the self-adaptive sampling process, saliency information map generation and self-adaptive com-
pressed sampling allocation strategy will be described in detail below.

3.2.2 Saliency information map generation

As shown in Fig. 5, based on the low-resolution image acquired by presampling, a high-
resolution image with the same resolution as the imaging target is first generated by bilinear
interpolation, and then the saliency information map is extracted with the help of a specific
algorithm.

There are various algorithms for extracting saliency information maps, including sign func-
tion algorithm, variance algorithm, significant coefficient algorithm, and texture feature algo-
rithm. These algorithms will be described separately below.

Sign function algorithm. Given the target image X, the saliency information map F can be
calculated by the following equations:39

EQ-TARGET;temp:intralink-;e007;116;336

P ¼ sign½CðXÞ�
S ¼ abs½C−1ðPÞ�
F ¼ G � S2; (7)

where Cð·Þ and C−1ð·Þ represent the 2-D DCT and its inverse transform, respectively. signð·Þ is
a sign function, absð·Þ is an absolute value function, and G is a 2-D Gaussian low-pass filter.

Variance algorithm. Variance is usually a simple and effective criterion for evaluating
the richness of information contained in an image. The larger the variance is, the richer the
information contained in the image is. Therefore, the weighting factor fðiÞ of each block
can be obtained by calculating the variance σ2i so that it can be combined to form a saliency
information map:

R

C

c

r r/l

c/q

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Fig. 4 The schematic diagram of uncompressed sampling in the presampling stage.

Presampled low 
resolution image

Significant 
information map

Bilinear interpolation for 
high resolution image

Specific algorithm

Fig. 5 The process of generating saliency information map.
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EQ-TARGET;temp:intralink-;e008;116;735fðiÞ ¼ σ2i ¼
1

r × c

Xr×c−1
j¼0

ðbj − μiÞ2; (8)

where i is the ordinal number of the block with a size of r × c. For any block, bj represents the
gray value of the j’th pixel, and μi represents the average gray value of all pixels in the block.

Significant coefficient algorithm. The number of significant coefficients in the sparse
transform domain also indirectly represents the information content of the image. Therefore,
the sparse matrix is first obtained by 2-D DCTof each block, and then the number of coefficients
whose absolute value is higher than the preset threshold T is taken as the weighting factor of the
block:

EQ-TARGET;temp:intralink-;e009;116;597

for j ¼ 1∶r × c

if jθjj ≥ T

s ¼ sþ 1

end

end (9)

where θj represents the j’th element of the sparse matrix transformed by 2-D DCT, and the final
result s will be used as the weighting factor of the block.

Texture feature algorithm. The texture information can be obtained by directly comparing
the differences between pixels, and then the information content of the image can be determined.
The calculation of texture information can be expressed as

EQ-TARGET;temp:intralink-;e010;116;424

fðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i þ C2

i

q

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r × c

Xr

m¼1

Xc
n¼2

½Xðm; nÞ − Xðm; n − 1Þ�2
s

Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r × c

Xr

m¼2

Xc
n¼1

½Xðm; nÞ − Xðm − 1; nÞ�2
s

; (10)

where i is the ordinal number of the block with a size of r × c, Xðm; nÞ represents the gray value
in the position of m’th row and n’th column of the block. The calculated result fðiÞ represents
the texture information and thus serves as the weighting factor of the i’th block.

3.2.3 Compressed sampling allocation strategy

The implementation of compressed sampling allocation strategy requires two important input
conditions. One is the saliency information map generated by the above algorithms, which serves
as the weight for self-adaptive sampling allocation. The other is the average sampling ratio avail-
able for self-adaptive allocation, which is calculated based on the system data bandwidth and
imaging scale.

In all three sampling stages, the selection principle of presampling times is to extract more
image feature information with minimal impact on the whole sampling process. The basic sam-
pling times are determined by a prior estimation on the execution time of saliency information
map generation and sampling allocation strategy. There is also a restriction on the maximum and
minimum sampling times. The maximum sampling times are limited by the maximum coding
time allowed by the system, and the minimum sampling times should not be less than the sum
of presampling and basic sampling times.

The specific implementation process of the sampling allocation strategy is organized as in
Algorithm 1.
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Algorithm 1 Compressed sampling allocation strategy.

Task: Calculating the sampling ratio allocation for each block based on system parameters.

