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A B S T R A C T   

A design for a truss mechanism of a secondary mirror based on robotics is proposed. This design 
would allow for the construction of larger vehicle-mobile telescopes. As the new truss mechanism 
combines the original support structure and adjustment mechanism, the problems in designing 
new structures needs to be overcome. In this paper, the basic form of the truss mechanism is 
determined by finite element method, and the number of limbs meeting the requirements of 
resonance frequencies and stiffness is obtained. Degrees-of-freedom of the new truss mechanism is 
calculated by motion space based on geometry algebra and screw theory, It can provide more 
accurate and specific results compared with the G-K formula. The optimal structure is calculated 
to meet the requirement in degrees-of-freedom with the minimum possible limbs and kinematic 
pairs. After the form and the value of joints are determined, the deformations are calculated by 
stiffness evaluation index. Wavefront aberrations simulated with Zernike polynomials are used to 
verify the structure.   

1. Introduction 

Telescopes can either be fixed stationary or movable. Vehicle-mobile telescopes have a great advantage over ground-based tele
scopes in terms of mobility and efficiency. However, it is not possible to transport large telescopes by road as they do not meet height 
requirements of bridges and culverts. Therefore, vehicle-mobile telescopes remain in the scale of 1 m, which restricts the development 
of their diameter. 

Secondary mirrors are generally fixed to the telescope by Serrurier truss as the supporting component and a secondary mirror 
assembly is installed above the Serrurier truss via Stewart platform, which adjusts the position of the mirror in six-dimensional motion 
[1–3]. In this type of structure, the Serrurier truss accounts for about half of the total height of the telescope, which is the main reason 
for over height of vehicle telescopes. As the telescope is not operated during transportation, the secondary mirror does not have to 
remain in the working position. 

This paper presents the concept of truss mechanism in the form of robotic arms, which integrates the supporting part of traditional 
Serrurier truss and the adjusting part of the Stewart platform. The new designed truss has both positioning and freedom adjustment 
functions; thus it is necessary for the platform to have the 5 degrees-of-freedom (DOFs) except the rotation along z-axis to adjust the 
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position of the secondary mirror. When the telescope is in operation, the secondary mirror assembly is placed at the specified position 
by the motion of the truss. When the telescope is not in operation or being transported, the secondary mirror assembly moves with the 
motion of the robotic arm, and the truss is placed on the side of the telescope. The height of the telescope can be reduced by half, so the 
overall height of the telescope is only considered from the azimuth and horizontal axis. For example, for a telescope at the scale of 2 m, 

Fig. 1. view of JWST truss mechanism’s expansion.  

Fig. 2. finite element model of truss. (a) mechanical arm finite element models; (b) Deformation of gravity parallel to the optical axis;(c) 
Deformation of gravity vertical to the optical axis; (d) First-order resonant frequency cloud. 
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the overall height can be controlled to 4.2 m including the vehicle, so that it can be transported. The resolution and light collection 
capabilities of the 2 m diameter telescope increases more exponentially than the 1 m diameter telescope. The newly designed truss 
takes into account the image quality and mobility of the telescope, and the design has broad application prospects [4–6]. 

The truss mechanism based on the robotic arm cannot be constructed, because the accuracy of robotics did not meet the re
quirements. With advancements in technology, the accuracy has been improved. The IRB120’s accuracy of ABB based on truemove and 
quickmove controlling software can reach 0.01 mm, which meets telescope requirements [7]. However, the robotic arm used as a truss 
mechanism in telescopes is very rare. A similar structure was used in the James Webber Space Telescope(JWST). The truss is folded in 
rocket when it is launched, and opens up when it is on track. (Fig. 1) The foldable mechanism only has 3 DOFs of rotation. Highly 
accuracy positioning can be achieved but it does not have the adjustment function [8–11]. The truss integrated with positioning and 
adjusting functions has not appeared yet. 

The new truss mechanism has the function of the 6-DOFs platform. That is to say, the new robotic arm truss mechanism not only 
needs to meet the function of positioning the secondary mirror, but also have the 6-DOFs adjustment function. So it is necessary to 
calculate the number of DOF of the manipulator theoretically and design the appropriate number of limbs to take account of the 
stiffness and weight of the parallel mechanism. DOF of each limb and the motion subspace of the parallel structure should be optimized 
after meeting the freedom requirements of the secondary mirror. 

