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The purpose of polarization calibration is to measure the response matrix of an instrument and the deviation of
noise to correct for subsequent flight measurements. The precision, however, is relative to the states of incident
light. We investigate the influence of partially polarized light, in the presence of signal-independent additive noise
or signal-dependent Poisson shot noise. We obtain the estimation precision for different numbers of the polari-
zation state generators and analyzers in linear Stokes measurements. To reduce the influence of incident light, we
suggest that the numbers of the polarization state generators and analyzers should be greater than or equal to 4. In
particular, for an instrument including three polarizers oriented at 0◦, 60◦, and 120◦, estimation precision is found
to be dependent on the response matrix and incident polarization states. ©2020Optical Society of America

https://doi.org/10.1364/AO.403647

1. INTRODUCTION

Polarization imaging technology is generally used for noncon-
tact measurements in many fields related to physics, including
astronomy [1–4], biology [5–7], medicine [6,8], and the mili-
tary field [9]. Astronomical observation, especially research for
the Sun, holds a dominant position, and polarimetry is a pow-
erful tool for the interpretation of the role of the coronal plasma
in the energy transfer process from the inner parts of the Sun to
outer space. Especially for a space-based polarimetric instru-
ment, the three first elements of the Stokes vector are sufficient,
with circular polarized light considered negligible [10]. A linear
polarimetric instrument based on time-division containing
three polarizers oriented at 0◦,+60◦, and−60◦ cannot be used
to realize minimization and equalization of the noise variance
[11]. Moreover, if an imaging polarimeter with a large aperture
is calibrated, the edge of the incident light produces a degree of
linear polarization (DoLP) of at least 1%–5%, which influences
the calibration precision for different instruments and con-
figurations. In the past, there has been no analytical method of
precision in the presence of Gaussian and Poisson noise. The
minimum estimation variance has been studied widely recently
[12–17], and it is possible to search the configurations that are
stable to incident light.

Reference [18] has found that the distribution of the optimal
analysis states is described by a regular polygon. They have
established the equivalence of an optimization based on equally

weighted variance and the condition number κ of the associated
response matrix. In recent years, Goudail proposed a method
that can analyze the estimation precision in the presence of
Gaussian and Poisson noise [19] and provided closed-form
expressions of the estimation variance matrix. They also pro-
posed a set of polarization states depending on the observed
Mueller matrix only through its intensity reflectivity, not its
other polarimetric properties in the full polarization frame [20].
Reference [12] has derived the optimal reference polarization
states, and the analytical results obtained were verified by the
simulations and experiments.

By considering the linear polarization calibration, we obtain
the estimation variances for the response matrix; the opti-
mal configurations that can minimize and equalize the noise
variance are based on the angles satisfying uniform distribu-
tion from 0◦ to 180◦ [18,21,22]. Moreover, the closed-form
expressions for the estimation precision for different incident
polarization states are derived, and the estimation variance can
exhibit the influence of incident polarization states and the
number of measurements. The results show that the numbers of
polarization state generators (PSGs) and analyzers employed for
linear polarization calibration should be greater than or equal to
4. If the number of generators is 4 and the number of analyzers is
3, the estimation precision is dependent on the response matrix
and incident polarization states. We verify this conclusion with
Monte Carlo simulations and experiments.
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The paper is organized as follows: In Section 2, we describe
the linear Stokes calibration and summarize the configura-
tions that optimize the numbers of PSGs and polarization state
analyzers (PSAs). Then, we analyze the influence of the inci-
dent polarization states in the presence of two types of noise.
In Section 3, we present the Monte Carlo simulations for the
configurations above. The experimental results, discussions and
systematic errors for the linear Stokes calibration are presented
in Section 4. Finally, we conclude this paper in Section 5.

2. ESTIMATION PRECISION FOR LINEAR
POLARIZATION CALIBRATION

A. Calibration Model of Incident Light

The Mueller matrix used for linear polarization does not con-
sider the circular polarization, and we use the sub-matrix of
Mueller matrix that has dimensions 3× 3 as

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (1)

The intensities acquired from source are given by

I = I0 B M AT
S . (2)

The formulation is composed of a light source of intensity I0, a
PSG, which illuminates the optical system, a matrix M, which
represents the response of the optical system to any incident
linear polarization states, and a PSA that is used to analyze the
polarization states of the light generated by the instrument.
A detector is used to collect the light exiting from the PSA in
a particular direction. I is a NB × NA matrix containing the
intensities, which depends on the measurements obtained from
the combination of PSA and PSG. The normalized Stokes
vector of incident light before PSG is S = [1; S1; S2], and the
DoLP is

√
S2

1 + S2
2 . AT

Si can be obtained as

AT
Si = Ai

 1
S1

S2

 . (3)

Ai represents the linear polarizer sub-matrix of i th measure-
ment, and we assume that the polarizer is perfect to simplify the
calculations as [19,20]