Input parameters:

• The imaging scale is R × C, and it is divided into B blocks, each of which has a size of r × c.

• The data channel capacity is Mbps, the maximum encoding time allowed for single image acquisition is T ,
and the sampling rate is v .

• The execution time of saliency information map generation and sampling allocation strategy is t , and f ðiÞ
represents the weight of each block, which is extracted from saliency information map.

Initialization:

• Calculating the average compressed sampling ratio Dav in the case of 8-bit imaging depth:

EQ-TARGET;temp:intralink-;t001;116;571

ðR × CÞ · Dav

T
¼ M∕8 ⇒ Dav ¼

M · T
8 · ðR × CÞ ð0 < Dav < 1Þ:

• Calculating the initial minimum sampling ratio Dmin.

Calculating the sampling ratio Dpþb in the presampling and basic sampling stages:

EQ-TARGET;temp:intralink-;t001;116;504Dpþb ¼ vt
r × c

:

The minimum sampling ratio Dmin should be no less than Dpþb .

• Calculating the maximum sampling ratio Dmax:

EQ-TARGET;temp:intralink-;t001;116;439Dmax ¼
�
1 ðvT ≥ r × cÞ
vT
r×c ðvT ≤ r × cÞ :

Main Iteration:

• Step 1: Calculating the initial sampling ratio Di

EQ-TARGET;temp:intralink-;t001;116;371Di ¼
f ðiÞPB2

i¼1 f ðiÞ
· Dav · B · k;

where k is the adjustment factor during the iteration process, and its initial value is set to 1.

• Step 2: Limiting the range of parameter Di

EQ-TARGET;temp:intralink-;t001;116;303Di ¼
8<
:

DminðDi ≤ DminÞ
DmaxðDi ≥ DmaxÞ
Di ðDmin < Di < DmaxÞ

:

• Step 3: Reviewing the actual sampling ratio D 0
av

EQ-TARGET;temp:intralink-;t001;116;242D 0
av ¼

1
B

XB
i¼1

Di :

• Step 4: Updating adjustment variables

EQ-TARGET;temp:intralink-;t001;116;188

�
k ¼ k · ð1þ ΔÞ
Dmin ¼ Dmin · ð1þ ΔÞ ;

where Δ ¼ Dav ¼ D 0
av. If jΔj ≤ 1 × 10−3, the iteration is terminated, otherwise, it will return to step 1 and

continue the iteration until jΔj ≤ 1 × 10−3.

Outputs: The sampling ratio Di for each block in the imaging target.
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3.3 Self-Adaptive Image Restoration

3.3.1 Image restoration method

The basic idea of self-adaptive image restoration is: first, based on the low-resolution image
acquired in the presampling stage, the weight coefficient matrix of each block is extracted sep-
arately. Second, it is introduced into the theoretical model of compressed sensing, which is
equivalent to weighting the elements representing different frequency components in the sparse
matrix, thus realizing the self-adaptive image restoration. As a result, the efficiency of image
restoration algorithm is improved for a better image quality.

Figure 6 shows the schematic diagram of self-adaptive image restoration. The weight coef-
ficient matrix extracted from presampled data will be introduced into the image restoration
process, and the theoretical model of compressed sensing with weight coefficient matrix can
be expressed as follows:

EQ-TARGET;temp:intralink-;e011;116;573Y ¼ ΦX ¼ ΦΨθ ¼ ΦΨWθ 0; (11)

where the weight coefficient matrixW is a diagonal matrix, and the elements on the diagonal are
weight values for different frequency components. Compared with the nonweighted processing,
this method can increase the weight of low-frequency components, where the image information
is mainly concentrated, thereby reducing the restoration error.

The image restoration is performed according to the improved model described above,
wherein the presampled, basic sampled, and additional sampled data are all used for the sampling
result matrix, so the measurement matrix in the above model can be expressed as

EQ-TARGET;temp:intralink-;e012;116;458Φ ¼
2
4Φp

Φb

Φa

3
5: (12)

The measurement matrix Φ consists of three parts: Φp, Φb, and Φa, where Φb and Φa are the
measurement matrices corresponding to the basic sampling and additional sampling, respec-
tively, which are random matrices, and Φp represents the measurement matrix corresponding
to the presampling, which is a deterministic matrix. According to the schematic diagram of
uncompressed sampling process shown in Fig. 4, in the case that the size of each image is 8 ×
8 and the number of presampling is 4, the form of the measurement matrixΦp is shown in Fig. 7.