2. Mechanical formulation 

The truss mechanism is a key component of the telescope’s structure. It’s dimensional accuracy and stability directly affect the 
positioning accuracy of the secondary mirror. The truss mechanism produces different degrees of deflection at different positions in 
gravity. The telescope system needs to have sufficient stability against wind load and other problems during observation. All this 
indicates that the secondary mirror assembly and truss structure need to have sufficient structure stiffness [12–15]. 

Parallel mechanisms can lead to higher system resonant frequency and stiffness, which makes the truss a greater mass. Therefore, 
parameters and the number of limbs of the truss need to be adjusted to meet the stiffness of the system and limited quality re
quirements. In order to achieve rigidity requirement with minimum quality, structures using one limb or two limbs cannot meet the 
resonant frequency and the system stiffness requirements. Using three parallel limbs meets the requirements with minimum quality. 

The finite element model was established to calculate the characteristics of the system. The secondary mirror is simplified as a mass 
point, and the mass point is set to 30 kg. Truss mechanisms are simulated as beam units and released by the corresponding rotation 
DOF as shown in Fig. 2(a). By establishing the finite element model shown in Fig. 2(a), gravity parallel and vertical to the optical axis is 
applied to the model, and the deformation and resonant frequency is verified as shown in Table 1. 

The results show that the deformation of gravity parallel to the optical axis is 0.059 mm when the gravity is parallel to the optical 
axis as shown in Fig. 2(b). The deformation of gravity vertical to the optical axis is 0.12 mm when the gravity is parallel to the optical 
axis as shown in Fig. 2(c). The first order resonance is 45.4 Hz. (Fig. 2(d)) 

3. kinematic pair design of the truss and DOF calculation in parallel 

After the theoretical analysis and verification of the finite element model, the truss mechanism is determined in the form of three 
parallel limbs. In order to obtain the DOF of the parallel structure, the paper designed the DOF in parallel to meet adjustment re
quirements by designing the type and number of DOFs of each limb based on screw theory and geometric algebra. The secondary 
mirror needs to have 5 DOFs except the z-axis rotation to achieve the adjustment function. The DOF of the truss mechanism is changed 
and compared with the requirements to obtain the optimal solution by adjusting the number of kinematic pairs on each limb. 

3.1. Definitions 

3.1.1. Geometric algebra and algorithm 
Geometric algebra was proposed by Clifford: In real number field R, an n-dimensional vector space is recorded as Vn. Geometric 

algebra field Gn = G(Vn) is a vector space composed of geometric products Vn space [17,18]. 
N-dimensional geometric algebra space Gn is composed of orthogonal groups {e1, e2, ..., en}; however, the base vectors are only 

algebra elements in Gn, and not basis algebra elements[19]. The basis algebra element of geometric algebra is blade. A k-blade is made 
up of the composition of the outer product by k(k < n) vectors a1, a2, ..., ak : 

〈Ak〉 = a1 ∧ a2 ∧ ... ∧ ak (1)  

where k is the order of the blade; therefore 〈A〉k is also known as the k-order blade. 〈A〉k represents a directional subspace formed by 

Table 1 
Deformation and resonant frequency of the secondary mirror.  

Deformation of gravity parallel 
to the optical axis 

Deformation of gravity vertical 
to the optical axis 

Resonant frequency 

0.059 mm 0.12 mm 45.4 Hz  
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these k-vectors. In particular, when k = 0, 〈A〉0 represents a scalar, when k = 1, 〈A〉1 represents a vector [20–22]. N-dimensional 
geometric algebra Gn is composed of 0-n order blade. 

The geometric product is a unique algorithm of geometric algebra and defined as ab, which is composed of the sum of the inner and 
outer products of vectors a and b. 

ab = a · b + a ∧ b (2)  

a · b is the inner product of a and b, a ∧ b is the outer product of a and b. 

3.1.2. Relationship establishment between screw theory and geometric algebra 
According to the definition of the screw theory [23,24], a screw may represent the motion and force of a rigid body, which is the 

speed or the force of the rigid body. Screw is a line vector with a pitch, and the equation of the screw is r × S = S0 − hS (Fig. 3), written 
in Plücker coordinates as (S; S0 − hS). 

