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Abstract: The traditional optical design process isolates the two steps of system performance
optimization and tolerance allocation, making it difficult to achieve optimal design of as-built
performance. To solve this problem, this paper proposes an analytical method for optimizing the
as-built performance of optical systems. The method uses the nodal aberration theory to derive
the wavefront aberration estimated value under the given surface decenter and tilt tolerance, and
establishes the optical system as-built performance evaluation model. The as-built performance
evaluation does not require a large amount of ray tracing, which can be completed only by
tracking the paraxial marginal ray and the principal ray, and the calculation amount is small. The
as-built performance evaluation model can be directly used as error function in optical design
software for optical system optimization. A Cooke triplet system is taken as an example to
compare the as-built performance optimization method, Code V and Zemax OpticStudio’s built-in
optimization methods and the traditional method which optimizes only nominal performance by
Monte-Carlo tolerance analysis.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the production process of the optical system, the manufacture and alignment errors of the
optical components can cause deterioration in imaging quality and make designer fail to achieve
nominal performance. Therefore, the good as-built performance of an optical system should be
the ultimate goal pursued by optical designers compared to the nominal performance. Loose
tolerance requirements can reduce the difficulty of manufacture and alignment, improve yield
and reduce production costs. At present, the traditional optical design process isolates the two
processes of optical system optimization and tolerance allocation. The optical design optimization
process does not consider the influence of image quality degradation caused by the manufacture
and alignment errors, and only pursues the best nominal performance. The tolerance requirements
need to be further analyzed after the design is completed. This often leads to good nominal
performance, but the manufacture and alignment tolerances are tight. In this case, the design
needs to be re-optimized, which is time-consuming. At the same time, there is no guarantee that
the redesigned structure will have excellent as-built performance. Therefore, how to optimize the
optical system as-built performance is an urgent problem to be solved.
In response to this problem, many researchers have done a series of studies, which can be

divided into two categories: analytical methods and numerical methods. Numerical methods are
more common in recent years.
Numerical methods generally rely on complex global optimization algorithms and a large

number of ray tracing processes to obtain design results. The numerical methods are mainly
as follows: global optimization method, ray incidence angle or deflection angle optimization
method.
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Rogers [1] builds multiple configurations based on the initial configuration to simulate the state
of the optical system with quantitative manufacturing errors. He uses the global optimization
function in Code V software to optimize this set of multiple configurations and tried to find an
optimal design solution for as-built performance. McGuire [2] also uses the global optimization
algorithm to obtain a large number of initial systems. Then he performs tolerance analysis on
these systems, sorts their as-built performance and finds the best as-built performance system.
Both methods are easy to operate, and the evaluation of the optical system as-built performance
can be considered unbiased. However, to obtain unbiased and accurate optimization results, the
number of multiple configurations to be built usually needs to be very large, or it is necessary
to perform tolerance analysis and as-built performance evaluation on a very large number of
systems, and also multiple fields of view need to be considered, which requires a large amount of
calculation and optimization time. For example, John R. Rogers’ method only established three
multiple configurations to simulate the as-built state, and optimized a system with 11 lenses,
which took 25 hours.

The ray incidence angle or deflection angle optimization method [3–5] uses incident angle or
deflection angle of the typical ray (usually using the marginal ray) on the optical surface as an
indicator for evaluating the sensitivity of the components. The method is easy to implement and
has a certain desensitization design effect. However, this method is not accurate in evaluating
as-built performance.

Liu et al. [6] proposed a design method for a low-sensitivity free-form reflective optical system.
Based on the point-by-point design method, the method first designs a spherical reflection system
and then performs sensitivity analysis to preferentially convert the low-sensitivity optical surfaces
into an aspheric or free-form surface. The above steps are repeated a plurality of times. The
configuration with the best as-built performance is selected from the plurality of free-form optical
systems by performing sensitivity analysis. This method is suitable for the design of free-form
systems, but its principle is similar to the global optimization method, which relies on a large
number of ray tracing for image quality and sensitivity evaluation, and the calculation amount is
large.
In addition, some commercial optical design software also has built-in numerical as-built

performance optimization algorithms. For example, Code V’s built-in Sensitivity As Built (SAB)
method completes the as-built performance evaluation by calling the wavefront differential toler-
ancing algorithm. Zemax OpticStudio’s built-in "TOLR" method evaluates as-built performance
by calling the tolerance sensitivity analysis function.
The analytical design method refers to the optimization design of the optical system as-built

performance by using the aberration theory as a design guide. It is represented by the design
method proposed by Catalan [7], Meng et al. [8], Bauman and Schneider [9].
Catalan [7] deduced the approximation function expression between the decenters, the tilts

and the axial misalignment and the coma aberration for two mirror telescopes. Based on this, the
design method of the two mirror telescope with low misaligned sensitivity is proposed. Meng et
al. [8] analyzed the optical path difference of the off-axis three mirror telescope and found that
the off-axis quantity is an important factor affecting the sensitivity of the optical components,
and proposed a design method suitable for reducing misalignment sensitivity of off-axis three
mirror systems. The method achieves good results. However, the above methods are suitable
for the specific type of optical systems. The derived conclusions cannot be directly applied to
other systems. The versatility of the method is poor, and in the case of a large number of optical
components, the derivation process becomes complicated.
Bauman and Schneider [9] established a linear relationship model of the optical surface

decenter, compensator and wave aberrations. It does not need to trace a large amount of rays,
which greatly reduces the system optimization time, and the method is highly versatile. However,
to realize the matrix operation, the quadratic terms of the aberration field decenter vector in
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the nodal aberration theory is ignored in the approximation process. At the same time, there
is no analytical derivation of the influence of manufacture and alignment errors on wavefront
aberration.
Aiming at the above problems, this paper establishes an optical system as-built performance