Ai =
1

2

 1 cos 2θi sin 2θi

cos 2θi cos22θi sin 2θi cos 2θi

sin 2θi sin 2θi cos 2θi sin22θi

 , (4)

where θ represents the angles of polarizer in measurements, and
θi = θ0 + (i − 1)× 180◦/NA, and i varies from 1 to NA. We
choose this configuration with θ0 = 0◦. The matrix B , which
has dimensions NB × 3, is stacked row-wise by the first row of
analyzer matrix. AT

Si can be rewritten by substituting Eq. (4) into
Eq. (3),

AT
Si =

 1+ S1 cos 2θi + S2 sin 2θi

cos 2θi + S1cos22θi + S2 sin 2θi cos 2θi

sin 2θi + S1 sin 2θi cos 2θi + S2sin22θi

 , (5)

where i ∈ [1, NA]. We can obtain AT
S , which is a combination

of AT
Si,

AT
S =

(
AT

S1, AT
S2, · · · , AT

S NA

)
, (6)

and the matrix AT
S has the dimensions 3× NA.

B. Gaussian Noise

To obtain the relationship between I and M, Eq. (2) has been
rewritten as follows [20,23]:

VI = [B ⊗ AS ]VM, (7)

where ⊗ denotes the Kronecker product [11], VM =

[(VM)1 (VM)2 · · · (VM)9] is a nine-dimensional vector, and
VI = [(VI )1 (VI )2 · · · (VI )NA NB ] is a NA × NB -dimensional
vector. VM and VI are obtained by reading the matrices M and I
in the lexicographic order, respectively.

The influences of the incident polarization states are inves-
tigated on the optimal calibration methods with additive
Gaussian noise and Poisson shot noise. The pseudo-inverse
method is used to describe the estimator from Eq. (7),

VM = P VI , (8)

with

P = ([B ⊗ AS ]
T
[B ⊗ AS ])

−1
[B ⊗ AS ]

T , (9)

where P is the pseudo-inverse of the 9× NA NB -dimensional
matrix. Based on the properties of the Kronecker product, the P
matrix is rewritten as

P = [(G B )
−1
⊗ (G AS )

−1
][B ⊗ AS ]

T , (10)

where GU =U TU , with U = AS or B . We assume that addi-
tive Gaussian noise is zero-mean value with variance σ 2. Its
covariance matrix can be determined by [20]

0VM =
〈
VMVT

M

〉
− 〈VM〉

2
= P0VI P T , (11)

where 〈·〉 denotes ensemble averaging. 0VI is the covariance
matrix of VI , and the covariance matrix 0VI = σ

2 I , where I is
the NA NB × NA NB identity matrix. In this case, the covariance
matrix of the response matrix is

0VM = σ
2
[(G AS )

−1
⊗ (G B )

−1
]. (12)

The optimal sets of generator and analyzer polarization states
form a regular polygon, and we will use the configurations later.
If the incident Stokes vector S = [1; 0; 0], G AS can be obtained
from Eq. (6) as [18]

G AS (B) =
NA(B)

4
diag(1, 0.5, 0.5), (13)

where AS(B) has NA(B) × 3 dimensions. Indeed, for
NA(NB )≥ 3, we substitute Eq. (13) into Eq. (12), and we
can obtain 0VM . 0VM is diagonal, and its diagonal coefficients,
which represent the estimation variances of each coefficient of
the response matrix, are

VAR[M]gau
=

16

NA NB
σ 2

 1 2 2
2 4 4
2 4 4

 . (14)
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For the readout noise of a CCD sensor, it is easily seen in
Eq. (14) that the estimation variances for the linear Stokes
parameters increase linearly with 1/NA NB . In other words,
the estimation precision increases with the number of mea-
surements. It is easy to understand that the larger the number
of measurements, the larger the amount of redundant data
available to reduce the estimation variance [22,24,25]. If the
variance of the noise is proportional to the measurement time,
the variance of the matrix is independent of the number of
measurements NA NB .

Next, our goal is to investigate the influence of the inci-
dent polarization states and explore the configurations that
minimize the impact of incident polarization states on the
linear polarization calibration in the presence of Gaussian
noise. The configurations are minimized and equalized for
NA(NB )≥ 3 with Gaussian noise. However, the elements of
the matrix change substantially if the incident light is polarized
partially especially for the configuration of NA = 3, NB = 3. It
is easily obtained by using Eq. (6) for different incident Stokes
parameters S1 and S2 as follows:

NA = 3: G AS =
3

4

 1+ 1
2 S2

1 +
1
2 S2

2
1
4 S2

1 −
1
4 S2

2 + S1 S2 −
1
2 S1S2

1
4 S2

1 −
1
4 S2

2 + S1
1
2 +

3
8 S2

1 +
1
8 S2

2 +
1
2 S1

1
4 S1S2 −

1
2 S2

S2 −
1
2 S1S2

1
4 S1S2 −

1
2 S2

1
2 +

1
8 S2

1 +
3
8 S2

2 −
1
2 S1

 , (15)

NA = 4: G AS =

1+ 1
2 S2

1 +
1
2 S2

2 S1 S2

S1
1
2 (1+ S2

1) 0
S2 0 1

2 (1+ S2
2)

,
(16)

NA ≥ 5: G AS =
NA

4

×

1+ 1
2 S2

1 +
1
2 S2

2 S1 S2

S1
1
2+

3
8 S2

1 +
1
8 S2

2 0
S2 0 1

2+
1
8 S2

1 +
3
8 S2

2

 .