A screw can thus be expressed as: 

$ =
(
S; S0)

=
(
S; S0 − hs

)
+ (0; hS)

(s; r × s + hs)
(l,m, n; p, q, r)

(3)  

r represents a position vector of a point on a line, h represents a pitch, l,m, n, p, q, r are set as the Plücker coordinates of the screw. 
Contact is established between screw theory and algebraic geometry to solve for the degrees of freedom. The screw S can be written as 

S = s + r ∧ s + hi3s
= v1e1 + v2e2 + v3e3 + (v3y − v2z)e2∧e3 + (v1z − v3x)e3∧e1
+(v2x − v1y)e1∧e2 + hv1e2∧e3 + hv2e3∧e1 + hv3e1∧e2
= v1e1 + v2e2 + v3e3 + b1e2∧e3 + b2e3∧e1 + b3e1∧e2

(4)  

bi is a scalar, b1 = v3y − v2z+ hv1, b2 = v1y − v3z+ hv2, b3 = v2y − v1z+ hv3. The method is extended from the three-dimensional 
representation to R(6 0) geometric algebraic space, R(6 0) is a six-dimensional geometric algebra space, e1, e2, e3, e4, e5, e6 is a set 
of orthogonal base units of R6, and set 

e4 = e2∧e3, e5 = e3∧e1, e6 = e1∧e2

e2
1 = e2

2 = e2
3 = e2

4 = e2
5 = e2

6 = 1, eiej = − ejei(i ∕= j)
, (5) 

The screw can then be represented by geometric algebra as: 

S = v1e1 + v2e2 + v3e3 + b1e4 + b2e5 + b3e6 (6)  

3.2. DOF design of the truss mechanism limb 

It is difficult to obtain symbols or analytical expressions when solving the DOF problem using the modified G-K formula [12]. In this 
paper, the screw theory combined with geometric algebra is used to obtain the motion subspace on the moving platform by the union of 
the twists on the limbs. 

The optimal process to meet the requirement of secondary mirror adjustment with few joints is shown in Fig. 4. 
Step 1, set the initial kinematic pair type and the number n. 

Fig. 3. axis of screw.  
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Step 2, establish the position vector of each kinematic pair. 
Step 3, calculate each twist on each limb. 
Step 4, calculate the motion space of the end of each limb. 
Step 5, solve the motion space of the moving platform, verify whether the moving platform contains the five DOFs in addition to the 

rotation along z-axis. If the kinematics meets the requirements, the kinematic pair of the limb is reduced to n-1. If the kinematics do not 
meet the requirements, the kinematic pair of the last loop is the optimal solution. 

As secondary mirror adjustment mechanism needs to be isotropic for adjustment, symmetrical parallel mechanism is used in this 

Fig. 4. process of limb kinematic pair design.  

Fig. 5. Structure of parallel truss mechanism.  

R. Wang et al.                                                                                                                                                                                                          



Optik 224 (2020) 165474

6

study. Three limbs of truss are circumferentially distributed on the four-way body, the beginning and the end of the robotic arms seem 
to be equilateral triangles. The forms of the kinematic pairs are generally revolute pair R, prismatic pair P, spherical pair S. To reduce 
the overall weight of the truss structure, torque motors are used in this structure, thus revolute pairs are used. The R pair can provide 
one relative DOF. In this paper, the initial value is set to 6; thus, the initial DOF of each limb is 6. Establishment of the coordinate 
system is shown in Fig. 5, where the origin is at the center of the fixed platform plane. 

Radius of the platform is set to r, and the coordinate points A1, A2, A3, B1, B2, B3, C1, C2, and C3 are set as shown in Table 2. Point M1 
is provided with two revolute pairs, the axes of screw are parallel to the z-axis and y-axis. A1 is provided with one revolute pair, the axis 
of the screw is parallel to the y-axis ; B1 is provided with one revolute pair, the axis of the screw is located in the xz plane; C1 is provided 
with two revolute pairs, the axes of screw are parallel to the z-axis and y-axis. The screw system of the other two limbs can be obtained 
from rotation about the z-axis. 

