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In order to achieve the high accuracy and high speed in phase shifting interferometry, a phase extraction approach
by combining advanced principal component analysis and Lissajous ellipse fitting (APCA-LEF) is proposed. It
can obtain accurate phase distribution with only two no pre-filtering phase shifted interferograms, and it costs
less time simultaneously. It removes the restriction that PCA needs more than three interferograms with well
distributed phase shifts to subtract relatively accurate mean. Moreover, adjacent pixels taken part in the APCA

process increases the accuracy by suppressing the effect of noise, also, it is suitable for different levels of noises.
Last but not least, if the high accuracy is required, the phase shift would be best to far away from O rad and =
rad. The simulations and experiments verify the correctness and feasibility of APCA-LEF.

1. Introduction

Phase shifting interferometry (PSI) has been widely used in optical
measurement [1-3]. For the fixed interferometer and environment, the
performance of PSI mainly depends on the phase shifting algorithm
(PSA). Some traditional algorithms, such as 3-step, 4-step, 5-step, and
N-step PSAs etc., require the fixed phase shifts [4]. However, it is
difficult to obtain the accurate phase shift due to phase shift error
caused by the miscalibration of piezo-transducer (PZT), vibrational
error, air turbulence, instability of the laser frequency [4-6]. Hence,
many random PSAs have been developed to remove the effect of the
phase shift error, it can be divided into the iterative and non-iterative
PSAs. In general, the iterative PSAs have high accuracy, but they
cost more time, and the non-iterative PSAs spend less time than the
iterative PSAs, but the accuracy may be not as high as the iterative
PSAs. In recent years, in-situ measurement technology has been widely
developed, both the accuracy and working time of PSI need to be
considered. Because the computational time of the iterative PSAs are
difficult to reduce, only a small number of iterative PSAs have been
developed [7-9]. Hence, most scientists were committed to research
the non-iterative random PSAs with high accuracy.

In 1992, Farrell and Player utilized Lissajous figures and ellipse fit-
ting to calculate the phase difference between two interferograms [10].
In 2016, Liu et al. proposed a PSA based on Lissajous figure and ellipse
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fitting technology, it can simultaneously extract the tested phase and
phase shift from only two interferograms [11]. But these two algorithms
both need pre-filtering. From 2011 to 2017, Vargas et al. proposed a
series of PSAs based on principal component analysis (PCA) [12-16].
PCA is an efficient technique for phase extraction by converting a set of
possibly correlated variables into a set of values of uncorrelated vari-
ables. But it needs more than three interferograms with the phase shift
well distributed between 0 and 2 to subtract relatively accurate mean-
background intensity. Hence, the more the interferograms, the higher
the accuracy is. However, more interferograms will cost more acquisi-
tion time and computational time. So it is difficult to obtain the high ac-
curacy and high speed simultaneously. In 2012, Vargas et al. presented
a two-step demodulation based on the Gram-Schmidt orthonormaliza-
tion method (GS), it requires subtracting the DC term by filtering before
performing GS [17]. In the same year, Deng presented a two-step demod-
ulation algorithm based on extreme value of the interference (EVI), the
DC component also needs to be filtered out by a high-pass filter before
performing EVI [18]. In 2015, Luo et al. proposed an advanced two-step
phase demodulation algorithm based on the orthogonality of diamond
diagonal vectors (DDV) [19]. And in the same year, Niu et al. proposed
a two-step PSA based on the quotient of inner products of phase shifted
interferograms (QIP), only the cosine of the phase shift can be obtained
[20]. If the phase shift is more than r, the accurate phase distribution
can’t be obtained. The above two PSAs also need pre-filtering. In 2018,
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Cheng et al. introduced a fast and accurate wavefront reconstruction method for two-frame PSI [21]. It also uses the high-pass Gaussian filter firstly
before perform the phase retrieval. The cosine value of the unknown phase shift is estimated directly by solving a quartic polynomial equation, and
then the phase map is readily reconstructed.

From the above literatures, we found some phenomenons. Firstly, some PSAs can only obtain the cosine value of phase shift, the range of phase
shift is limited between 0 and =z, hence these PSAs are not real random PSAs. Then, many PSAs need pre-filtering before the phase extraction,
the pre-filtering process will cost more time and affect the accuracy. Lastly, some PSAs which don’t need pre-filtering may need more than three
interferograms, they will also spend more time. Generally, the PSAs with more than three interferograms have high accuracy and low speed, and the
PSAs with two interferograms have high speed and low accuracy. It is difficult to obtain the high accuracy and speed simultaneously. To balance
the computational time and accuracy, the research of non-iterative random PSA with two interferograms and no pre-filtering is essential.

In this paper, we will discuss a two-step random and non-iterative PSA . Section 2 presents the principle and process of the proposed PSA based
on advanced principal component analysis and Lissajous ellipse fitting (APCA-LEF). In Section 3 the simulation of APCA-LEF is discussed, and the
comparison of APCA-LEF with GS and EVI is performed. Section 4 evaluates the novel APCA-LEF with the experimental data. The conclusion is
finally drawn in Section 5.