(17)

The following relations have been used to derive Eqs. (15)–(17):

NA∑
n=1

cos 2θi =

NA∑
i=1

sin 2θi =

NA∑
i=1

sin 2θi cos 2θi = 0,

NA∑
i=1

cos22θi =

NA∑
i=1

sin22θi =
NA

2
, (18)

and

NA = 3:
NA∑
i=1

cos32θi sin 2θi =

NA∑
i=1

cos 2θi sin
32θi = 0,

NA = 4:
NA∑
i=1

cos42θi =

NA∑
i=1

sin42θi = 2,
NA∑
i=1

cos22θi sin
22θi = 0,

NA ≥ 5:
NA∑
i=1

cos42θi =

NA∑
i=1

sin42θi =
3NA

8
,

NA∑
i=1

cos22θi sin
22θi =

NA

8
. (19)

The covariance matrix 0VM for different polarization states is
obtained by substituting Eqs. (13) and (15)–(17) in Eq. (12),

VAR[M]gau =
16

NA NB
σ 2

 VMg 1 VMg 2 VMg 3

2V Mg 1 2V Mg 2 2V Mg 3

2V Mg 1 2V Mg 2 2V Mg 3

 .

(20)
The elements are as follows:

NA = 3, NB ≥ 3:VMg 1 ≈ 2/[2− 3(S2
1 + S2

2)]

VMg 2 ≈ [3(S2
1 − S2

2)− 4S1 + 4]/[(2− 3(S2
1 + S2

2)]

VMg 3 ≈ (4+ 2S2
1 + 3S2

2 − 4S1)/[3(S2
1 − S2

2)− 4S1 + 2]
,

(21)

NA = 4, NB ≥ 3:VMg 1 ≈ 2(S2
1 + S2

2 + 1)/[2− (S2
1 + S2

2)]

VMg 2 ≈ 2(S2
1 − S2

2 + 2)/[2− (S2
1 + S2

2)]

VMg 3 ≈ 2(S2
2 − S2

1 + 2)/[2− (S2
1 + S2

2)]

, (22)

NA ≥ 5, NB ≥ 3:VMg 1 ≈ 2(S2
1 + S2

2 + 1)/[2− (S2
1 + S2

2)]

VMg 2 ≈ [3(S2
1 − S2

2)+ 4]/[2− (S2
1 + S2

2)]

VMg 3 ≈ [2(S2
2 − S2

1)+ 1)]/[2− (S2
1 + S2

2)]

. (23)

The variance matrix only includes the value that is below the
third power of S1(S2) or its product due to the DoLP of incident
light<0.1 in practice. The difference between approximate cal-
culation and theoretical variance is less than 2‰ of theoretical
value, which proves the validity of derivation of Eqs. (21)–(23).

According to Eq. (20), the variances on the second and third
rows are twice that on the first row, and the incident Stokes
parameters S1 and S2 have the same proportion on influ-
ence for the same column. For the configurations of NA = 3,
NB ≥ 3, the estimation variances of different incident polari-
zation states are normalized by the variance matrix coefficient
16σ 2/(NA NB ) shown in Fig. 1. For the first column of vari-
ance matrix, the variance always increases with S1 and S2 from
Eq. (21). In contrast, the estimation variance on the second and
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Fig. 1. Estimation variance on (a) the second column V Mg 2

and (b) the third column V Mg 3 for the configuration of NA = 3,
NB ≥ 3 in the presence of Gaussian noise. S1 ∈ [−0.1,+0.1] and
S2 ∈ [−0.1,+0.1] are considered. Both variance maps are on the same
color bar.

third columns depend on the sign of S1. With the increase of S1,
the variances on the second column are decreased as in Fig. 1(a),
and those on the third column are increased as in Fig. 1(b). On
the contrary, the variances on the second column are decreased
while those on the third column are increased with the increase
of absolute S2.

The estimation variances are normalized by the variance
matrix coefficient 16σ 2/(NA NB ) for the configurations of
NA = 4, NB ≥ 3 (top row) and NA ≥ 5, NB ≥ 3 (bottom row)
shown in Fig. 2. It can be easily seen that the variances on the
first column increase with S1 and S2 from Eqs. (22) and (23).
The configurations of NA = 4, NB ≥ 3 have no cross talk. In
other words, S1 only influences the variances on second col-
umn in Fig. 2(a) while S2 only influences the third column in
Fig. 2(b). Moreover, the variances on the second/third column
are increased with the absolute value of S1/S2. In contrast, for

the configurations of NA = 5, NB ≥ 3, S1 and S2 have influence
on all elements of variance matrix as in Figs. 2(c) and 2(d).