Fig. 6 The schematic diagram of self-adaptive image restoration.
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The lower part of Fig. 6 shows the workflow of self-adaptive image restoration, in which the
weight coefficient matrix generation, the block image restoration, and the image integration are
performed in series.

3.3.2 Weight coefficient generation

The weight coefficient matrix proposed in Ref. 40 is derived from the quantization table used in
the standard JPEG image compression format, whose advantage is that the matrix is determined
and no real-time calculation is required. However, just because of this, it generally works well for
all types of images, but it is not optimal for a specific type of image, such as remote sensing
images. Moreover, the standard quantization table is based on DCT, which makes DCT the only
choice for sparse transformation.

In this paper, the low-resolution image acquired in the presampling stage contains a priori
feature information, which can be directly used to generate the weight coefficient matrix suitable
for the current image, and this is undoubtedly optimal.

The process of generating weight coefficient matrix is shown in Fig. 8. Based on the low-
resolution image acquired by presampling, a high-resolution image with the same resolution as
the imaging target is first generated by bilinear interpolation, and then sparse transformation is
carried out based on the sparse basis, which will be used in the image restoration process. Finally,
the obtained coefficients are taken as the diagonal elements of the weight coefficient matrix after
logarithmic operation.

4 Multiangle Image Restoration and Integration Strategy

From the corresponding relationship between the BCS model and the actual system described
above, it can be seen that the 2-D image is integrated into a one-dimensional (1-D) vector for
processing in the theoretical model, which raises an optimized selection of the signal integration
method. When a 2-D image is integrated into a 1-D signal by row and column, respectively, there
must be differences in the characteristics of the two signals. Therefore, for the same compressed
sampling, if different signal integration methods are adopted in the image restoration process,
that is, the same image is restored from multiple angles, then the multiple restored images can be
fused to obtain a better image. However, it should be noted that this method achieves an improve-
ment in the image quality at the cost of multiplying the restoration time.

The method of integrating a 2-D image into a 1-D vector includes: zig-zag integration by row,
zig-zag integration by column, serpentine integration by row, serpentine integration by column,
as shown in Fig. 9. Equations (4) and (5) in Sec. 2.2 are expressed in the form of zig-zag inte-
gration by row, and the other three integration methods are expressed as follows.

1. If the zig-zag integration by column is adopted, then the elements in the measurement
matrix Φb can be organized as follows:

Presampled low 
resolution image

Bilinear interpolation for 
high resolution image

Block sparse 
transformation

Block weight 
coefficient matrix

log10(abs(*)+1)

Fig. 8 The process of generating weight coefficient matrix.

=

1111 00001111 0000

Fig. 7 The measurement matrix corresponding to the presampling stage.
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EQ-TARGET;temp:intralink-;e013;116;599Φb
p;ðj−1Þ×rþi ¼ CðpÞbi;j ði ¼ 1: : : r; j ¼ 1: : : cÞ

ðp ¼ 1: : : m; b ¼ 1: : : BÞ:
(13)

The elements in the signal matrix Xb to be measured are organized as follows:

EQ-TARGET;temp:intralink-;e014;116;544Xb
ðj−1Þ×rþi ¼ Gb

i;j ði ¼ 1: : : r; j ¼ 1: : : cÞ: (14)

2. If the serpentine integration by row is adopted, then the elements in the measurement
matrix Φb can be organized as follows:

EQ-TARGET;temp:intralink-;e015;116;488

(
Φb

p;ði−1Þ×cþj ¼ CðpÞbi;j when i is odd

Φb
p;ði−1Þ×cþ½c−ðj−1Þ� ¼ CðpÞbi;j when i is even

ði ¼ 1: : : r; j ¼ 1: : : cÞðp ¼ 1: : : m; b ¼ 1: : : BÞ:
(15)

The elements in the signal matrix Xb to be measured are organized as follows:

EQ-TARGET;temp:intralink-;e016;116;409

(
Xb
ði−1Þ×cþj ¼ Gb

i;j when i is odd

Xb
ði−1Þ×cþ½c−ðj−1Þ� ¼ Gb

i;j when i is even
ði ¼ 1: : : r; j ¼ 1: : : cÞ: (16)

3. If the serpentine integration by column is adopted, then the elements in the measurement
matrix Φb can be organized as follows:

EQ-TARGET;temp:intralink-;e017;116;336

(
Φb

p;ðj−1Þ×rþi ¼ CðpÞbi;j when i is odd

Φb
p;ðj−1Þ×rþ½r−ði−1Þ� ¼ CðpÞbi;j when i is even

ði ¼ 1: : : r; j ¼ 1: : : cÞðp ¼ 1: : : m; b ¼ 1: : : BÞ:
(17)

The elements in the signal matrix Xb to be measured are organized as follows:

EQ-TARGET;temp:intralink-;e018;116;259

(
Xb
ðj−1Þ×rþi ¼ Gb

i;j when i is odd

Xb
ðj−1Þ×rþ½r−ði−1Þ� ¼ Gb

i;j when i is even
ði ¼ 1: : : r; j ¼ 1: : : cÞ: (18)

The matrices processed by the above four signal integration methods are substituted into
Eq. (2) for restoration, respectively, and then the restored 1-D signal is inversely integrated into
a 2-D image. Further, the images obtained by the four methods are averaged to get the final
restored image. The whole image restoration process is equivalent to performing four restorations
for the same sampling, so the time consumed for image restoration is also increased by four times.
Meanwhile, the proposed method does not affect the self-adaptive compressed sampling and
image restoration described above and can be superimposed on the basis of the above method.

5 Path of Image Restoration

According to the proposed self-adaptive BCS imaging system and multiangle integrated image
restoration method, this section combs the working path of image restoration process. In Fig. 10,

Zig-zag
integration by row

Zig-zag
integration by column

Serpentine
integration by row 

Serpentine
integration by column

Fig. 9 The schematic diagram of multiangle integration strategy.

Wang et al.: Self-adaptive block-based compressed sensing imaging for remote sensing applications

Journal of Applied Remote Sensing 016513-12 Jan–Mar 2020 • Vol. 14(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 12 Apr 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



preliminary restoration refers to self-adaptive compressed sampling and image restoration,
whereas depth restoration refers to superimposing multiangle integrated restoration method
on the former.

The conventional image restoration and display process is shown in the path A of Fig. 10: the
low-resolution thumbnail is directly displayed based on the presampled data, then the primary
image is obtained by preliminary restoration, and finally the fine image is obtained by depth
restoration. Alternatively, when the thumbnail is displayed, the region of interest can be selected
artificially, and then preliminary and depth restoration are sequentially performed only for the
local region, thereby improving the real-time performance, as shown in the path C of Fig. 10. It is
also feasible to artificially select the region of interest when the primary image is displayed, and
then perform depth restoration for the region, which shortens the image restoration time to some
extent, as shown in the path B of Fig. 10.

6 Experimental Verification and Analysis

6.1 Explanation of Experimental Parameters

The resolution of the remote sensing image selected in the experiment is 512 × 512, and it is
divided into 32 × 32 blocks by the BCS system, each of which has a size of 16 × 16. In the
theoretical model, DCT is selected as the sparse transform base, random Bernoulli matrix is
used as the measurement matrix due to the limitation of hardware implementation, and the
orthogonal matching pursuit algorithm is applied for image restoration.

For the presampling stage in the sampling process, on the one hand, as many presampling
times as possible are needed to extract more precise priori feature information, on the other hand,
as few presampling times as possible are also necessary to reduce the impact on the whole sam-
pling process. Considering the experimental parameters comprehensively, the presampling times
of each block is set to 4. And the peak signal-to-noise ratio (PSNR) is used as the image quality
evaluation criterion.

6.2 Experimental Results of Self-Adaptive Compressed Sampling with
Different Significant Information Maps

The four remote sensing images selected in the experiment are shown in Fig. 11. The remarkable
feature of remote sensing images is that the difference in the richness of information between
regions is more obvious. Therefore, the advantages of the self-adaptive compressed sampling
method proposed in this paper are more easily highlighted.

Taking the image remote 1 as an example, the saliency information maps generated by differ-
ent algorithms based on the presampled data are shown in Fig. 12. It can be seen from this figure
that all four algorithms can identify regions with rich information, but they are slightly different
from each other.

