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In a structured-light system, lens distortion of the camera
and projector is the main source of 3D measurement error.
In this Letter, a new approach, to the best of our knowledge,
of using deep neural networks to address this problem is
proposed. The neural network consists of one input layer,
five densely connected hidden layers, and one output layer.
A ceramic plate with flatness less than 0.005 mm is used to
acquire the training, validation, and test data sets for the
network. It is shown that the measurement accuracy can
be enhanced to 0.0165 mm in the RMS value by this tech-
nique, which is an improvement of 93.52%. It is also verified
that the constructed neural network is with satisfactory
repeatability. ©2019Optical Society of America

https://doi.org/10.1364/OL.45.000204

Recently, three-dimensional (3D) shape measurement using
structured-light system has been extensively studied [1,2] and
widely applied due to its high speed, simple setup, and high
accuracy [3]. To achieve high measurement accuracy, one of the
crucial elements is to accurately calibrate the structured-light
system. Currently, there are two popular calibration methods
for the structured-light system. One is the phase-to-height con-
version algorithm [4] in which the 3D shape is reconstructed by
establishing the relationship between the depth and phase value.
With this method, the locations of the projector and camera can
be arbitrarily arranged without strict geometric constraints. The
other is the stereo-vision-based model proposed by Zhang and
Huang [5] in which the projector is treated as an inverse camera
to reconstruct the 3D shape. This method has the advantages
of simplicity, simultaneity, and high accuracy. In our previous
work, we also adopted Zhang and Huang’s method for the
calibration of a structured-light system [6].

The distortions of lenses of the projector and camera are
unavoidable owing to industrial manufacturing, and high accu-
racy of 3D shape reconstruction cannot be achieved without
complete correction of the distortions [7]. Camera calibration

has been studied extensively, and the distortion of the cam-
era lens can be well corrected by the distortion parameters.
However, the distortion correction of the projector lens remains
difficult because of two main reasons. First, the projector cannot
be used to directly capture images. Secondly, the correction by
the distortion parameters used for the camera lens is not suitable
for the projector lens due to its high optical efficiency and optical
offset [8].

To circumvent the problem of projector distortions, Peng
et al. [7] proposed an adaptive fringe projection technique for
the system calibration by a phase-to-height conversion algo-
rithm. In the process, a standard plane was randomly placed in
several different locations. In the absence of lens distortions,
the recovered phase distribution for each location should be in
the form of a rational fraction [9]. In practice, however, there
was an additional bending phase in the recovered phase due to
the distortion of the projector lens. Then the additional phase
distribution was fitted with Zernike polynomials. According to
the fitted results, the projected fringe patterns were modified
to eliminate the projector distortion before projecting. This
method does not need to calibrate the projector and has a mea-
surement accuracy of a standard plane target of 0.0213 mm in
the RMS value.

For Zhang and Huang’s system calibration model, Yang et al.
[8] proposed a residual compensation method to correct the
projector distortion. In this method, the projected fringe pat-
terns were modified twice. First, pre-distortion fringe patterns
were generated by modifying the fringe patterns according to
the distortion coefficients of the projector lens, aiming to elimi-
nate the main measurement error caused by the distortion. Then
a residual distortion map was built based on per-pixel measure-
ment of a planar target, and the pre-distortion fringe patterns
were refined by this residual distortion map. This method has
the advantage of not requiring any auxiliary equipment, and the
measurement accuracy of a standard plane target is 0.0435 mm
in the RMS value.
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Deep learning has been successfully applied to many different
fields, including computer vision and natural language process-
ing due to the advances in hardware and software techniques,
and increased data availability [10–12]. There are several exam-
ples of deep learning applications in a structured light system.
Feng et al. [10] used the deep neural networks to perform fringe
analysis from a single fringe pattern for accurately retrieving
phase information. Similarly, Shi et al. [11] proposed a deep
learning approach based on an enhanced label and patch for
phase retrieval. Jeught et al. [12] proposed a neural network
with a large simulations data set in the training process to extract
the height information of the object from a single-shot fringe
pattern. In this Letter, a new approach to correct the distortion
of the projector lens for Zhang and Huang’s system calibration
model is presented, entirely based on deep neural networks.
The experimental results demonstrate that the accuracy of the
standard plane is 0.0165 mm (RMS) which has an improvement
of 93.52%. Moreover, the neural network construction is with
satisfactory repeatability, and the proposed method has the
advantage of no need of changing the projecting fringe patterns.