C. Poisson Noise

Let us consider that the measurements are corrupted by Poisson
noise. We use property of Poisson noise that its variance is equal
to its mean value, and the diagonal of the covariance matrix0VI

as [20]

∀n ∈ [1, NA NB ], (0VI )nn = 〈VI 〉 =

16∑
i=1

[B ⊗ AS ]ni[VM]i .

(24)
It is easy to rewrite the diagonal element of the matrix 0VM by
substituting Eq. (24) in Eq. (11),

(0VM )ii =

16∑
j=1

Qij[VM] j , (25)

where Q is a 9× 9 matrix having the following expression
as [20]

Qij =

NA NB∑
n=1

(Pin)
2
[B ⊗ AS ]nj. (26)

It can be seen that Q represents the influence of the element
M11−M33 of response matrix on variance matrix, and column
of Q is the variance value of M11−M33. If the Stokes vector of
incident light is [1;0;0], after cumbersome, but elementary,
computations, one obtains the following expressions of the
covariance matrix that depend on the numbers of measurements
NA, NB by substituting Eqs. (6) and (13) into Eq. (25):

Fig. 2. Estimation variance for the configuration of NA = 4, NB ≥ 3 on (a) the second column V Mg 2, (b) the third column V Mg 3, and that for the
configuration of NA ≥ 5, NB ≥ 3 on (c) the second column V Mg 2, (d) the third column V Mg 3 in the presence of Gaussian noise. S1 ∈ [−0.1,+0.1]
and S2 ∈ [−0.1,+0.1] are considered. All variance maps are on the same color bar.
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NA = 3, NB = 3: VAR[M]poi
=

4

9
I0

M11

 1 2 2
2 4 4
2 4 4



+M12

0 1 −1
0 2 −2
0 2 −2

+M21

 0 0 0
1 2 2
−1 −2 −2



+M22

 0 0 0
0 1 −1
0 −1 1

 ,
(27)

NA ≥ 4, NB = 3: VAR[M]poi
=

4

3NA
I0

M11

 1 2 2
2 4 4
2 4 4



+ M21

 0 0 0
1 2 2
−1 −2 −2

 ,
(28)

NA ≥ 4, NB ≥ 4: VAR[M]poi
=

4I0 M11

NA NB

1 2 2
2 4 4
2 4 4

. (29)

NA = 3, NB = 3:


VMp4 ≈ (2S1 + S2

2 − S2
1)/(−4+ 12S2

1 + 12S2
2)

VMp5 ≈ (6S1 + 7S2
1 + 13S2

2 − 4)/(−4+ 12S2
1 + 12S2

2)

VMp6 ≈ (−14S1 + 6S2
1 − 9S2

2 + 4)/(4− 16S1 + 28S2
1 − 12S2

2)

, (32)

Mij represents the value of the response matrix seen in Eq. (1). It
is easily seen from Eqs. (27)–(29) that the variances depend on
the reflectivity of optical system. The configuration of NA = 3,
NB = 3 has four terms of response matrix M11, M12, M21, and
M22 from Eq. (27). Obviously, M22 seriously influences on
the estimation precision because the diagonal element of the
response matrix is approximately 1 or−1. In contrast, the con-
figurations of NA ≥ 4, NB = 3 have two terms M11, M21 from
Eq. (28), which means that these configurations are less sus-
ceptible to the elements of response matrix compared with the
configuration of NA = 3, NB = 3. The variances only depend
on the measured response matrix only through its intensity
reflectivity M11 term for configurations of NA ≥ 4, NB ≥ 4
from Eq. (29). Compared with the configurations of NA ≥ 4,
NB ≥ 4, the configuration of NA ≥ 4, NB = 3 must ensure
M21 close to 0, which can minimize and equalize the estimation
variances. For an instrument based on three polarizers oriented
at 0◦, 60◦, 120◦, it must be noted that the optical system is
optimized as much as possible to reduce the impact of M21.

Next, let us consider that 0VM is influenced by different
incident Stokes parameters S1 and S2. M11 and M22 terms close
to 1 have large influence on estimation variance in practice. In
contrast, M12, M21 terms are close to zero, and the influences
of them are far less than M11, M22 terms. Therefore, we only
investigate the variation of variance matrix of M11, M22 terms
for different incident polarization states. The variance matrix
only includes the value that is below the third power of S1(S2) or

its product. It can be rewritten by substituting Eqs. (15)–(17) in
Eq. (25) as

VAR[M]poi =
4I M11

NA NB

 VMp1 VMp2 VMp3

2V Mp1 2V Mp2 2V Mp3

2V Mp1 2V Mp2 2V Mp3



+
4I M22

NA NB

 0 0 0

VMp4 VMp5 VMp6

−V Mp4 −V Mp5 −V Mp6

 ,
(30)

and the elements are as follows:

NA = 3, NB ≥ 3:
VMp1 ≈ 2(1− S1 − S2

2)/(2− 2S1 − S2
1 − 3S2

2)

VMp2 ≈ (4− 6S1 + 3S2
1 − 5S2

2)/(2− 2S1 − S2
1 − 3S2

2)