2. Principles

The intensity expression of the n phase shifted interferogram is

1,(x,y) = a,(x,y) + b,(x, y) cos (p(x, y) + 8,) + &,(x. y). o
where I,(x, y) is the n'h phase shifted interferogram with the size of N,, x Ny, n=1,2,...,N represents the image index with N the total number of phase
shifted interferograms, N is set to 2 in this paper. a,(x, ¥) and b,(x, y) respectively represent the background intensity and modulation amplitude of
the phase shifted interferograms. ¢(x, y) is the tested phase, §, is the phase shift, and&,(x, y) is the noise. For convenience, the spatial coordinate
has been omitted in the following.

Eq. (1) can be rewritten as

1, =a,l. +p,1+x,. 2)

where «a,, = cos(8,),5, = —sin(6,),1, = b, cos(p), I, = b,sin(p) and k,, = a, + &,.

General PCA needs to filter the background intensitya,and noiseé, by subtracting the average of all the phase shifted interferograms. However,
the background intensity and noise can be well eliminated only when the phase shift is well distributed between 0 and 2z and the number of the
phase shifted interferograms is large enough. More interferograms cost more acquisition time and computational time, and the well distributed phase
shift is difficult to set because of the phase shift error. When the phase shift is “randomly” distributed and the number of phase shifted interferograms
is small, the phase extracted by PCA will be not accurate. Especially when there are only two phase shifted interferograms, the real phase can’t be
extracted by PCA since the background intensity can’t be eliminated in this situation. Hence, to ensure the accuracy and high speed simultaneously,
we design a new method based on advanced principal component analysis and Lissajous ellipse fitting (APCA-LEF). It only needs two randomly phase
shifted interferograms. APCA uses the adjacent pixels to suppress the effect of noise, and LEF can extract the accurate phase without the background
intensity filtering.

The intensity of adjacent pixel can be showed as:

LG+ 1,p)=1,0, )+ (L,(x + 1, )—-1,(x, ) & L(x, )+1, (x, ). 3)

where I,’(x, ¥) denotes the spatial derivative of I,(x, y).
A data matrix/constructed from extended data vectors is considered, I is defined by

I=[ 1, I, I+l ©L+I) ]=0T+R. @
where T is a matrix with the size of N,N, x 2N, the n'" column is taken columnwise from I,,, and the 2n™ is taken columnwise from I,+1,’. Ris the
background intensity and noise matrix with the size of N,.N,, x 2N, the nth column is taken columnwise from «,,.

o=[p q p q]. ©)
where the size of Q isN,N, X 2N, p and q are the column vectors with the size of N,N), x 1whose elements are taken columnwise froml.andI;.

cos (51) cos (52) cos (61) cos (52)
—sin(6;) —sin(6,) —sin(§;) —sin(6;)

= 0 0 —sin(8;) —sin(6,) [ ©
0 0 —cos (8;) —cos(4,)
The covariance matrix C can be expressed as
C=I"T=@Qr+R)Qr+R)=1"0"or+1" 0" R+ R'Or+ R"R ~ 1’0" or + R"R. Q)
The product of two uncorrelated matrixes-TTQTR and RTQI'can be ignored because they are significantly smaller than I''QTQI" and RTR.
! =
N N N N
2> cos?(8,) -2 ¥ cos(8,)sin(6,) — X cos(é,)sin(s,) - Y cos?(3,)
N n=1 n=1 N n=1 N N n=1
-2 Z cos (8,,) sin (8,) 2 ¥ sin®(5,) Y sin®(5,) Y, cos (8,) sin (8,)
-1 n=1 n=1 n=1 (8)
= N N N N :
- Z cos (3,) sin (8,) Y sin®(6,) Y sin®(5,) Y’ cos (8,) sin (8,)
n=1 n=1 n=1 n=1
N N N N
- 2 cos®(8,) Y’ cos (8,) sin (8,) Y, cos (8,) sin (6,) cos?(6,,)
n=1 n=1 n=1 n=1




Y. Zhang, X. Tian and R. Liang Optics and Lasers in Engineering 132 (2020) 106134

Note that, ITT is real and symmetric matrix, it can be diagonalized asI'T” = PI Dy P, where Drand Prare diagonal and orthogonal matrices.

17 = PTDpP- = (PT D./21) (fT(DFW)TPF)T. ©)
['is a new matrix that [TT = E, whereFis unit matrix. Hence, according to Eq. (9), we can get the expression of I'as

=PI DLY (10)
The new matrixl” can be expressed as

I'=D.~'/?PT. 11)