According to Eq. (6), each twist on the first limb can be written as: 

SM11 = e3
SM12 = e2 + re6
SM13 = e2 − zA1 e4 + xA1 e6
SM14 = e1 + zB1 e4 − yB1 e6
SM15 = e2 − zC1 e4 + xC1 e6
SM16 = e3 + yC1 e4 − xC1 e6

(7) 

The motion subspace of the first limb can be regarded as series of independent kinematic pairs on the limb, then the union of the 
twists is: 

SM1 = SM11 ∪ SM12 ∪ SM13 ∪ SM14 ∪ SM15 ∪ SM16

= SM11 ∧ SM12 ∧ SM13 ∧ SM14 ∧ SM15 ∧ SM16

= ae1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(8) 

Among them, a is a scalar, a = xC1 (yA1 − rzC1 − zA1 yC1 + rzA1 ). Eq. (8) represents the motion subspace at the end of the kinematic 
chain on the first limb is a 6-blade. Similarly, according to Eq. (8), each twist on the second limb can be written as: 

SM21 = e3

SM22 =

̅̅̅
3

√

2
e1 +

1
2
e2 − re6

SM23 =

̅̅̅
3

√

2
e1 +

1
2
e2 −

1
2

zA2 e4 +

̅̅̅
3

√

2
zA2 e5 − xA2 e6

SM24 = −
1
2
e1 +

̅̅̅
3

√

2
e2 +

1
2

zB2 e5 +

̅̅̅
3

√

2
zB2 e4 − yB2 e6

SM25 =

̅̅̅
3

√

2
e1 +

1
2
e2 −

1
2

zC2 e4 +

̅̅̅
3

√

2
zC2 e5 − xC2 e6

SM26 = e3 + yC2 e4 − xC2 e5

(9) 

The motion subspace of the second limb is the union of the twists: 

SM2 = SM21 ∪ SM22 ∪ SM23 ∪ SM24 ∪ SM25 ∪ SM26

= SM21 ∧ SM22 ∧ SM23 ∧ SM24 ∧ SM25 ∧ SM26

= be1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(10) 

Table 2 
Position vector and twist in a fixed coordinate system.  

position vector coordinates twist 

OM1  [r,0,0] SM11 ,SM12  

OM2  
[ −

1
2

r,
̅̅̅
3

√

2
r,0]

SM21 ,SM22  

OM3  
[ −

1
2

r, −
̅̅̅
3

√

2
r,0]

SM31 ,SM32  

OA1  [xA1 ,yA1 , zA1 ] SM13  

OA2  [xA2 ,yA2 , zA2 ] SM23  

OA3  [xA3 ,yA3 , zA3 ] SM33  

OB1  [xB1 ,yB1 , zB1 ] SM14  

OB2  [xB2 ,yB2 , zB2 ] SM24  

OB3  [xB3 ,yB3 , zB3 ] SM34  

OC1  [xC1 ,yC1 ,zC1 ] SM15 ,SM16  

OC2  [xC2 ,yC2 ,zC2 ] SM25 ,SM26  

OC3  [xC3 ,yC3 ,zC3 ] SM35 ,SM36   
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among them, b is a scalar, 

b = yC2 (

̅̅̅
3

√

2
zA2 xC2 −

1
2
(
3
4

zA2 yB2 −
3
4
xA2 zB2 +

̅̅̅
3

√

4
rzB2 +

̅̅̅
3

√

4
rzA2 )

−

̅̅̅
3

√

2
zC2 (xA2 − r) +

̅̅̅
3

√

2
(

̅̅̅
3

√

4
zA2 yB2 −

1
4
xA2 zB2 +

1
4

rzB2 −
3
4

rzA2 ))

+xC2 (−
1
2

xC2 −
1
2
(

̅̅̅
3

√

4
zA2 yB2 −

3
4
xA2 zB2 +

3
4

r −
1
4

rzA2 ) +
1
2

zC2 (xA2 − r)

+

̅̅̅
3

√

2
(−

1
4
zA2 yB2 −

̅̅̅
3

√

4
xA2 zB2 +

̅̅̅
3

√

4
rzB2 + zA2 ))

Each twist on the third limb can be written as: 

SM31 = e3

SM32 =

̅̅̅
3

√

2
e1 −

1
2
e2 + re6

SM33 =

̅̅̅
3

√

2
e1 −

1
2
e2 +

1
2

zA3 e4 +

̅̅̅
3

√

2
zA3 e5 − xA3 e6

SM34 =
1
2
e1 +

̅̅̅
3

√

2
e2 −

1
2

zB3 e5 +

̅̅̅
3

√

2
zB3 e4 − yB3 e6

SM35 =

̅̅̅
3

√

2
e1 −

1
2
e2 +

1
2

zC3 e4 +

̅̅̅
3

√

2
zC3 e5 − xC3 e6

SM36 = e3 + yC2 e4 − xC2 e5

(11) 