VMp3 ≈ (4− 6S1 + 3S2
1 − 3S2

2)/(2− 4S1 + 3S2
1 − 3S2

2)

,

(31)

and if

and if NA = 3, NB > 3, the elements (V Mp4, V Mp5, V Mp6)
of variance matrix of M22 are equal to zero,

NA ≥ 4, NB ≥ 3:


VMp1 ≈ 2/(2− S2

1 − S2
2)

VMp2 ≈ (1− S2
2)/(1− S2

1 − S2
2)

VMp3 ≈ (1− S2
1)/(1− S2

1 − S2
2)

,

(33)
and if

NA = 4, NB = 3:


VMp4 ≈ S1/2

VMp5 ≈−2S1

VMp6 ≈ 0

, (34)

and if

NA > 4, NB = 3:
V Mp4 ≈ (2S1 + S2

1 − S2
2)/[4(1− S2

1 − S2
2)]

V Mp5 ≈−S1/[2(1+ S2
1 − S2

2)]

V Mp6 ≈ [3(2S1 + S2
2 − S2

1)]/[4(1+ S2
1 − S2

2)]

, (35)

and if NA ≥ 4, NB ≥ 4, the elements (V Mp4, V Mp5, V Mp6)
of variance matrix of M22 are equal to zero. We also have used
the relations of Eqs. (18) and (19) to derive Eqs. (30)–(35). The
difference for the variance matrix of M11 term between approxi-
mate calculation and theoretical results is less than 3.0‰ of
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Fig. 3. Estimation variance of the configuration of NA = 3, NB = 3 with (a) V Mp1, (b) V Mp2, (c) V Mp3 for M11 term and (d) V Mp4, (e) V Mp5,
(f ) V Mp6 for M22 term in the presence of Poisson noise. S1 ∈ [−0.1,+0.1] and S2 ∈ [−0.1,+0.1] are considered.

theoretical value for the configurations of NA ≥ 3, NB NA ≥ 3,
and the difference for M22 is less than 4.0‰ except 2.2% for
V Mp4 of the configurations of NA ≥ 4, NB = 3. Therefore,
Eqs. (31)–(35) are valid if S1, S2 ∈ [−0.1, 0.1].

The estimation variances of M11 and M22 terms for different
incident polarization states in the presence of Poisson noise are
normalized by the variance matrix coefficient 4I M11/NA NB

and 4I M22/NA NB shown in Fig. 3. For the configuration of
NA = 3, NB = 3, the variances of M11 terms on the first column
are increased with absolute S1 and S2 as in Fig. 3(a) while the
variances on the second and third column have similar but
less influence with those on the second and third column for
Gaussian noise at the same configuration shown in Figs. 3(b)
and 3(c). Considering the variance matrix of M22 term, the
elements V MP 4, V MP 5, and V MP 6 are decreased with the
increase of S1 and absolute S2 shown in Figs. 3(d)–3(f ). It must
be noted that the variation trends are opposite for the variance
between the second row and the third row due to the negative
sign of the third row from Eq. (30).

In contrast, all variances of M11 term are increased with abso-
lute S1 and absolute S2 for the configuration of NA = 4, NB = 3
as in Figs. 4(a)–4(c). It is clear that, for V MP 4 or V MP 5 of M22

term, the variance increases linearly with S1/2 or −2S1 from
Eq. (34), as shown in Figs. 4(d) and 4(e). According to Eqs. (34)
and (35), for the configuration of NA > 4, NB = 3, the Stokes
parameters S1 and S2 have less influence on variance matrix
of M22 terms compared with the configuration of NA = 4,
NB = 3. One must be cautious to select the configuration of
NA ≥ 4, NB = 3, and the precision of this configuration is
susceptible to incident polarization states due to the variance
matrix of M22 term. Moreover, the variations on variance for the

configuration of NA ≥ 4, NB ≥ 4 are small because they are only
influenced by M11 compared with other configurations shown
by Eq. (33). When we superpose variance matrix of M11 and
M22 terms, the total variance matrix will be obtained. We will
illustrate this point in the simulations.

For the configuration of NA = 4, NB = 3, if the Stokes
parameters S1 and S2 of incident light are approximately equal
to 0, the incident light has less influence on estimation variance
matrix, but we need to consider the influence of M21 terms seen
Eq. (28). However, with the increase of Stokes parameters S1

and S2 of incident light, the variations due to incident polariza-
tion states on estimation variance are generally increased, and
the influence of incident polarization states for configuration
of NA > 4, NB = 3 is less than the one for configuration of
NA = 4, NB = 3. Moreover, different polarization states can-
not influence the estimation variance matrix of M22 term for
configuration of NA ≥ 4, NB ≥ 4. Combined with the above
analysis, we can come to the following conclusion: the con-
figurations of NA ≥ 4, NB ≥ 4 are optimal to minimize the
influences of incident light and only depend on the reflectivity
of the material.