Preliminary 
restoration

Depth 
restoration 

Fine 
image

Depth 
restoration

Preliminary and depth restoration 

Fine 
image

Fine 
image

Thumbnail 
Primary 
image

Region of 
interest 

selection 

Path A

Path B

Path C

Fig. 10 The path of image restoration.
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Based on the above saliency information maps, the compressed sampling allocation strategy
is then implemented to obtain the results of sampling ratio allocation, as shown in Fig. 13,
wherein the system parameters are: the average sampling ratio Da is 0.6, the initial minimum
sampling ratio Dmin is 0.4, and the maximum sampling ratio Dmax is 0.95.

It can be seen from this figure that although the final results of sampling ratio allocation
obtained by the four algorithms are different, the overall trend shows that higher sampling ratios
are applied to the significant regions, which is in line with the expectation of the sampling ratio
allocation strategy. Then the results of sampling ratio allocation shown in Fig. 13 are substituted
into the theoretical model, and the restored images are shown in Fig. 14, in which the texture
feature algorithm is intuitively optimal.

In order to further quantitatively compare the image quality under different saliency infor-
mation map generation algorithms, the quality evaluation results of the restored images are
recorded in Table 1. It can be seen from the table that compared with the traditional BCS method,
the self-adaptive sampling method with different algorithms has achieved a better image quality,
in which the quality of the restored image obtained by the texture feature algorithm is optimal.
Therefore, the texture feature algorithm is selected as the saliency information map generation
algorithm hereinafter.

(a) (b)

(c) (d)

Fig. 12 The saliency information maps generated by different algorithms. (a) Sign function algo-
rithm, (b) variance algorithm, (c) significant coefficient algorithm, and (d) texture feature algorithm.

Fig. 11 The original target images: (a) remote 1, (b) remote 2, (c) remote 3, and (d) remote 4.
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Fig. 14 The restored images obtained by self-adaptive compressed sampling method. (a) Sign
function algorithm, (b) variance algorithm, (c) significant coefficient algorithm, and (d) texture
feature algorithm.

Table 1 The quality evaluation results of the restored images with different saliency information
map generation algorithms (unit: dB).

Image

Method

Traditional
Sign

function Variance
Significant
coefficient

Texture
feature

Remote1 24.20 25.10 25.23 26.30 26.78

Remote2 18.75 19.03 18.83 19.41 19.30

Remote3 22.15 22.65 22.43 23.29 23.67

Remote4 24.24 26.83 26.31 26.16 29.06

(a) (b)

(c) (d)

Fig. 13 The results of sampling ratio allocation for self-adaptive compressed sampling. (a) Sign
function algorithm, (b) variance algorithm, (c) significant coefficient algorithm, and (d) texture
feature algorithm.
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6.3 Experimental Results of Combined Application of Self-Adaptive
Compressed Sampling and Self-Adaptive Image Restoration

In order to analyze the contribution of self-adaptive compressed sampling and self-adaptive
image restoration to the improvement of restored images, the traditional BCS, self-adaptive com-
pressed sampling (BCS-AS), self-adaptive image restoration (BCS-AR), and their combination
(BCS-AS-AR) are adopted, respectively, for the same imaging target, and the quality evaluation
results of restored images are shown in Table 2.

Figure 15 shows the relationship between PSNR of the restored images and sampling ratio
under different combinations, which is drawn based on the data in Table 2. It can be seen from
this figure that compared with the traditional BCS, both self-adaptive compressed sampling and
self-adaptive image restoration can effectively improve the image quality. When self-adaptive
compressed sampling is adopted alone, the improvement of the image quality becomes more
significant with the increase of sampling ratio. When self-adaptive image restoration is adopted
alone, the improvement of the image quality becomes less significant with the increase of sam-
pling ratio, and the image quality is even lower than the traditional block-based method when the
sampling ratio reaches 0.8. When both of them are adopted at the same time, the image quality is
improved significantly in the case of low sampling ratio, whereas it is lower than either method
alone in the case of high sampling ratio.

Based on the above results, it can be concluded that self-adaptive image restoration can sig-
nificantly improve the image quality at low sampling ratio, whereas at high sampling ratio, it will

Table 2 The quality evaluation results of restored images under different combinations (unit: dB).

Ratio

Method

BCS BCS-AS BCS-AR BCS-AS-AR

0.3 16.84 18.98 21.06 22.16

0.4 19.60 21.41 22.57 23.62

0.5 21.83 23.62 24.55 24.29

0.6 24.20 26.78 25.92 25.04

0.7 26.28 29.84 27.14 25.47

0.8 29.03 32.42 27.98 25.73

Fig. 15 The relationship between PSNR of the restored images and sampling ratio under different
combinations.
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result in image quality degradation. Therefore, it is necessary to propose an improved strategy to
eliminate the negative effects of self-adaptive image restoration.