The motion subspace of the third limb is the union of the twists: 

SM3 = SM31 ∪ SM32 ∪ SM33 ∪ SM34 ∪ SM35 ∪ SM36

= SM31 ∧ SM32 ∧ SM33 ∧ SM34 ∧ SM35 ∧ SM36

= ce1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(12) 

among them, c is a scalar. 

c = yC3 (

̅̅̅
3

√

2
zA3 xC3 +

1
2
(
3
4
zA3 yB3 +

3
4
xA3 zB3 +

̅̅̅
3

√

4
rzB3 +

̅̅̅
3

√

4
rzA3 )

−

̅̅̅
3

√

2
zC3 (xA3 −

1
2

r) +
̅̅̅
3

√

2
(−

̅̅̅
3

√

4
zA3 yB3 −

1
4
xA3 zB3 −

1
4

rzB3 +
3
4

rzA3 ))

+xC3 (
1
2

xC3 +
1
2
(

̅̅̅
3

√

4
zA3 yB3 −

3
4
xA3 zB3 −

3
4

r +
1
4

rzA3 ) −
1
2

zC3 (xA3 −
1
2

r)

+

̅̅̅
3

√

2
(−

1
4
zA3 yB3 +

̅̅̅
3

√

4
xA3 zB3 +

̅̅̅
3

√

4
rzB3 + zA3 ))

n-dimensional geometric algebra Gn comprises a 0-n order blade, wherein the blade of 0 order is a scalar. It is then easy to obtain the 
following equation: 

SM = SM1 ∩ SM2 ∩ SM3

= me1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6
(13) 

m can be calculated by Eqs. (8),(10),(12), and m is a scalar that does not influence the result. Therefore, if the DOF of each limb is 6, 
the DOF in parallel is 6 with 3DOFs of translation and 3DOFs of rotation. Thus the mechanism meets the requirement of secondary 
mirror adjustment. 

Because it is not necessary to have rotation DOF along the z-axis, in order to minimize the number of kinematic pair and obtain an 
optimal solution, the z-axis rotation freedom in three limbs is removed, which is the revolute pair parallel to the z-axis in C1, C2, and C3 
in Fig.5. The primary mechanism is changed to 3-RRRRR parallel mechanism and DOF is calculated again. 

According to the data in Table 2, the motion subspace of the first limb is the union of the twists: 

SM1 = SM11 ∪ SM12 ∪ SM13 ∪ SM14 ∪ SM15

= SM11 ∧ SM12 ∧ SM13 ∧ SM14 ∧ SM15

= a1e1 ∧ e2 ∧ e3 ∧ e4 ∧ e6 + a2e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(14) 

Among them, a1, a2 are scalar. 
The motion subspace of the second limb is the union of the twists: 

R. Wang et al.                                                                                                                                                                                                          
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SM2 = SM21 ∪ SM22 ∪ SM23 ∪ SM24 ∪ SM25

= SM21 ∧ SM22 ∧ SM23 ∧ SM24 ∧ SM25

= e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 + b1e1 ∧ e2 ∧ e3 ∧ e4 ∧ e6 + b2e1 ∧ e3 ∧ e4 ∧ e5 ∧ e6
+b3e1 ∧ e2 ∧ e3 ∧ e5 ∧ e6 + b4e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(15) 

Among them, b1, b2, b3, b4 are scalar. 
The motion subspace of the third limb is the union of the twists: 

SM3 = SM31 ∪ SM32 ∪ SM33 ∪ SM34 ∪ SM35

= SM31 ∧ SM32 ∧ SM33 ∧ SM34 ∧ SM35

= e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 + c1e1 ∧ e2 ∧ e3 ∧ e4 ∧ e6 + c2e1 ∧ e3 ∧ e4 ∧ e5 ∧ e6
+c3e1 ∧ e2 ∧ e3 ∧ e5 ∧ e6 + c4e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6

(16) 

Among them, c1, c2, c3, c4 are scalar. 
The union of twists on the 3 limbs is 5-blades from the observations of Eqs. (14),(15),(16). 