TheDris given by

4 0 0 0
0 4 0 0
Dy = . 12
o o 4 o 12)
0 0 0 A
where,(i = 1,2,3,4) is the eigenvalue of ITT.
We know thatPl_T is a 4 x 4 orthogonal matrix, so it can be expressed as
cos (0) sin (0) 0 0
—sin(@) cos () 0 0
pT — sin ( . 1
r 0 0 cos(@)  sin(f) 13)
0 0 —sin(@) cos ()
Additionally, QTQ can be expressed as
p Ipl>  (p- ) lel>  (p- 9)
q p-a)y  lall -a)  lall
orp = =
07 TP T g W )
q (p-a) lal>  <(p-ay  lal? a4)
b*cos? (@) b2 cos () sin (@) b*cos? (@) beos (@) sin (@) |
_ b2 cos (@) sin (@) b2sin’(¢) b? cos () sin (@) b2sin®(@)
B NN, b*cos(¢p) b? cos () sin (@) b%cos? (@) b% cos () sin (@)
b? cos () sin (@) b*sin?(¢) b? cos () sin (@) b2sin®(¢)
where b and grespectively represent b(x, y) and ¢(x, y).
If we have more than one fringe in the interferograms, we can use the approximation
Y. b cos (@) sin (@) ~ 0. (15)
N XN,
and
Y beosP(@)x Y. bsin’(g) mo (16)
NxxNy NxxNy
Hence, Eq. (14) can be rewritten as
1 0 1 0
0 0 1
To = ~
o'o=so~o|, o | ol amn
0O 1 0 1
According to Egs. (7), (10) and (17), we have
C ~ T D2 P8y PE D2 + RTR=LT (D2 Pr.So PT D2 + RTR =TT Bl + RTR. (18)
A 0 W22 0
0 A 0 2,02
_p 1/2 T 1/2_ 2 2T Ay
where B=Dp'/?P;.S, PI Dp'/?=0( PRIRT: o i o )
0 22,12 0 Ay

We can see that B is a real and symmetric matrix, so it can be diagonalized as PTDyP, where Dyand P are diagonal and orthogonal matrices, they
can be expressed as

A+i; 0 0 0
WA
0 0 0 0
1 0 1 0
P= /1171/(2)/131/2 (1) _/111/20/1371/2 (1) (20)

0 A,122,172 0 —3,123,71/2
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Eq. (18) can be rewritten as

C ~ T (PTDyP + PT Dy P)I'=(PF)" (Dgy + Dy ) (PT). @n
where
RTR = (P1)" (RETPT)" (RETPT)(PT) = (PT)' Dy (PI). 22)

According to Eq. (10), Eq. (4) can be rewritten as
I=0(PID'’1) + R = (OPL) DT + R. (23)

PCA is a technique from statistics for reducing an image or dataset that transforms a number of uncorrelated images into the smallest number
uncorrelated images called the principle components. Since the covariance matrix C is a real and symmetric matrix, it can be diagonalized as

c=U"DU. (24)

where U and D are orthogonal and diagonal matrices.
The principle components of the interferograms are given by

z=1u". 25

where Z is matrix with the size of N,N, X 2N, and its column vectors z, are the principle components.
According to Egs. (21) and (23), we can state that U and D correspond to PfandDQ + Dg respectively. Then, we can rewrite Eq. (25) as

z = F(Pt)" = (PT)D.'2PT + RETPT = QD /> PT + RET P (26)

where O = QP!
QO can be further calculated by

cos (0) sin (0) 0 0
N —sin (0 NG 0 0
o=0rT=(r a » o) 07 N0 Do wel( @ a) @n
0 0 —sin(@) cos(0)

where p and § are column vectors with the size of NNy, x 1whose elements are taken columnwise fromb cos(¢ + @)andb sin(¢p + 0).
According Egs. (12), (20) and (27), we can rewrite Eq. (26) as

N0 0 0 )1 o a2 0 (RETPT), !
PSR B P A1 0 ffo 1 0 202 | [(RETPT),
z=(p a » a) 0 42 0 1o a2 0 (RO PT),
0 0 0 A2)o 1 0 =i 2,72\ (RET PT),
T N T . (28)
(A2 + 251%) (RETPT),
_ 4(121/2_'_1 1/2) N (mf'TPT)z
= 13(/131/2_)“11/2) (mf—TPT)S
cj(/l 12 _ 1/2) (mePT)4
Then,
zp = p(4 % + 231 2) + (RETPT), = beos (g +0)(4,'/2 + 43'/%) + (RIT PT),
z) = q(/lzl/2 +4417%) + (RETPT), = bsin(p +0)(4,'/* + 4 1/2) + (RITPT), 29)
z3 = p(43"% = 1,1 /2) + (RETPT), = beos (g + 0)(43'/2 = 4,1/2) + (R PT) 0
zy=4(44"%* = 1,'2) + (RITPT), = bsin(p +0)(4,'/* — 1,'/?) + (RITPT),

The first and second components (z; and z,) that corresponds to the highest eigenvalues can be obtained by PCA.
Then we can obtain

z;—(RIT PT)
cos(p+0)= b(l/ll/z—_ul/zl)

2y (RET PT) (30)
sin(p + 6) = 2

(2 P31 77)

Because sin’(g + ) + cos2(¢ + 0) = 1, and we use X and Y instead of %, and z;, then Eq. (30) can be rewritten as

2 2
<X_x°) +<Y_y°> =1 31
a, a,

Note that Eq. (31) is just an ellipse equation,

a,=b(A'" 2+ 2,7%),a, = b(1,'* + 13'/%) . xg = (RETPT) .y = (RITPT) . (32)
Eq. (31) can be expanded as a general conic function:

-2- Ox 2—Y+—+yl—1_0 (33)

x ay a,? a?  a)?