3. MONTE CARLO SIMULATIONS

During Monte Carlo simulations, we assume that the response
matrix has the form of M = diag(1, 1, 1). This matrix is also
widely used in theoretical calculations, and the variance matrix
for the configuration of NA = 3, NB = 3 is obtained as

VAR[M]poi
=

4

9
I0

 1 2 2
2 5 3
2 3 5

 . (36)
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Fig. 4. Estimation variance of the configuration of NA = 4, NB = 3 with (a) V Mp1, (b) V Mp2, (c) V Mp3 for M11 term and (d) V Mp4, (e) V Mp5

for M22 term in the presence of Poisson noise. S1 ∈ [−0.1,+0.1] and S2 ∈ [−0.1,+0.1] are considered.

This configuration is important to determine the types of noise
due to the difference between Gaussian and Poisson noise on
variance matrix. In the simulations, we assume that there are no
measurement errors, but that the intensities are only influenced
by Gaussian or Poisson noise with different incident polariza-
tion states. In the actual environment, the matrix deviates from
the ideal case due to the systematic errors and other types of
noise. This point will be discussed further in the next section.

To obtain the influence of incident polarization states,
[1;−0.1; 0] is employed to estimate the precision of the response
matrix for linear polarization calibration. Three configurations
are used to compare the influences of the numbers of the PSGs
and PSAs. The first configuration is NA = 3, NB = 3, which
is sensitive to the incident polarization states. The second con-
figuration is NA = 4, NB = 3, which is to analyze the influence
on the variance matrix of M22 term. The third configuration is
NA = 4, NB = 4, and it is less susceptible to partial polarized
incident light.

We assume variance matrices V AR[M] in the presence of
Gaussian noise with a zero-mean and σ 2

= 1, and in the pres-
ence of Poisson noise that its variance is equal to its mean value.
The results from Monte Carlo simulations are shown in Table 1.
It is easy to find that the results are in a good agreement with
theoretical values obtained from 106 random realizations. The
differences between the simulated and theoretical values are
less than 1.1% with Stokes vector [1; −0.1; 0] and 2.0% with
[1; 0; 0] for each element.

Three configurations are close to that predicted by theory
with unpolarized incident light from Eqs. (14) and (27)–
(29). The simulated and theoretical results are normalized by

16σ 2/(NA NB ) for Gaussian noise and 4I M11/(NA NB ) for
Poisson noise illustrated in Fig. 5.

Let us now analyze the configuration of NA = 3, NB = 3
in the presence of Gaussian noise. It can be easily seen that the
amplitudes of variation of first column are less than 2.5% of
their value with unpolarized incident light. The second col-
umn is increased 11.7% while the third column is decreased
9.6%. For Poisson noise, with Stokes vector [1; −0.1; 0], the
variance V MP 2 of the second column of M11 term is grown to
2.12, and the variance V MP 5 is 1.16 shown in Fig. 3. When
we superpose them, we can obtain the variance of M22 that
2V MP 2 + V MP 5 = 5.40. That is similar with the simulation
result and is increased 8%. The variance of M32 is increased
3.7% due to the opposite sign between the second and third row
of variance matrix for M22 term from Eq. (30). The variances
of M13, M23, and M33 are decreased 5.5%, 7.0% and 5.0%,
respectively.

Next, let us now analyze the configuration of NA = 4,
NB = 3 in the presence of Gaussian noise. The amplitudes of
variation of all elements are less than 2.1% of their value with
unpolarized incident light, which means that the configuration
of NA = 4, NB = 3 is insensitive to incident polarization states
for Gaussian noise. However, the variance of M21 is increased
4% while the one of M31 is decreased 1%; in addition, the
decrease of 3.5% and the increase of 4.8% are obtained for the
variations of M22 and M32 due to the variance matrix of M22

term from Eqs. (30) and (34).
For the configuration of 4× 4, the amplitudes of varia-

tion of all the elements for the variance matrix are less 2% in
the presence of Gaussian and Poisson noise. Obviously, the
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Table 1. Results of Variance Matrix for Three Forms That NA ×NB Is Equal to 3× 3, 4× 3, and 4× 4 for Two Types of
Incident Light ([1; 0; 0] and [1; −0. 1; 0]) in Linear Polarization Calibration