6.4 Improved Strategy for Combined Application of Self-Adaptive
Compressed Sampling and Self-Adaptive Image Restoration

To solve the above problem, the basic principle of the improved strategy is: when self-adaptive
compressed sampling and self-adaptive restoration are adopted simultaneously, selective pro-
cessing is carried out between different blocks, and self-adaptive restoration is shielded for
blocks with high sampling ratio. The specific implementation method is: the sampling ratio
of each block is compared with the preset threshold Dth before image restoration. If it is higher
than the threshold, then shielding self-adaptive restoration, otherwise no shielding. The quality
evaluation results of restored images under different thresholds are recorded in Table 3.

Figure 16 shows the relationship between PSNR of the restored images and threshold Dth

under different average sampling ratios, which is drawn based on the data in Table 3. It can be
seen from this figure that the image quality first improves with the increase of threshold Dth, and
then deteriorates sharply. The thresholds corresponding to a significant improvement of the
image quality are different under various average sampling ratios. However, the PSNR of the
restored image achieves the maximum when the threshold Dth is about 0.8 under all sampling
ratios and drops sharply when approaching the maximum sampling ratio.

Table 3 The quality evaluation results of restored images under different thresholds (unit: dB).

Da

Dth

1.0a 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.3 22.16 20.99 21.73 22.24 22.38 22.38 22.43 22.38 22.33

0.4 23.62 23.22 24.10 24.55 24.78 24.83 24.74 24.65 24.57

0.5 24.29 23.62 26.06 26.62 27.02 27.19 27.15 27.16 26.91

0.6 25.04 26.78 26.78 28.79 29.34 29.42 29.57 29.51 29.49

0.7 25.47 29.84 29.84 29.84 31.41 31.79 32.12 32.13 32.17

0.8 25.73 32.42 32.42 32.42 32.42 33.64 34.06 33.91 33.94

aIt corresponds to the case of Sec. 6.3.

Fig. 16 The relationship between PSNR of the restored images and threshold Dth under different
average sampling ratios.
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Under the premise of lower threshold, the number of blocks adopting self-adaptive restora-
tion increases with the increase of Dth, which is beneficial to image restoration, thus improving
the image quality. Meanwhile, as the threshold increases, more and more blocks with high sam-
pling ratio adopt self-adaptive restoration, and the negative effect of self-adaptive restoration
gradually becomes prominent, resulting in a decline in the image quality. When the threshold
Dth reaches 1, self-adaptive restoration will be adopted for all blocks, which corresponds to the
case of Sec. 6.3. The phenomenon of sudden elevation and sudden descent of curves in Fig. 16
can be explained as follows. Taking the average sampling ratio Da ¼ 0.6 as an example, in
which point the minimum sampling ratio is set to 0.4 and the maximum sampling ratio is set
to 0.95. It can be seen from Fig. 13 that the blocks with the minimum sampling ratio and the
maximum sampling ratio in the imaging target each occupy a higher proportion. Therefore, when
the threshold is greater than the minimum sampling ratio of 0.4, a large number of blocks with
the minimum sampling ratio are suddenly incorporated into the self-adaptive restoration range,
so the image quality has a significant improvement. When the threshold is greater than the maxi-
mum sampling ratio of 0.95, a large number of blocks with the maximum sampling ratio are
suddenly incorporated into the self-adaptive restoration range, which results in a sharp deterio-
ration of the image quality. Considering comprehensively, the threshold Dth is set to 0.8 in the
case of the current experimental parameters.

6.5 Comparison of the Methods Proposed in this Paper with other Methods

The multiangle image restoration strategy superimposed on the self-adaptive compressed
sensing method proposed in this paper is defined as BCS-AS-AR-M, and the self-adaptive
compressed sensing methods proposed in Refs. 39 and 40 are defined as BCS-method1 and
BCS-method2, respectively. Then taking the image remote1 as the target, and the restored
images obtained by the above two methods and the methods described in this paper are shown
in Fig. 17 under the condition that the sampling ratio is 0.6.

In order to further quantitatively compare the image quality under different methods, the
quality evaluation results of the restored images are recorded in Table 4, and they are also plotted
in Fig. 18 for easy viewing.