Ly
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A general conic function can be also expressed by the following second order polynomial:
F=cx’+dxy+ey* + fx+gy+h. (34)

For an ellipse, Eq. (34) needs to meet the conditions of F = 0 and d? — 4ce < 0. In the following, the real phase distribution will be obtained by
the Lissajous ellipse fitting (LEF) method. It will be easy to calculate the conic coefficients of Eq. (34) by the least squares algorithm, the semi-major
amplitudea,, semi-minor amplitudea,, the center offset xpandy, can be calculated as

cg?+ef?+hd?—dfg—4dceh cg?+ef?+hd?—dfg—4dceh

a, = 2 ,a, = 2

(d2—4ce)<\/(c—e)2+d2—(c+e)> (d2—4ce)<—\/(c—e)2+d2—(c+e)>. (35)
x _2ef-dg _2cg—-df
07 42 _dce’”" T d2—4ce

Lastly, according to Egs. (30) and (31), the phase ® can be easily calculated as

X—xy @
<I>=(p+l9=tan_]< 0.1). (36)
Y_y() ay

We know that there is only a constant § between betweengpand®, which doesn’t affect the whole phase distribution, hence we can use ® to
express the tested phase distribution.

For the two step PSAs, the number of unknowns is more than that of equations, so the background intensity needs to be removed by some
methods, otherwise the phase can’t be obtained. Generally, many two-step PSAs utilize the filtering algorithm to remove the background intensity,
but when the noise is large, the filtering algorithm can’t distinguish the signal and noise, even though the noise is small, the filtering error is also
unavoidable. The proposed method can extract the phase distribution from two randomly phase shifted interferograms without background intensity
filtering. APCA can eliminate part of noise by the adjacent pixels. Although LEF can’t eliminate noise, the relatively accurate semi-major amplitudea,,
semi-minor amplitudea,, the center offset xoandy, can be calculated by the LEF process, then the background intensity can be removed by transform
the ellipse to the an approximate circle with (X — x()/a,as the x coordinate and (Y - y,)/a,as the y coordinate centered at the origin. Finally the
relatively accurate phase can be calculated.

In the following, we will introduce the process of the proposed method in detail:

1) Generate an extended matrix I with the size ofN,N, x 2N, where the nt? column is taken columnwise from the intensity of n™ phase shifted
interferogramsl,,, and 2nt™" column is taken columnwise from the adjacent pixels intensity of n phase shifted interferogramsi,+1,’;

2) calculate the covariance matrix C by equationC = I”[;

3) calculate the orthogonal matrix PI" including the eigenvectors of the covariance matrix C;

4) obtain the first and second principle components (z; and z,) which corresponds to the highest eigenvalues by Z = I(PI)7;

5) plot an approximate ellipse with z, as the x coordinate and z; as the y coordinate;

6) calculate the semi-major amplitude a,, semi-minor amplitude a,, the center offset xpandy, of the Lissajous ellipse by the LEF process;

7) calculate the phase distribution.

Theoretically, the proposed method could eliminate more noise when more adjacent pixels are integrated in the extended data matrix. In addition,
geometry of the adjacent pixels also has impact on the accuracy of result. In the following, M is the number of adjacent pixels.
For example, for M = 2, let I* be a 2N dimensional row vector defined by

I, = (L), Lh(x, ). @37

and let [ be a 4N dimensional row vector defined by

Ley= (I sy I i )= (1 069, LG, ), T (k1 ), Ly (x4, ). 38)
A data matrix [is constructed by concatenating IAx,y for every pixels vertically,

_ . . R . . R T

I= (II,I’IZ,I’""INX,lsII,ZﬂIZJ”"»INX,N),) . (39)

Eight fxyywith different M used in the simulations and experiments are expressed in the following and shown in Fig. 1.
Situation 1:M =1

L,=r,, (40)
Situation 2:M = 2

fx,y = (I*x,y’I*x+l,y)‘ (41)
Situation 3:M = 3,

Iy = (I I iry Tacry)- 2)

Situation 4:M = 5,

fx,y = (I*x,y’ I*x+l,y’ I*x—l,y’ I*x,y+1’ I*x,y—l)' (43)

Situation 5:M = 9,

7 _ * * * * * * * * *
lx,y_(l x,y’l x+l¢y’l x—l,y’l x,y+1’l x,y—l’[ x+1,y+1’1 x+l,y—1’] x—l,y+1’l x—l,y—l)' (44)
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M=9 M=13

Situation 6:M = 13,

IXA,y = (l*x,w 1*x+1,y7 [*x+1,y’ l*x—l,y’ I*X,y+l7 I 1 1

.
x+1,y-1>

(45)

* *
x,y—14 x+1,y+1>

* * * * * *
1 x—l,y+l’l X—Ly—l’[ x+2,y’1 x—2,y’] x,y+27l x,y—Z)'