NA × NB VAR[M]Gau = 16σ 2/(NA NB)× VAR[M]Poi = 4I/(NA NB)×

S1 = 0 S1 =−0.1 S1 = 0 S1 =−0.1

3× 3

 1.00 2.01 2.00
1.95 4.01 4.00
2.00 4.01 4.00

  1.00 2.19 1.82
2.00 4.37 3.63
1.99 4.42 3.59

  1.00 1.99 1.98
1.97 4.96 3.00
1.99 2.97 4.92

  1.00 2.17 1.89
2.09 5.43 2.79
1.93 3.11 4.75


4× 3

 1.00 1.99 2.03
1.99 3.98 4.00
2.00 3.99 3.97

 1.02

 1.00 2.03 1.99
2.02 3.99 3.98
2.03 4.01 3.94

  1.00 2.00 1.97
2.00 3.99 3.99
1.96 3.97 4.01

 1.01

 1.00 2.01 1.99
2.00 3.82 4.01
1.98 4.15 3.98


4× 4

 1.01 1.99 1.99
2.01 4.01 3.99
1.99 4.02 4.00

 1.01

 1.00 1.98 1.99
2.02 4.01 4.00
2.01 3.97 4.01

  1.00 2.01 1.98
1.96 4.01 4.00
1.99 3.98 3.99

 1.01

 1.00 2.01 2.00
2.03 3.98 4.01
1.99 3.99 4.01



Fig. 5. Simulated and theoretical results for the configuration of 3× 3, 4× 3, and 4× 4 with Stokes vector [1;−0.1; 0]. They are normalized by
16σ 2/(NA NB ) for Gaussian noise and 4I/(NA NB ) for Poisson noise. Solid lines show the simulation results, and dashed lines show the theoretical
results. Colors are used for different sets of noise: Gaussian noise (red); Poisson noise (blue).

configuration of 4× 4 is more suitable for partial polarized
light, which is consistent with the analysis of theory.

4. EXPERIMENTS

A. Experimental Setups

The PSG and PSA have the same component, and both are com-
posed of a polarizer (CODIXX, COLORPOL-VIS-600-BC5).
One of them can be rotated by 360◦ via a motorized rotation
stage (Zolix, RAK100), and another one is rotated by a manual

rotation stage (Zolix, KSMR5A-120). The light beam emit-
ted from an integrating sphere passes through two polarizers.
A spike filter was used at 700 nm; the extinction ratio of the
polarizer at this wavelength is less than 1:100,000. The inten-
sity fluctuations were checked to be negligible (approximately
<0.5% in half an hour).

The experimental setup is shown in Fig. 6. First, no com-
ponent between the PSG and the PSA is used to study the
influence of incident polarization states, and two collimators are
employed to produce two types of incident polarization states.
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Fig. 6. Optical schema for the verification of the calibration strategy.

Table 2. Experimental Results for Different NA and NB
a

A1 A2 A3

VAR[M]3×3 = I1−3×

 1.00 1.82 1.97
1.83 4.96 2.91
1.89 2.98 4.84

  1.00 1.97 1.82
1.93 5.20 2.81
1.90 3.06 4.81

  1.00 1.89 2.01
1.84 4.97 2.91
1.87 2.89 4.84


I1−3 115 117 95

VAR[M]4×3 = I4−6×

 1.00 2.03 1.98
2.04 3.96 4.02
1.94 4.03 3.93

  1.00 2.02 1.99
2.08 3.88 4.08
1.98 4.13 3.99

  1.00 2.00 1.99
1.99 3.98 4.10
2.01 4.01 3.86


I4−6 71 73 68

VAR[M]5×5 = I7−9×

 1.00 1.97 2.00
2.02 3.97 4.09
2.00 4.05 3.92

  1.00 2.00 1.99
2.04 4.04 4.11
1.97 3.96 3.89

  1.00 2.00 1.98
1.98 3.92 3.99
2.01 4.04 3.93


I7−9 35 35 32

aA1 employs one collimator to produce the low-level DoLP (about 2.5%) (S1 =−0.02, S2 =−0.01), and A2 employs another collimator with the DoLP (about
8.9%) (S1 =−0.04, S2 =−0.08); A3 consists of a telescopic system with the incident light of low-level DoLP (S1 =−0.02, S2 =−0.01).

Second, the response matrix consists of a telescopic system
to provide the comparison of the real response matrix. Every
experiment employs NA × NB = (3× 3, 4× 3, 5× 5). The
estimation variance is easily influenced by the incident light
for the configuration of 3× 3, which is the key to verifying
the validity of the theory. The configuration of 4× 3 is used to
figure out whether or not the optical system (M21 and M22) has
an impact on the estimation variance, and the configuration of
5× 5 used to provide an optimal reference is one of the optimal
configurations. A CMOS camera (Ximea, MQ042CG-CM)
with 100× 100 pixels is employed to calculate the variance.
The experiments were carried out under multiple conditions to
verify the theory according to the steps above.

B. Discussion

The matrices for the estimation variance are described in
Table 2. It can be easily seen that the dominant noise is Poisson
noise according to Eqs. (14) and (36). The trend of experimental

and theoretical results for the configurations of 3× 3, 4× 3,
and 5× 5 is consistent and illuminated in Fig. 7. It can be seen
that, for the configuration of 3× 3, the variances of M22 and
M32 are increased 4.8% and 1.5% in 8.9% DoLP compared
with 2.5% DoLP. In contrast, the variances of M23 and M33