SM = SM1 ∩ SM2 ∩ SM3

=
(
(SM1 ∩ SM2 )I

− 1
6

)
∩ SM3

= a10e1 ∧ e3 ∧ e4 + a20e1 ∧ e2 ∧ e3 + a30e2 ∧ e3 ∧ e4

(17) 

Decompose the equation according to the blade decomposition method 

S1 =
1

a30
(a20e1 + e4)

S2 =
1

a30
(a10e1 + e2)

S3 = e3

(18) 

Among them, a10, a20, a30 are scalar, which has no impact on the results and can be obtained according to equations (16),(17), and 
(18). 

In Eq. (20), 3-RRRRR is shown as a 3-blade, and its motion subspace comprises S1, S2, and S3. Therefore, this parallel mechanism of 
3-RRRRR has 3DOFs. S1 indicates that the Plücker coordinates of the screw are ( a20 1 0 ; 0 0 0 ), the pitch is 1/a20; S2 is a DOF of 
rotation and the Plücker coordinates is ( a20 1 0 ; 0 0 0 ); S3 indicates a DOF of translation along the z-axis. The calculation result 
shows that 3-RRRRR does not meet the DOF of secondary mirror requirement. The 3-6R in Eq. (15) has 6-DOFs in motion subspace and 
meets the requirement of the secondary mirror adjustment, thus the 3-6R is the optimal solution. 

4. Verification 

Although stiffness and resonance frequencies are simulated in Section 2, the value and the position of joints has changed after the 
DOF calculation in Section 3, the stiffness of the truss changes as well. So stiffness evaluation index is used to verify the stiffness in this 
paper. The truss system is simulated with gravities along different orientations in matlab. Rotation and translation deformations are 
used to analysis wavefront aberrations. The result is compared with system requirement to verify the performance. 

4.1. Stiffness evaluation index 

Because the truss is a symmetric parallel mechanism, one limb is optimized in this paper instead of the whole parallel mechanism to 
make the analysis easier, and the parallel stiffness matrix is calculated after the optimization. The enhanced stiffness model proposed 
by Ref. [16] is expressed as: 

K = J− T(Kθ − KC)J− 1 (19)  

Where KC denotes a complementary stiffness matrix. Kθ is defined as: 

Kθ =

⎡

⎢
⎢
⎣

k1 0 ⋯ 0
0 k2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ k6

⎤

⎥
⎥
⎦ =

[
K11 K12
K21 K22

]

(20)  

Where ki(i = 1,2, ...,6) is the stiffness of Ji, K11, K12, K21 and K22 are 3 × 3 submatrices of Kθ. 
It can be seen that calculation of the inverse Jacobian matrix is involved from Eq. (21), which inevitably introduces a calculation 

error when the robot is close to singularities. To solve such problem, a compliance model derived by Ref. [25] was proposed and 
defined as: 

C = JK − 1
θ JT =

[
Ctt Ctr

CT
tr Crr

]

(21) 
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Where Ctt , Ctr and Crr are the 3 × 3 translational, coupling and rotational compliance submatrices, which are not the inverse of the 
stiffness submatrix [26]. 

By neglecting the toque applied to the end-effector(EE) [27], the overall compliance of the robot is proportional to the volume of 
the translational compliance ellipsoid. Thus, the performance index of the robot stiffness proposed by Ref. [28] can be defined as: 

kstif =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det(Ctt)

3
√ =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det(J11K − 1

11 JT
11 + J12K − 1

22 KT
12)

3
√ (22)  

where J11 and J12 are 3 × 3 submatrices of J, which can be written as: 

J =

[
J11 J12
J21 J22

]

(23) 

The proposed methodology aims at calculating the translational deformation Δx and rotational deformation Δθ of the secondary 
mirror, which is defined as: 

[
Δx
Δθ

]

=

[
Cttf
CT

trf

]

=

[
Ctt · f · ef

CT
tr · f · ef

]

(24) 

Obviously, to calculate the deformation, the compliance matrix C needs to be calculated with different force direction ef . Different 
ef is used to verify the wavefront aberrations caused by gravity. As Ref. [28] described, the compliance performance index can be used 
to evaluate the stiffness in one position. 