Situation 7:M = 21,

7 —_ * * * * * * * *
Ix,y - (1 x.y’I x+l,y’1 xfl,y’l x,y+l’1 x,yfl’l x+l,y+l!1 x+l,y71’1 x—1,y+1°

1 xfl,yfl’l x+2,y’I X72,y’1 xﬁy+2’I x,y72’1 x+2,y+1’1 x+2,y—1°

* * * * * *
1 X72,y+l’I X72,y71!I x+1,y+2’1 xfl,y+21 x+1,y72’l xfl,y72)' (46)

Situation 8:M = 25,

T _ * * * * * * *
Ix,y - (I X,y’I X+l,y’I x—l,ysI x,y+l’I x.y—l’I x+l,y+l5I x+1,y-1>
* * * * * *
atyt b T xmtypm 1o Uiy s o Ty Ty I oyt

I*
* * * * * *

1 x+2,y—l’I x—2,y+l’I x—2,y—l’1 x+l,y+2’I x—l,y+2’I x+1,y-2>
I*

* * * *
x—l,y—Z’I x+2,y+2’I x+2,y—2’1 x—2,y+2’I x—2,y—2)' (47)

Note that the boundary of phase shifted interferograms must be ex-
tended properly so that M adjacent pixels are valid, such as I*y . N,
is out of the range of phase shifted interferograms. According to the
above eight situations, we extended the size of the phase shifted inter-
ferograms from N, X N, to (N, +4) X (N, + 4). The values of 1% and 2"
rows for the extended interferograms with the size of (N, +4) x (N y+4
are same as that of the 15 row for the original interferogram with the
size of Ny X N,,. The values of (N, + 3)h and (N, + 4)™ rows for the ex-
tended interferograms are same as that of the N, row for the original
interferogram. Moreover, the values of 3 to (N, + 2)™ rows for the ex-
tended interferograms are same as that of 1% to N, rows for the original
interferogram. Finally, the extension of the column is same as the row.

3. Simulation

To verify the effectiveness of the method proposed above, we per-
form a series of numerical simulations, and compare it with two well-
evaluated two-step random PSAs-GS and EVI. Note that, the Hilbert-
Huang pre-filtering will be performed before using GS and EVI. In the
following, all computations are performed with the CPU of Intel(R)
Core(TM) i5-8265U and the 8 GB memory, and we use the Matlab soft-
ware for coding.

Firstly, we perform APCA-LEF, GS and EVI to process two phase
shifted interferograms with the circular fringes. In the following, the

M=21

M=25

Fig. 1. A schematic diagram of different adjacent pixels, where pixels are colored by black.

tested phase is set asgp = N z(x? + »?), in which N, =5 is the fringe
number in the interferogram. Fig. 2(a) shows the theoretical phase dis-
tribution. The background intensity and modulation amplitude are set as
a;(x,y) = N, exp[-0.02(x? + y*)]land b;(x, y) = N, exp[-0.02(x? + y?)] re-
spectively. Both the fluctuation and non-uniformity of the background
intensity and modulation amplitude exist, hence, N, of the 15t and 2nd
interferograms are set as 1 and 0.95, Nj of the 15t and 2" interfero-
grams are set as 0.9 and 0.85. Moreover, we add noise generated by the
function awgn in Matlab to the phase shifted interferograms. With the
above parameters setting, two simulated phase shifted interferograms
with the size of 401 x 401, SNR of 20 dB and the phase shift of 1 rad
are generated, as shown in Fig. 2(c) and 2(d).

Fig. 3 show the phase error distributions calculated by APCA-LEF
with different M. When M = 1, APCA-LEF method returned back to the
original PCA-LEF method with no adjacent pixels involved, the extracted
phase distribution is shown in Fig. 2(b), in this situation, the RMS phase
error is largest. We can see that, for 20 dB of noise, the larger the M, the
smaller the RMS phase error is, and the RMS phase error in the situation
of M = 1 is more than 10 times of that in the situation of M = 25, that
is to say, the proposed method can suppress the effect of noise with
the adjacent pixels, and the result is remarkable. Moreover, when M is
less than 5, the RMS phase error decreases largely with the increase of
M, but when M is larger than 5, the RMS phase error decreases in a
small degree with the increase of M. Fig. 4 show the ellipses before and
after using LEF for APCA-LEF in the situation of M = 1. We can see that,
before using LEF, the approximate ellipse with X as the x coordinate and
Y as the y coordinate is not centered at the origin, after using LEF, the
ellipse was transformed an approximate circle with (X — x;)/a,as the x
coordinate and (Y - y,)/a,as the y coordinate centered at the origin, the
curve is not smooth since the noise exists, and LEF cannot remove this
effect.

In order to verify the outstanding performance of the proposed
method, we compare it with the well-evaluated two-step PSAs-GS and
EVI in the following. Fig. 5 shows the simulated results of the circular
fringes using GS and EVI. We can see that the phase error distributions
of them are similar because they both use the pre-filtering, and the fil-
tering errors are similar. Moreover, the RMS phase errors of GS and EVI
are respectively 0.1735 rad and 0.1787 rad which are larger than that
of APCA-LEF with any M except M = 1. We can get the conclusion that
APCA-LEF can obtain the higher accuracy with only two no pre-filtering
phase shifted interferograms.
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Fig. 3. The phase error distributions of the circular fringes using APCA-LEF with different M.

