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A B S T R A C T

In this paper, the preparation and characteristics of SnS2 saturable absorber were demonstrated,
and the SnS2 saturable absorber was used in Nd:YAG/Cr4+:YAG laser. Under different output
coupler, repetition rate showed the range from 1.5 kHz to 6.2 kHz and pulse width showed the
range from 3.1 ns to 5.8 ns with the increasing pump power. The max pulse energy was 29 μJ
with peak power of 9.4 kW.

1. Introduction

Passively Q-switched (PQS) operation provides lower output performances compared to active Q-switched (AQS), but it shows
more advantages like simple cavity structure, lower costs and reliability. The PQS technique, generated laser pulse width less than
microsecond, is of great significance for scientific research, military applications, materials processing, medical examination and
remote sensing [1–4]. In PQS lasers, the saturable absorbers (SAs) are recognized as the key device. In recent decades, the SAs had
experienced a long process of development. For example: dyes, crystals such as Cr4+:YAG [5], Cr2+:ZnSe [6,7], SESAM/SBR-based
nonlinear mirrors [8,9] and graphene or graphene-like materials. Among these saturable absorber (SA) materials, Cr4+:YAG crystals,
with excellent heat conductivity, stable optical property and heat conductivity, have been employed for LD-pumped composite
crystal lasers [10,11]. Generally, Cr4+:YAG laser could not generate high peak power pulses.

In order to develop highly compact laser system, we combined the gain medium and the SA. Nd:YAG/Cr4+:YAG composite crystal
with thin pieces of Nd:YAG bonded to thin pieces of Cr4+:YAG by using diffusion composite technique, is widely used to fabricate
micro compact PQS lasers with infrared output [12]. On one hand, compared to the co-doped Nd:YAG laser media and the Cr4+:YAG
single crystal lasers, composite crystals have the advantages such as rather slight thermal effects of active medium and compact laser
cavity [13]. On the other hand, with the same Cr4+:YAG crystal and cavity, the pulse width in Nd:YAG/Cr4+:YAG composite crystal
exhibited shorter [13,14]. Therefore, the composite crystal could be recognized as an ideal laser material with some advantages such
as: low thermal lens effect by the end face deformation, high light-to-light conversion efficiency and damage threshold, good output
beam quality and compact laser cavity.

Among the transition metal sulfides (TMDs) layered materials, SnS2 exhibits excellent photoelectric properties such as deeper
modulation depth than graphene and wider modulation wavelength range than MoS2 and WS2 [15–22]. These properties make SnS2 a
good candidate as the SA in lasers, but there are still few reports about the SnS2 SA used in composite crystal lasers. In order to obtain
shorter pulse width and highly stable PQS operation, the SnS2 SA and the Nd:YAG/Cr4+:YAG composite crystal were combined in
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laser cavity.
In this paper, the preparation and characteristics of SnS2 SA were demonstrated, and the SnS2 SA was used in PQS Nd:YAG/

Cr4+:YAG laser. Typical pulse profile and beam profile of the PQS Nd:YAG/Cr4+:YAG laser were also demonstrated. Moreover, the
SnS2 SA-based solid-state laser is reported for the first time [23,24].

2. Experimental setup

The experimental setup of the PQS Nd:YAG/Cr4+:YAG laser was shown in Fig. 1. The central wavelength of fiber-coupled laser
diode was 808 nm, and the max output power was 3W. The beam spot radius was 200 μmwith numerical aperture of 0.22. The cavity
length of 14mm was designed. The input side was a 1.1 % doped Nd:YAG with the dimensions of 3× 3×5mm3, and the other side
was a 3×3×2mm3 Cr4+:YAG crystal with an initial transmission of 65 %. The crystal was HT-coated at 808 nm and HR-coated at
1064 nm on input side, and AR-coated at 1064 nm on the other side. The SnS2 SA was employed. The composite crystal was cooled by
TEC at the temperature of 28 °C. The output couplers (OCs) were flat mirrors with 1.5 %, 3%, 10 % and 27 % transmission at 1.06 μm.
The temporal pulse profile was recorded by a digital oscilloscope (Agilent DSO7012B) and an InGaAs photodetector (Thorlabs
PDA015C). The output power was measured by a power meter (Thorlabs PM100D).