Fig. 17 The restored images obtained by different methods. (a) BCS, (b) BCS-method1, (c) BCS-
method2, (d) BCS-AS-AR, and (e) BCS-AS-AR-M.

Table 4 The quality evaluation results of restored images obtained by different methods (unit: dB).

Ratio

Method

BCS BCS-method1 BCS-method2 BCS-AS-AR BCS-AR-AR-M

0.3 16.84 18.97 17.22 22.43 27.81

0.4 19.60 21.51 20.71 24.74 30.43

0.5 21.83 24.13 22.90 27.15 32.98

0.6 24.20 26.80 25.27 29.57 35.55

0.7 26.28 29.47 27.25 32.12 38.32

0.8 29.03 32.50 29.66 34.06 40.47
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It can be seen from this figure that under all sampling ratios, there are always BCS-AS-AR-M
better than BCS-AS-AR, BCS-AS-AR better than BCS-method1, BCS-method1 better than
BCS-method2, and BCS-method2 better than BCS. This shows that compared with the tradi-
tional BCS, the methods proposed in Refs. 39 and 40 can effectively improve the image quality,
and the image quality of the self-adaptive method proposed in this paper is better than the above
two methods. Furthermore, compared with all the above methods, multiangle restoration strategy
can greatly improve the image quality at the cost of multiplying the image restoration time.

For compressed sensing imaging systems, in addition to pursuing high-quality images, the
real-time problem also needs to be considered, which is directly related to the computational
complexity of image restoration algorithms. In order to quantify the impact of various imaging
control strategies on the image restoration process, we intend to describe the complexity of the
algorithm through the time consumed by simulation calculation. The image restoration time
obtained by simulation calculation is recorded in Table 5.

Compared with traditional BCS, BCS-method1 does not introduce additional processing
steps in the image restoration process. However, due to the difference in sampling ratio allo-
cation, the overall computational complexity is increased, which leads to an increase in time
consumption. Because the weight matrix used in image restoration is fixed rather than calculated
in real time, the consumption time of BCS-method2 is basically the same as that of traditional
BCS. For the proposed BCS-AS-AR method, it is not only to face the impact of the increase
in computational complexity caused by the difference in sampling ratio allocation, but also to

Fig. 18 The relationship between PSNR of the restored images and sampling ratio when different
methods are adopted.

Table 5 The image restoration time obtained by simulation calculation under different methods
(unit: second)

Ratio

Method

BCS BCS-method1 BCS-method2 BCS-AS-AR BCS-AR-AR-M

0.3 11.72 20.68 11.67 23.02 93.61

0.4 25.91 46.85 25.83 49.72 201.29

0.5 46.60 77.40 47.44 78.81 322.92

0.6 77.51 111.91 79.75 114.30 465.67

0.7 118.75 151.34 124.97 160.24 649.31

0.8 187.51 207.60 191.06 210.02 853.21
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provide time for the weight matrix generation, so the time consumption is slightly more than that
of BCS-method1. The increased time is used to complete the weight matrix generation calcu-
lation, which is basically fixed about 3 s. It should be noted that the increase in image restoration
time introduced by our method will gradually drown in the image restoration algorithm as the
sampling ratio increases and the image size increases. Especially in the field of remote sensing,
which is characterized by large-scale imaging, the disadvantage of imaging time is not obvious.
In addition, the BCS-AS-AR-M method is equivalent to repeating the image restoration algo-
rithm four times, so the time consumption in theory should be four times the previous method,
which is indeed consistent with the results in Table 5.

7 Conclusions

Based on the significant differences between regions of remote sensing images, a self-adaptive
BCS method is proposed in this paper. Compared with the traditional BCS system, the prior
information of the imaging target is obtained first by adding presampling process. On the one
hand, it is used to generate a saliency information map, which guides the reasonable allocation of
self-adaptive sampling ratios between blocks in the compressed sampling process, thereby
improving the sampling efficiency. On the other hand, it is used to generate the weighted sparse
coefficient matrix, which will be substituted into the theoretical model in the image restoration
process, thus improving the image restoration efficiency. The experimental results show that the
imaging quality of the proposed method has a significant improvement compared with the tradi-
tional system and is also superior to several existing self-adaptive methods.

The method proposed in this paper improves the image quality significantly by optimizing
the imaging strategy without affecting the hardware architecture of the traditional BCS system,
which is instructive to the BCS for remote sensing applications.
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