<102 <103 We know that two-step PSA is easily influenced by the noise, hence

5 5 we estimate the noise effect to three different methods in the following,
and different M for APCA-LEF are also studied. The SNR of noise is set
oo 0o from 20 dB to 70 dB, other parameters are same as the above simulation.
-5 -5 .
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We plot the RMS phase errors of the different levels of noises for APCA-
LEF with different M, GS and EVI, as shown in Fig. 6. Since the large
filtering error of GS and EVI, the RMS phase errors of GS and EVI are
larger than that of APCA-LEF for any level of noise except APCA-LEF
with 20dB of noise in the situation of M = 1. The RMS phase errors of
(@) (b) GS and EVI are similar for the same level of noise. When the SNR of
noise is less than 50 dB, the larger the noise, the larger the RMS phase
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Fig. 4. The ellipses before and after using LEF for APCA-LEF in the situation of
M=1.
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Fig. 6. RMS phase errors of different levels of noises for APCA-LEF with differ-
ent M, GS and EVIL.
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Fig. 7. RMS phase errors of different M for APCA-LEF.

error of GS and EVI is, and when the SNR of noise is more than 50 dB,
the RMS phase error is ruleless because the effect of filtering error is
larger than that of noise. For APCA-LEF, the larger the noise, the larger
the RMS phase error is for any M. Moreover, the RMS phase errors of
APCA-LEF are relatively small and stable when the SNR of noise is more
than 50 dB, in this situation, the main phase error is caused by the non-
uniform and variable background intensity, modulation amplitude and
the intrinsic error of the algorithm.

In order to study the effect of different M to APCA-LEF, we plot the
RMS phase errors of different M, as shown in Fig. 7. We find a strange
phenomenon that, only when the SNR of noise is 20dB, the larger the
M, the smaller the RMS phase error is, for other levels of noises, when
M = 2, the RMS phase error is largest. When M = 2, there is a tilt er-
ror caused by the asymmetric geometry of the adjacent pixels, for other
values of M, the adjacent pixels taken part in the APCA process are all
symmetric, as shown in Fig. 1. When the SNR of noise is 20dB, the ef-
fect of noise and background intensity and modulation amplitude error
called systematic error is larger than that of the tilt error, but when the
SNR of noise is larger than 30 dB, the effect of the systematic error is
less than that of the tilt error. We need to avoid the situation of M=2
because we don’t know the SNR of noise in the practical situation. In
addition, when the SNR of noise is 30 dB, the RMS phase error is de-
creasing with the increase of M except M = 2 and M = 25, the RMS
phase error of M = 25 is only a little larger than that of M = 21 since the

w w
00 00
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Fig. 8. The RMS phase errors of APCA-LEF, GS and EVI with different phase
shifts.

effect of the adjacent pixels error is a little bigger than that of systematic
error. Moreover, when the SNR of noise is more than 40 dB, the RMS
phase error is decreasing with the increase of M when M is less than
5 except M = 2, and when M is more than 5, the RMS phase error is
increasing with the increase of M since the effect of the adjacent pixels
error is larger than that of the systematic error. From the above anal-
ysis, we can conclude that, when the SNR of noise is less than 30 dB,
the best value of M is 21 or 25, when the SNR of noise is more than
40 dB, the best value of M is 5. Although the best M is different for the
different levels of noises, we need to choose a relatively appropriate M
to fit all of the situations since we don’t know the SNR of noise in the
practical situation. When the SNR of noise is less than 30 dB, the RMS
phase errors in the situation of M = 5 are relatively smaller, hence we
choose 5 as the most appropriate value of M for all the levels of noises.

To analyze the effects of different phase shifts to three different meth-
ods, we calculate the RMS phase errors of APCA-LEF, GS and EVI with
different phase shifts and SNR of 20 dB, and we choose the situation
of M = 5 for APCA-LEF in the following analysis, the results are shown
in Fig. 8. For GS and EVI, the RMS phase errors are irrelevant to the
different phase shifts since the effect of the filtering error is more larger
than that of the different phase shifts. For APCA-LEF, the RMS phase
errors are relevant to the different phase shifts, we found that the far-
ther away the phase shift from 0 rad and = rad, the smaller the RMS
phase error is, hence, if the high accuracy is required, the phase shift
would be best to far away from 0 rad and z rad. Moreover, the range of
phase shift for APCA-LEF which is between 0.2 rad and 2.9 rad is larger
than that for GS and EVI which is between 0.3 rad and 2.6 rad. Last
but not least, the accuracy of APCA-LEF is higher than that of GS and
EVI for the whole range of phase shift since APCA-LEF uses the original
phase shifted interferograms rather than phase shifted interferogram’s
after filtering, and the adjacent pixels taken part in APCA also improve
the accuracy of APCA-LEF.