3. Experimental results and discussions

3.1. Preparation and characterization of SnS2 SA

The fabricating method of SnS2 SA was liquid-phase stripping and demonstrated as follows: At first, 0.1 g of SnS2 powder with
diameter less than 10 μm was added into 25ml analytical pure alcohol. Next, the solution was put in an ultrasonic machine for 10 h.
After that, stirred the solution for 20min with rotation rate of 1000 rpm. Then, got the supernatant liquid and dropped it on K9
substrate. Finally, left the substrate at 23℃ for half a day.

The characterization of SnS2 SA was demonstrated in Fig. 2. As shown in Fig. 2(a) and (b), SnS2 SA showed a broad transmission
range from 700 nm to 1100 nm. The linear transmission and linear absorption coefficient at 1064 nm are 83.8 % and 0.0767, re-
spectively.

The nonlinear absorption property of the SnS2 SA was demonstrated in Fig. 2(c). The femtosecond laser with 150 fs pulse width,
central wavelength at 1040 nm and the repetition rate of 32MHz was used. The saturation intensity was 153.2MW/cm2 and the
modulation depth was 7.9 %. In Fig. 2(d), Raman spectroscopy of the SnS2 SA was shown. Two typical peaks at 205 cm−1 and
314 cm-1 are related to the Eg and A g1

1 vibrational modes. The AFM photograph and SEM photograph were shown in Fig. 2(e) and (f),
the diameter and thickness of the SnS2 SA were 300 nm and 5.72 nm (5 layers), respectively.

3.2. PQS Nd:YAG/Cr4+:YAG laser

The stable PQS Nd:YAG/Cr4+:YAG laser with SnS2 SA was observed, and OCs with transmission of T=1.5 %, 3%, 10 % and 27 %
at 1064 nm were used.

Fig. 3 showed the relationship between output power and pump power at different output coupler (OC). With the increasing OC
from 1.5% to 27%, the threshold pump power increased from 2.08W to 2.22W. Under pump power of 2.58W: with the increasing
OC from 1.5% to 27%, the output power increased from 22mW to 180mW, and the optical conversion efficiency increased from 0.85
% to 6.98 %.

Fig. 4 showed the variation of pulse width (PW) and repetition rate (RR) with increasing pump power at different OC. Under
pump power of 2.58W: with the increasing OC from 1.5% to 27%, the PW decreased from 4.4 ns to 3.1 ns, and the RR increased from
4.9 kHz to 6.2 kHz. Under pump power of 2.58W and 27 % OC, the maximum pulse energy of 29 μJ with highest peak power of
9.4 kW was obtained.

Fig. 5 showed the pulse profile and beam profile of the PQS operation with 27 % OC. The far-field beam profile was shown in
Fig.6(c), and the 808 nm pump laser oscillates at the fundamental transverse mode.

Fig. 1. Experimental setup of the PQS Nd:YAG/Cr4+:YAG laser.
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4. Conclusion

Based on the preparation and characteristics of the SnS2 SA, a compact PQS Nd:YAG/Cr4+:YAG laser have been demonstrated.
With pump power of 2.58W and 27 % OC: the output power was 180mW with optical-optical conversion efficiency of 6.98 %, the

Fig. 2. Characterization of SnS2 SA.
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Fig. 3. Relationship between output power and pump power at different output coupler.

Fig. 4. Variation of pulse width and repetition rate with increasing pump power at different OC.

Fig. 5. Pulse profile and beam profile of the PQS operation with 27 % OC.
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PW was 3.1 ns with RR of 6.2 kHz, and the single pulse energy of 29 μJ with peak power of 9.4 kW.
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