4.2. Wavefront Aberrations Verification by Zernike Polynomials 

For a truss mechanism in 2 m scale, the joint stiffness of Smart5 NJ 220-2.7 robot is used to analysis in this paper. Then, the Kθ is 
identified as diag[1.5727× 109, 6.7566× 109, 1.1169× 109, 3.3249× 108, 1.1038× 108, 4.1444× 108](N ·mm/rad). For serial 
manipulators, the Jacobian matrix is established at the point P of the EE as shown in Fig. 6. 

DHm parameters to calculate deformations are shown in Table 3. J6 doesn’t show up in the Jacobian matrix. θ4 is set to 0 in order to 
make the z-axis of primary mirror and secondary mirror is coaxial. 

The 3-6R structure is composed of 3 same limbs. C1, C2, C3 are compliance matrix of the EE. C2, C3 can be obtained through the 
transmission matrix. 

Fig. 6. DHm parameterization of the limb and the position of joints.  

Table 3 
DHm parameters of the limb and the position of joints.   

J1 J2 J3 J4 J5 J6 

θi(rad) θ1  θ2 = −
7π
20  

θ3 =
π
5  

θ4 = 0  θ5 = 0  θ6  

αi(deg) − 90◦ 0◦ − 90◦ 90◦ − 90◦ α6  

ai(mm) a1 = 200  a2 = 1700  a3 = 1800  a4 = 0  a5 = 200  a6  

di(mm) 0 d2  d3  0 0 d6   
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C2 = T2π
3
·C1 · TT

2π
3

(25)  

C3 = T4π
3
.C1.TT

4π
3

(26) 

Thus, the parallel flexibility matrix of the structure is 

Ctt = (C− 1
tt1 + C− 1

tt2 + C− 1
tt3 )

− 1 (27)  

Ctr = (C− 1
tr1 + C− 1

tr2 + C− 1
tr3 )

− 1 (28) 

Then, Ctt and Ctr is obtained. 

Ctt =

⎡

⎣
2.62003e-4 9.851853e-5 3.55928e-4
9.85185e-5 1.78827e-3 − 7.15779e-5
3.55928e-4 − 7.15779e-5 1.49788e-3

⎤

⎦ Ctr =

⎡

⎣
2.01576e-8 − 1.93230e-7 2.77446e-8
3.88870e-7 0 6.88193e-7
− 1.46454e-8 − 1.29434e-6 − 2.01576e-8

⎤

⎦

After the compliance matrix is obtained, deformation of the secondary mirror in different gravities can be calculated by Eq. (26). 
Deformation along each direction is calculated by decomposing Δx and Δθ. Due to analyzing the rigid body deformation, only piston, 
tip and tilt are considered in this paper. First three order aberrations will be obtained after the result is measured by Zernike poly
nomials. Finally, the value of deviation is compared with the system error requirement. 

Because the value of θ caused by ΔZ is small enough in Fig. 7, sinθ = θ. The aberration caused by ΔZ can be written as LS = θ · f =

Fig. 7. ΔZ caused by tip and tilt.  

Table 4 
deformations and wavefront aberrations caused by gravity.   

Zmax(mm) Zmin(mm) ΔZ(mm) LS(nm)

ef = [0,0, 1]T  1.49856e-3 1.49719e-3 1.37234e-6 2.74467 

ef = [1,0, 0]T  3.56316e-4 3.55540e-4 7.76540e-7 1.55308  

Fig. 8. Aberrations caused by deformations in gravity(a) gravity parallel to the z-axis(b) gravity parallel to the x-axis.  
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ΔZ
D · f . According to the results shown in Table 4, the wavefront aberrations caused by the deformation of the secondary mirror are 

2.74467 nm and 1.55308 nm under gravity along z-axis and x-axis separately. The result meets the aberration requirement, which 
means the design meets the requirement of the telescope system (Fig. 8). 

5. Conclusion 

This paper presents a concept for truss on large telescopes based on robotics. The newly designed truss mechanism combines 
supporting and adjusting mechanisms and makes it possible to construct larger vehicle-mobile telescopes, and also allows for the 
secondary mirror to be more conveniently replaced. Based on this idea, this paper obtains and verifies 3 limbs in parallel is the lightest 
project to meet the requirement of the system. DOF of the moving platform is calculated and obtained by varying the number of 
kinematic pairs in the limb based on screw theory and geometry algebra. The optimal solution is using 3 limbs and each limb has 6 
kinematic pairs according to the requirements of the telescope system. The aberration caused by the secondary mirror is verified to 
meet the error requirement. 
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