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A B S T R A C T

This paper designs a kinematic coupling mechanism to enable the stress-free connection between
the mounting platform and the optical instrument. Firstly, the author theoretically analyzed how
the mechanism deformation affects the position of the instrument center, aiming to identify the
exact relationship between instrument precision, coupling layout and coupling displacement.
Next, the relationship between mechanism deformation and the center position was computed by
homogenous transformation matrices, yielding the analytical solution to the center position,
coupling layout and coupling displacement. The research findings shed new light on the free-
stress coupling and precision improvement of optical instruments.

1. Introduction

Remote sensors are increasing in size and mass to achieve better resolution of space observation. Once a remote sensor is in orbit,
factors like gravity release and thermal deformation will cause a huge stress between the optical system and the coupling structure.
The mirror will be distorted under the stress, reducing the imaging quality of the optical system. This problem can be generally solved
using flexible coupling and strict control of temperature.

In the James Webb Space Telescope (JWST) [1–4], both the Integrated Science Instrument Module (ISIM) and the Fine Guidance
Sensor (FGS) [5,6] are connected to the main structure via quasi-kinematic coupling, which restrain the transfer of mechanical and
thermal deformations between the ISIM and the main structure. The Hexapod coupling [7–20] is adopted to prop up the main
structure of Large Synoptic Survey Telescope (LSST), DGT telescope, Subaru telescope, and Large Binocular Telescope (LBT), and the
secondary mirror of the Multiple Mirror Telescope (MMT) [21–25].

During on-orbit replacement, there is a large difference in temperature between the optical system and the mounting platform, as
well as in the size of mounting interface between different instruments. The temperature and size differences may induce stress on the
optical system. This calls for novel methods to minimize the differences and eliminate the stress.

Based on the theory of constraints, this paper develops a kinematic coupling mechanism to ensure that no object is over- or under-
constrained. As a statically determinant structure, the proposed mechanism can eliminate the stress between the optical system and
the mounting platform, which may arise from the said temperature and size differences. In addition, the coupling mechanism boasts a
high precision, and has little impact on the imaging quality of the optical system.

2. Design of kinematic coupling

Focusing on operability, this paper designs a kinematic coupling mechanism consisting of a sphere in a tapered groove, a sphere in
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a v-groove and a sphere on a plane. The schematic diagram of the proposed coupling mechanism is presented as Fig. 1. The optical
instrument must press against the coupling. Normally, this can be achieved due to the gravity of the instrument. When there is no
gravity, springs should be added to ensure complete contact between the instrument and the coupling.

As shown in Fig. 1, the tapered groove constrains the translation of the sphere centering at point A in the x, y and z directions; the
v-groove constraints the translation of the sphere centering at point B in the y and z directions; the two grooves jointly constrain the
rotation of the spheres about the y- axis and the z-axis, while allowing the rotation about the x-axis; the plane constrains the motion of
the sphere centering at point C perpendicular to the x–y plane, i.e. the rotation about the x-axis. To sum up, the tapered groove, the v-
groove and the plane respectively constrain 3, 2 and 1 degrees-of-freedom (DOFs) of the spheres. Thus, the coupling form is called the
“3-2-1” pattern.

The rotation and translation of the spheres can eliminate the deformations induced by the gravity release, stress and heat, after an
optical instrument has entered the orbit. In this way, all the connections become stress-free, thus ensuring the imaging quality of the
optical instrument.

3. Kinematic model analysis

To achieve stress-free coupling, the kinematic mechanism needs to make adjustment automatically depending on the specific size
of the structure. The adjustment will lead to changes in the mounting position of the optical instrument. Any disordered, unknown or
uncontrollable change will undermine the imaging quality. In this paper, the three sphere centers are connected into a triangle, and
the triangular center is selected to represent the instrument position. Based on the displacements of the three sphere centers, the
variation law of the triangular center coordinates was solved to reveal the positioning and direction precisions of the instrument.

As shown in Fig. 2, points A, B and C are the three sphere centers before the deformation of the optical instrument, while points A,
B1 and C1 are the three sphere centers after the deformation. The angle between the line AB and the motion direction of point B (x
axis) is defined as the distribution angle α. Taking point A as the origin, a Cartesian coordinate system was established with the
motion direction of point B as the x axis. Then, the coordinates of the sphere centers before and after the deformation can be
expressed by homogenous transformation matrices.

The coordinates of point B can be expressed as:

Fig. 1. The schematic diagram of the proposed coupling mechanism.