To verify the robustness of the proposed method, we also simulate
the straight and complex fringes, the comparisons of APCA-LEF, GS
and EVI are also performed in the following. For the straight fringes,
the theoretical phase is set asp = 5zx, and for the complex fringes, the
phase is set as ¢ = 5wx + 5peaks(401). The SNR of noise is 20 dB, and the
phase shift is 1 rad, other parameters are same as the circular fringes.
Fig. 9 shows the simulated phase distributions and two phase shifted

=100 2 =100 2
£ £
200 ) 200 ;
> 300 > 300
400 0 400 0
200 400 200 400

X(pixel)

(¢)

X(pixel)

(d)

Fig. 9. Simulated phase distributions and two phase shifted interferograms with the straight fringes. (a) The theoretical phase distribution, (b) the phase distribution
extracted by APCA-LEF in the situation of M = 1, (c) and (d) the first interferogram and the second interferogram.
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Fig. 10. The phase error distributions of the straight fringes using APCA-LEF with different M.
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Fig. 11. Simulated results of the straight fringes using GS and EVI. (a) and (b) The phase distributions extracted by GS and EVI, (c) and (d) the phase error distributions
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Fig. 12. Simulated phase distributions and two phase shifted interferograms with the complex fringes. (a) The theoretical phase distribution, (b) the phase distribution
extracted by APCA-LEF in the situation of M = 1, (c) and (d) the first interferogram and the second interferogram.

interferograms with the straight fringes, and Figs. 10 and 11 present the
simulated results of the straight fringes using APCA-LEF, GS and EVI.
The simulated phase distributions and two phase shifted interferograms
with the complex fringes are drawn in Fig. 12, we can see that the inter-
ferograms with the complex fringes are asymmetrical, and the simulated
results of APCA-LEF, GS and EVI are shown in Figs. 13 and 14. Because
the interferograms with the straight and circular fringes are both sym-
metrical, for the straight fringes, we can get the same conclusion as the
circular fringes. The larger the M, the smaller the RMS phase error is
for APCA-LEF with different M. The RMS phase errors of GS and EVI
are respectively 0.1423 rad and 0.1428 rad which are larger than that

of APCA-LEF with any M except M = 1. For the complex fringes, the
conclusion is a little different from the circular and straight fringes. For
APCA-LEF, when M is less than 13, the larger the M, the smaller the
RMS phase error is. However, the RMS phase errors in the situation of
M =21 and M = 25 are larger than that of M =5, M =9 and M = 13 since
the interferograms with the complex fringes are asymmetrical, large M
leads to the larger RMS phase error. The RMS phase errors of GS and
EVI are respectively 0.2099 rad and 0.2509 rad which are larger than
that of APCA-LEF with any M. Moreover, for both straight and complex
fringes with 20 dB of noise, when M = 5, the RMS phase errors are both
relatively smaller, so we can also choose 5 as the most appropriate value
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Fig. 13. The phase error distributions of the complex fringes using APCA-LEF with different M.
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Fig. 14. Simulated results of the complex fringes using GS and EVI. (a) and (b) The phase distributions extracted by GS and EVI, (c) and (d) the phase error

distributions of GS and EVI.

Table 1
Computational time of APCA-LEF with different M, GS and EVL.
Time(s) M=1 M=2 M=3 M=5 M=9 M=13 M=21 M=25 GS EVI
Circular fringes APCA 0.134 0.137 0.144 0.150 0.186 0.203 0.284 0.302 - -
LEF 0.900 0.902 0.918 0.899 0.901 0.915 0.912 0.923 - -
Total 1.034 1.039 1.062 1.049 1.087 1.118 1.196 1.225 3.032 3.071
Straight fringes APCA 0.117 0.133 0.142 0.150 0.174 0.198 0.253 0.315 - -
LEF 0.901 0905 0.899 0869 0.881  0.890 0.887 0.880 - -
Total 1.018 1.038 1.041 1.019 1.055 1.088 1.140 1.195 2.446 2.385
Complex APCA 0.123 0.129 0.143 0.144 0.176 0.192 0.270 0.300 - -
fringes LEF 0.892 0.903 0.892 0.872 0.905 0.896 0.882 0.905 N N
Total 1.015 1.032 1.035 1.016 1.081 1.088 1.152 1.205 2434 2.390

of M for any kinds of fringes. Although the conclusion of the complex
fringes is a little different from that of the circular and straight fringes,
we can also get the conclusions that APCA-LEF, GS and EVI are all ef-
fective for the circular, straight and complex fringes, and APCA-LEF can
get the higher accuracy with appropriate M than GS and EVI.