Here Zhang and Huang’s calibration method is briefly
recalled as follows. The camera is a pinhole model in which the
relation between a point of (xw, y w, zw) on the object and its
projection on the image sensor of (uc , vc ) can be written as

s c
[uc vc 1]T =Mc

[xw y w zw 1]T ,

Mc
= Ac
[R c t c

], (1)

where s c is an arbitrary scale factor, Ac is the camera’s intrinsic
matrix, and R c and t c are the camera’s extrinsic matrices. The
projector can be regarded as an inverse camera in which a similar
relation can be described as

s p
[u p v p 1]T =M p

[xw y w zw 1]T ,

M p
= A p

[R p t p
], (2)

where the p superscript denotes the parameters of the projector.
Due to the projector not being able to capture images like a
camera, Zhang and Huang presented the phase-aided method
to establish the correspondence relationship between the camera
and projector pixels using two sets of orthogonal sinusoidal
fringe patterns. In the system calibration, the feature points on
the calibrated plate are captured by the camera and the corre-
spondent pixel coordinates on the CCD are extracted. With
the established correspondence relationship, the acquired pixel
coordinates on the CCD are mapped to those on the digital
micromirror device of the projector. Then both the camera
and projector are calibrated. When the intrinsic and extrinsic
parameters of the system are acquired, 3D information on the
object can be obtained using Eqs. (1) and (2).

In this Letter, the process of the distortion correction of the
projector lens is shown in Fig. 1. Its detailed explanation is given
below.

Step 1: Calibrate the structured-light system. The structured-
light system is calibrated using Zhang and Huang’s method as
described above.

Step 2: Correct the camera lens distortion. The camera
lens distortion can be modeled as a vector of five elements as
Distc

= [k1, k2, p1, p2, k3], where k1, k2, and k3 are the radial

Fig. 1. Flowchart for correction of the projector distortion.

distortion coefficients, and p1 and p2 are the tangential distor-
tion coefficients. Then the captured images can be undistorted
based on the camera calibration results using an OpenCV
camera calibration toolbox.

Step 3: Construct the neural network. The architecture of
our deep neural network is shown in Fig. 2. It consists of one
input layer, five densely connected hidden layers and one output
layer. The layers are connected cascadedly to solve the gradient
vanishing problem during training. There are 50 units in each
hidden layer. Behind each densely connected hidden layer, a
dropout layer with the rate setting to be 0.1 is included to reduce
over-fitting. Tanh is adopted as an activation function because
there are positive and negative values in the input data. The deep
neural network is implemented using the Keras framework in
PyCharm. It should be pointed out that the dropout layers do
not appear in Fig. 2 because the network is drawn with Matlab.

Step 4: Make a data set. To make a data set, a ceramic plate
with a size of 300 mm× 300 mm and flatness less than
0.005 mm is placed at 33 different locations separately, with
different orientations and distances. These locations should
be throughout the measurement space. Then we calculate the
measurement error distribution of DZ by the least square plane
fitting of the measurement result of [X, Y, Z] at each location.
[X, Y, Z] and DZ are used to be the input and output of the
network, respectively. During the making of the data set, we
shuffle the measurement data set at each location first. Then we
randomly extract 70% of the shuffled data set of each location
to form a training data set. Finally, the remaining data set at each
location is randomly divided into two parts, with one part used
to form a validation set, and the other part is used to form a test
set. In order to reduce the data loading time, we have made these
data points into a Hierarchical Data Format.

Step 5: The training of the network. The network is trained
with a batch size of 3000 and mean square error as the loss func-
tion. During the training, the hyper-parameters of the neural
network are determined by the loss value of the validation data
set. To be concrete, Adam optimization with an initial learning
rate of 1× 10−4 is used, and the learning rate is controlled by
a callback function to reduce its value by 0.8 times after four
epochs.

Fig. 2. Our network structure.
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Step 6: The correction of the projector distortion. The error
of the test set is predicted by the trained network; then the pro-
jector lens distortion is corrected by the predicted result.

The 3D shape measurement system used includes a
CCD camera (DAHENG MER-131-210U3M-L) with a
VTG1214-M4 lens and a projector (DLP 6500). The camera
resolution is 1280× 1024 pixels, and the projector resolution
is 1920× 1080 pixels. The multi-frequency phase-shifting
algorithm with pitches of 21, 24, and 180 pixels is adopted to
recover the absolute phase maps, and the windowed Fourier
transform is adopted to suppress the noise in extraction of the
wrapped phase [13].

We start the experiment from removing the camera lens dis-
tortion using a camera calibration toolbox in OpenCV (step 2).
In step 1, the calibrated camera lens distortion is given as

Distc
= [−0.21741, 0.206541, 2.3× 10−4,−2.7× 10−4, 0].

(3)

The calibrated target images are undistorted by the
initUistortRectifyMap function in OpenCV, based on the
calibrated camera internal parameters and the distortion coeffi-
cients in Eq. (3). With the undistorted target images, the camera
is recalibrated and the distortion coefficients are reduced to

Distc
= [1.8× 10−3,−2.557× 10−2,

− 1.3× 10−4, 2× 10−5, 0]. (4)

It can be seen that the distortion coefficients can almost be
ignored, showing the camera lens distortion is well corrected. In
the following experiments, all images captured by the camera are
first undistorted.

With the constructed neural network in step 3 and the train-
ing data set acquired in step 4, the neural network is trained as
described in step 5. Thirty-two epochs are adopted to achieve
satisfactory loss value. Figure 3 shows the loss value as function
of epochs for both the training data set and validation data set. It
can be seen that two curves are very close, indicating that there
is no apparent over-fitting in the process of the neural network
training.