Fig. 2. Geometric model of the kinetic mechanism.
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The coordinates of point C can be expressed as:
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The coordinates of point B1 can be expressed as:
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The coordinates of point C1 can be expressed as:
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where T (θ)tz can be described as:

=
⎡

⎣

⎢
⎢
⎢

− ⎤

⎦

⎥
⎥
⎥

T
sin

sin(θ)
cosθ θ 0 0

θ cosθ 0 0
0 0 1 0
0 0 0 1

tz

(5)

And T (P)X can be described as:
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Substituting (5) and (6) into (1)∼(4), the coordinates of points B, C, B1 and C1 can be obtained as:
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The coordinates of the triangular center before deformation can be expressed as:
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Substituting (7) and (8) into (11), the coordinates of point O can be obtained as:
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The coordinates of the triangular center after deformation can be expressed as:
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Substituting (9) and (10) into (13), the coordinates of point O1 can be obtained as:
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The positioning precision of the optical instrument can be illustrated by the change of triangular center coordinates through the
deformation δx and δy:
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Substituting (12) and (14) into (15), δx and δy can be calculated as:
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4. Error analysis

This section aims to disclose how key model parameters like distribution angle α and temperature variation ΔT affect error
variation. To reduce the number of unknown terms, it is assumed that the sphere centers are the vertices of a regular triangle and
have the same displacement, that is, the triangle remains regular through the deformation.

4.1. Trajectory of triangular center

The parameters in (16) can be determined by the cosine law, based on the side length of the triangle LAB, the relative change of the
length μΔT and the distribution angle α. Thus, the formula of δx and δy can be simplified as:
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From (17) and (18), the relationship between δx and δy can be determined as:

=δ δ3y x (20)

As shown in (20), δx and δy maintain a fixed proportional relationship, which is independent of other parameters. This means,
however the coupling size changes, the instrument center will still move along a linear path, starting from the original center. The
trajectory will deviate from the motion direction of point B by 30°. The motion trajectory of the instrument center is presented in
Fig. 3 below.

4.2. Factors affects the displacement variation of instrument center

For the optical instrument, the displacement variation of its center is negatively correlated with stability. The distribution angle
and temperature variation are the leading impactors of the displacement variation of the instrument center. To optimize the coupling
design, it is highly necessary to disclose the influence mechanism of the two factors on the displacement variation. The law of the
relative displacement of the instrument center ( δ

L
y
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) can be derived from (17) and (18) as:
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The correlation of the relative displacement of the instrument center with distribution angle and temperature variation was
plotted on Matlab (μ =9e-6), and displayed as Fig. 4 below.

(1) Effect of distribution angle

It can be seen from Fig. 4 that the relative displacement of the instrument center increases with the distribution angle. To reveal
the exact influence mechanism, it is assumed that relative change of the side length of the triangle μΔT remains constant
( TμΔ =3.6e-4). On this basis, the relative displacement of the instrument center was solved at each distribution angle on Matlab. The
relationship between the two parameters is shown in Fig. 5 below.

As shown in Fig. 5, the relative displacement of the instrument center exhibits a nonlinear growth with the increase of the
distribution angle. The relative displacement reaches the minimum at = °α 0 , grows slightly when < °α 20 , and increases at a much
faster rate when > °α 40 .

(2) Effect of temperature variation

It can also be seen from Fig. 4 that the relative displacement of the instrument center increases with the temperature variation. To
reveal the exact influence mechanism, it is assumed that the distribution angle α remains constant (α =0). The partial derivative of

TΔ can be obtained from (23) as:
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The above formula indicates that the relative displacement of the instrument center is linearly correlated with temperature
variation when the value of α remains constant. Then, the relative displacement of the instrument center was solved under different
temperature variations on Matlab. The relationship between the two parameters is shown in Fig. 6 below.

As shown in Fig. 5, the relative displacement of the instrument center exhibits a nonlinear growth with the increase of the
temperature variation.

Fig. 3. The motion trajectory of the instrument center.

Fig. 4. Trend of the relative displacement of the instrument center.
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5. Conclusions

This paper designs a kinematic coupling mechanism to enable the stress-free connection between the mounting platform and the
optical instrument. Firstly, the kinematic model of the mechanism was analyzed theoretically, yielding the analytical expressions for
the instrument center, the three couplings, and their displacements. Based on these expressions, the author summed up the variation
laws of the positioning and direction precisions of the coupling mechanism. The calculation results show that the instrument center
can move stably along a straight line, when the three couplings form a regular triangle. In addition, the relative displacement of the
instrument center can surpass 0.02% in stability in the two mutually perpendicular directions, when the coupling mechanism un-
dergoes a temperature variation of over 40 °C. These laws shed important light on the optimal design of similar kinematic coupling
mechanisms, and provide a valuable reference for rationalizing the service environment, manufacture precision and compensation
control of optical instruments.
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