We also study the computational time of three different methods
with different fringes, as shown in Table 1. Firstly, we study the compu-
tational time of APCA-LEF, we know that there are 2 steps for APCA-LEF,
so we respectively calculate the computational time of every step with
different M. Although LEF process costs more time than APCA process,

it avoids the pre-filtering which will cost more time and decrease the ac-
curacy. For APCA process, the larger the M, the more the computational
time is. Moreover, LEF process is a fitting process, its computational
time depends on not only the number of the pixels, but also the fitting
difficulty. The less the noise, the easier the fitting process is, for the sit-
uation of M = 5, most of the noise is eliminated by the APCA process,
so LEF process costs less time than any other situations. For the total
time of APCA-LEF, the larger the M, the more the computational time
is except M = 5, when M is larger than 9, the computational time is
relatively long. Because the situation of M = 5 costs relatively less time
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Fig. 16. The differences between the reference and phase distributions extracted by APCA-LEF with different M.

and obtain relatively higher accuracy, 5 is the most appropriate value
of M. Lastly, we also compute the computational time of GS and EVI,
they cost more time than APCA-LEF for any situation since the filtering
process costs more time. From the above simulations, we can conclude
that, APCA-LEF has more outstanding performance in regard to the dif-
ferent levels of noises, different phase shifts, different kinds of fringes
and computational time than GS and EVI.

4. Experiment

To verify the performance of the proposed method, the experiment
is performed to do the phase retrieval by the proposed method, GS and
EVI. Four phase shifted interferograms with the circular fringes were
extracted, and the phase shifts are respectively 0, z/2, = and 3z/2, the
size of interferograms is also 401 x 401 which is same as the simula-
tion. Moreover, the phase extracted by standard 4-step PSA is set as the
reference phase due to its high accuracy. Fig. 15(a) shows the reference
phase distribution, and the phase distribution extracted by APCA-LEF in
the situation of M = 1 is drawn in Fig. 15 (b), and the first two phase
shifted interferograms are shown in Figs. 15(c) and (d). The differences
between the reference and phase distributions extracted by APCA-LEF
with different M are shown in Fig. 16. And we plot the curve of RMS
phase errors with different M for APCA-LEF, as shown in Fig. 17. From

0.15 RMS phase error of different M

DAPCA-LEF

rad

0.05
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9

5
M

21 25

Fig. 17. RMS phase errors of different M for APCA-LEF.
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Fig. 18. The ellipses before and after using LEF for APCA-LEF in the situation
of M=1.
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phase distributions extracted by GS and EVI.

Table 2

Computational time of APCA-LEF with different M, GS and EVI.

Time(s) M=1 M=2 M=3 M=5 M=9 M=13 M=21 M=25 GS EVI
APCA 0.131 0.135 0.141 0.142 0.178 0.205 0.284 0.302 - -

LEF 0.900 0.900 0.908 0.728 0.902 0.899 0.912 0.923 - -
Total 1.031 1.035 1.049 0.87 1.08 1.104 1.196 1.225 2.868  2.926

Figs. 16 and 17, we can conclude that, the RMS phase error in the situ-
ation of M = 2 is largest since the effect of tilt error is larger than that
of the systematic error, moreover, the RMS phase error in the situation
of M = 5 is least. When M is between 1 and 5, the larger the M, the less
the RMS phase error is except for M = 2, however, when M is between
5 and 25, the RMS phase error is increasing with the increase of M ex-
cept M = 25. The experiment is similar to the simulation with the SNR
of 40 dB except M = 25, the conclusion is not absolutely same to the
simulation because the practical situation including the noise distribu-
tion, the background intensity and modulation amplitude distribution
may more complex. The ellipses before and after using LEF are plotted
in Fig. 18. Fig. 19(a) and (b) plot the phase distributions extracted by
GS and EVI, and the differences between the reference and phase dis-
tributions extracted by GS and EVI are shown in Fig. 19(c) and (d). We
can see that, the RMS phase errors of GS and EVI are similar and larger
than that of APCA-LEF with any M.

Further, we study the computational time of APCA-LEF, GS and EVI,
as shown in Table 2. We can get the same conclusion as the simula-
tion, for APCA process, the larger the M, the more the computational
time is, but for LEF process, the situation of M = 5 costs the least time.
For the total time, the larger the M, the more the computational time
is except M = 5, the situation of M = 5 costs less time than all other
situations. Moreover, GS and EVI cost more time than APCA-LEF with
any M. Hence, we can say that, when M = 5, APCA-LEF can obtain the
high accuracy and cost less time simultaneously, 5 can be chosen as the
most appropriate value of M.

After the simulation and experiment, we verify that, the proposed
APCA-LEF without pre-filtering can obtain relatively accurate result
with less computational time by only two interferograms.

5. Conclusion

In this paper, we present a PSA based on advanced principal com-
ponent analysis and Lissajous ellipse fitting. APCA doesn’t need to sub-
stract or filter the mean-background intensity, the adjacent pixels are
taken part in the APCA process to increase the accuracy, and the LEF
process is performed after APCA process to extract the real phase distri-
bution. We have compared APCA-LEF with well-evaluated GS and EVI
by the simulated and experimental data. The proposed method can ex-
tract highly accurate phase with less computational time. It removes the
restriction that PCA needs more than three interferograms, it only needs
two randomly phase shifted interferograms. Moreover, if the higher ac-

curacy is requested, it’s best to choose a phase shift which is far away
from O rad and = rad. Lastly, 5 is the most appropriate value of M in
regard to different levels of noises and computational time. The simula-
tions and experiments demonstrate the validity of the proposed method.
In summary, this proposed method is a power tool for the phase extrac-
tion with random phase shift.
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