With the trained neural network, the projector distortion
is corrected as described in step 6. The test data set at all loca-
tions is brought into the trained neural network to evaluate
the performance of the network. Then the corrected 3D shape
at each location is acquired, and the error value for each input
point (X, Y, Z) is predicted. Figure 4 shows the experimental
results for the test data set at the first location. Figures 4(a) and
4(b) show the 3D shape and error distribution of the original

Fig. 3. Loss function.

Fig. 4. Experimental results for the test data set at the first location
with (a) the 3D shape of the original test data set, (b) the error dis-
tribution of the original test data set, (c) the 3D shape of the data set
after correction, and (d) the error distribution of the test data set after
correction.

data set, respectively, and 4(c) and 4(d) show the 3D shape and
error distribution of the data set after correction, respectively.
It can be seen that the peak-to-valley (PV) value in Fig. 4(b) is
2.0354 mm, and it is reduced to 0.1607 mm in Fig. 4(c). The
experimental results for the remaining 32 locations are shown
in Visualization 1, where the maximum PV value of the error
after correction is 0.1644 mm, indicating that satisfactory
improvement is achieved by the neural network. Moreover, the
error histogram of the test data set after correction is obtained
and shown in Fig. 5. From Fig. 5, we can get the RMS value of
the error of the data set which is 0.0165 mm. As compared with
that of the original test data set of 0.2546 mm, an improvement
of 93.52% is achieved. The above experimental results prove
that the constructed neural network can effectively correct the
distortion error of the projector in the 3D shape measurement.

To further evaluate the performance of the neural network,
another ceramic plate with a size of 300 mm× 300 mm and
flatness less than 0.010 mm is placed at 11 different locations,
and 3D shape measurement is conducted. At each location, the
measurement data, with the error caused by the projector lens
distortion, are corrected by the trained neural network, and
the residual error of the measurement is listed in Table 1. The

Fig. 5. Error histogram of the test data set corrected by the neural
network.

https://doi.org/10.6084/m9.figshare.10303442
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Table 1. Residual Error of 3D Shape Measurement at
11 Different Locations (Unit: mm)

Location PV RMS Location PV RMS

1 0.1252 0.0141 7 0.1308 0.0128
2 0.1113 0.0147 8 0.1380 0.0137
3 0.1313 0.0149 9 0.1121 0.0169
4 0.1260 0.0141 10 0.1095 0.0130
5 0.1549 0.0161 11 0.1229 0.0149
6 0.1247 0.0125 – – –

Table 2. Statistical Result of the Repeatability of the
Neural Network (Unit: mm)

Time PVmax
a

RMS Imp
b

(%)

1 0.1588 0.0164 93.57
2 0.1586 0.0167 93.44
3 0.1605 0.0165 93.53
4 0.1579 0.0165 93.51
5 0.1669 0.0163 93.58
6 0.1539 0.0164 93.57
7 0.1703 0.0163 93.61
8 0.1657 0.0167 93.45
9 0.1654 0.0162 93.63
10 0.1571 0.0167 93.45
mean – 0.0165 93.53

aPVmax denotes maximum PV value.
bImp denotes improvement of the RMS value.

second column in Table 1 lists the PV values of the residual error
at 11 locations, and the third column lists the RMS values. It
can be seen that the maximum and minimum RMS values of
the residual error is 0.0169 and 0.0125 mm, respectively, indi-
cating that the projector lens distortion has been satisfactorily
corrected by the constructed neural network.

Finally, to assess the repeatability of the neural network con-
struction, we repeat the experimental steps from 4 to 6 by 10
times, with the same measurement data at the 33 different loca-
tions. For each experiment, the measurement data are randomly
selected again to re-form the training data set, validation data
set, and test data sets. Table 2 lists the experimental results of
the projector distortion correction in 3D shape measurement.
The second column lists the maximum PV values of the residual
errors after distortion correction, and the third column lists
the RMS values. The fourth column lists the improvement
of the residual error in the RMS value as compared with the

correspondent error of the original test data set. It can be seen
that the maximum PV value of the residual error is 0.1703 mm,
the mean of the RMS values is 0.0165 mm, and the mean of the
improvement is 93.53%, indicating that the neural network
construction has satisfactory repeatability.

We have demonstrated that the technique of deep neural
networks can be successfully applied into projector distortion
correction in 3D shape measurement using structured-light
system. The proposed network consists of one input layer, one
output layer, and five densely connected hidden layers with
a dropout layer behind each hidden layer. The experimental
results show that after distortion correction by the trained neural
networks the measurement accuracy of 0.0165 mm in the RMS
value is achieved, which is an improvement of 93.52%. The
proposed method also possesses the advantage of no need of
changing the projecting fringe patterns. Moreover, the network
establishment is with satisfactory repeatability, which is verified
by repeating the experiment by 10 times in this Letter.
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