are increased 3.3% and 0.6% in 8.9% DoLP. For the configu-
ration of 4× 3, compared with 2.5% DoLP, the variance of
M22 has the decrease of 2.0%, and the one of M32 is increased
2.5% in 8.9% DoLP. Therefore, the configuration of 4× 3
is more stable than the one of 3× 3. For the configuration of
5× 5, the variance matrix with 8.9% DoLP is closer to the
one with unpolarized light, which means that this configura-
tion is less susceptible to different incident polarization states.
Furthermore, It is easily seen from Eq. (28) that for the configu-
ration of 4× 3 the influence of M21 term on variance is less than
that of M11 and M22 terms because the difference between A2
and A1 is larger than that between A3 and A1 from the variance
matrix on the second row in Fig. 7 (middle row) and the third
row Fig. 7 (bottom row).
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Fig. 7. Normalized simulated and theoretical results for A1 (2.5% DoLP of incident light); A2 (about 8.9% DoLP of incident light); A3 (con-
sisting of telescopic system 2.5% DoLP). Solid lines show the experimental results, and dashed lines show the theoretical results. Colors are used for
different sets of configurations: 3× 3 (red), 4× 3 (blue), 5× 5 (green).

The same conclusion has been obtained from theory. After
10 repeated measurements, under the same circumstance, a
normalized element precision of 1.3% was ensured. Mos repre-
sents the response matrix of the optical system in A3, and Mno

represents that of no component between the PSG and the PSA
in A1 and A2,

Mno =

 1 0.001 0.001
0.008 0.992 −0.010
0.007 −0.013 0.993

 , (37)

Mos =

 1 −0.045 −0.074
−0.0243 0.980 0.005
−0.040 −0.006 0.981

 . (38)

The proposed method for analysis of the influence of different
incident polarization states can be used to analyze the types of
noise and to choose the minimum numbers of PSGs and PSAs.

C. Systematic Errors

In the derivation of the theory, we only consider the influence
of Gaussian and Poisson noise. However, the actual response
matrix will deviate from the theory due to other types of noise
and errors. The other types of noise are uniform noise, salt and
pepper noise, and compound noise, and the errors are rotational
error, intensity fluctuation, and alignment errors.

It is difficult to derive an analytical solution, so we add these
noise types into the intensities by Monte Carlo simulation to
analyze the estimation precision. It is found that the estimation
variances are analogous to the case of Gaussian or Poisson noise
for the optimal configurations with two types of incident polari-
zation states in simulations, which means that the other types of
noise have no significant influence on the element of variance
matrix but only to increase or decrease the coefficient of vari-
ance matrix, and incident polarization state as an independent
variable is valid. The conclusion was verified in the experiments.

Ten repeated measurements were made to obtain the mea-
surement precision for the errors, as shown in Fig. 8. The relative
differences over 10 repeated measurements are found to be less
than 3.0% for each measurement and 0.7% for the mean of
10 repeated measurements, respectively. It is found that the
real variance matrix deviated from the ideal values a little bit,
but its trend is still consistent with theory. It is obvious that the
variation due to systematic errors and noise 0.7% is less than
3.8% due to the incident polarization state for a configuration of
3× 3. The variations due to 8.9% DoLP for the configurations
of 4× 3 and 5× 5 are about 2.1% and 1.0%. That means
that small systematic errors and other noise have no significant
influence and are less than the influence of 8.9% DoLP in the
polarization calibration on the configuration of 3× 3 and
4× 3, which can ensure the validity of the experiment.
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Fig. 8. Deviation of 10 repeated measurements for the configuration of 3× 3 (blue), 4× 3 (red), and 5× 5 (black) on response matrix
(M11 −M33). Each estimation variance is normalized by the mean value of variance for 10 measurements.

5. CONCLUSION

In summary, restricting ourselves to the linear Stokes calibra-
tion, we have derived the analytical solution for the estimation
variance of the response matrix with partially polarized light,
in the presence of Gaussian and Poisson noise. We obtain the
optimal configurations of NA ≥ 3, NB ≥ 3 for Gaussian noise;
however, the incident light is found to have a great influence
on the configuration of NA = 3, NB = 3. Additionally, a con-
figuration of at least NA = 4, NB = 3 is required to calibrate the
instrument for Poisson noise. However, the incident light and
response matrix of the optical system except for the reflectivity
are found to influence the stability of the estimation variance
matrix. By contrast, the configurations of NA ≥ 4, NB ≥ 4 are
optimal for different incident polarization states and two types
of noise. The theoretical results are verified with the Monte
Carlo simulations and practical experiments. In the experi-
ments, the sets of configurations for NA = 3, NB = 3; NA = 4,
NB = 3; and NA = 5, NB = 5 are presented. The experimental
results are consistent with the theoretical analysis.

Different calibration methods and configurations have
different influences on the estimation variance for different
incident polarization states in the presence of two types of noise,
and the theory can provide a new approach to obtain the stable
estimation variance matrix. This paper analyzes the influence of
incident light, which is important for analyzing the precision in
the initial design of a polarization imager [26]. We can adopt an
effective calibration method to ensure the precision in practice
according to different incident polarization states. These results
will make it possible to assess extreme precision. Although we
investigate the estimation variance in the presence of two types
of noise, this method shows good adaptability to other kinds

of noise with a certain mean and variance. The normalized
precision of the response matrix will be developed in the future.
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