evaluation model based on nodal aberration theory, and deduces the analytical expressions of
optical component manufacture and alignment errors (decenter and tilt of optical surface) and
aberration introduced by misalignments. The specific optical design parameters related to the
optical component tolerance sensitivity are analyzed to provide theoretical guidance for optimal
design of optical system as-built performance.
This paper mainly includes the following aspects: Section 2 introduce the establishment

process of optical system as-built performance evaluation model. Section 3 deduce the analytical
relationship between the optical surface decenters and tilts and the coma and astigmatism
introduced by misalignments in detail. We optimize a Cooke triplet system using the as-built
performance evaluation model, and compare the optimization results of the traditional method,
Code V and Zemax OpticStudio’s built-in optimization methods and the new method by Monte-
Carlo tolerance analysis in section 4. We summarize the full paper in section 5. The appendix
gives an analytical form of the aberration field decenter vector for all surfaces when a surface in
the optical system misaligned.

2. The establishment of optical system as-built performance evaluation model

In misaligned optical systems, the manufacture and alignment errors can be divided into
axisymmetric and non-axisymmetric. Axisymmetric errors include lens spacing errors, lens
thickness errors, and curvature radius errors. This type of error mainly introduces the spherical
aberration, which is a field-constant aberration. The non-axisymmetric errors mainly refer to the
decenters and tilts of the optical surface. Such errors mainly introduce the asymmetric coma and
astigmatism in the field of view, which are the main aberrations that cause the optical system
to degrade in image quality after the manufacturing process is completed. In the alignment,
the spherical aberration introduced by manufacturing errors can be compensated by adjusting
the axial position of a certain lens, which is easier to control than the coma and astigmatism,
so it is not included in the study. In addition, the manufacture and alignment errors will also
cause changes in field curvature and distortion. Distortion will not reduce the imaging clarity.
The effect of the field curvature introduced by misalignments is generally small, so these two
aberrations are also not studied in this paper. Therefore, the coma and astigmatism introduced by
the decenters and tilts of the optical surface are the focus of this paper.
Wavefront aberrations are selected as the evaluation indicator of optical system as-built

performance because it is suitable for performance evaluation of most imaging optical systems.
Then the optical system as-built performance A can be evaluated by

A =

∫
field

√
|N(H)|2 + |M(H)|2 dH∫

field dH
, (1)

where |N(H)| represents the nominal value of Root Mean Square (RMS) wave aberration of the
optical system in the field H. |M(H)| represents the RMS wave aberration introduced by the
manufacture errors in the field H. The average of the wave aberrations in the full field of view is
taken to represent the optical system as-built performance. In this paper, the vector parameters
are always expressed in black italics to facilitate the reader to distinguish between scalars and
vectors, and the absolute value symbol indicates the modulo of the vectors.

The key to the establishment of the optical system as-built performance model is to obtain the
analytical form of |M(H)|. The contribution to the wave aberration can be calculated separately
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in the case where each manufacture error acts alone, and then the root-sum-of-squares (RSS) of
all the wave aberration contributions is taken to obtain |M(H)|, as shown in Eq. (2):

|M(H)| =
√∑

k
[|M(H)k,coma,T |

2 + |M(H)k,coma,D |
2 + |M(H)k,ast,T |2 + |M(H)k,ast,D |2], (2)

where k is the surface number, the subscript coma represents coma aberration, the subscript
ast represents astigmatism aberration, the subscript T represents tilt error, and the subscript D
represents decenter error. For example, M(H)k,coma,T represents the coma contribution of the tilt
error of the k-th surface in the optical system in the field H. Its modulo represents the RMS value
of the coma, and its direction represents the direction of the coma. The specific expressions of
M(H)k,coma,T, M(H)k,coma,D, M(H)k,ast,T, and M(H)k,ast,D will be derived below.

3. Misalignment-induced coma and astigmatism

The nodal aberration theory is to study the aberration theory of optical system with decentered
and tilted components. Its original idea was proposed by Shack [10]. Buchroeder [11] and
Thompson [12–14] do a lot of work on the theory later, which make the nodal aberration theory
further developed. According to this theory, the aberration fields of the decentered and/or tilted
optical surfaces in the system are all rotationally symmetric, and the total aberration field is still
the sum of the aberration field contribution of each surface. This is the same as the rotationally
symmetric optical systems. Only the center of the aberration field of the decentered and/or tilted
optical surface is offset from the center of the field of view. This offset is represented by the
vector σ, and its value is related to the decenters and tilts. The total aberration field of the system
is obtained by adding the aberration fields of each surface in a misaligned manner. Therefore, the
total aberration field of the system is usually not rotationally symmetric, and can be expressed by
Eq. (3) [13]:

W(H, ρ) =
∑
j

∞∑
p=0

∞∑
n=0

∞∑
m=0

W (j)klm[(H − σ
(j)) · (H − σ(j))]p(ρ · ρ)n[(H − σ(j)) · ρ]m, (3)

where the superscript (j) is the surface number,W (j)klm is the wave aberration coefficient for surface
j, H denotes the field vector, and ρ is the pupil vector. Since the misalignments in the imaging
optical system are usually small, the third-order aberrations accounts for the main contribution in
the misalignment-induced aberrations, and the high-order aberrations can be ignored. Therefore,
the three-order coma and astigmatism introduced by the misalignments are deduced below.

3.1. Misalignment-induced three-order coma

According to the nodal aberration theory, the third-order coma of decentered and/or tilted optical
systems can be expressed by Eq. (4) [13]:

WCOMA3 =
∑
j
W (j)131[(H − σ

(j)) · ρ](ρ · ρ). (4)

Equation (4) can be modified to decompose the third-order coma of the decentered and/or tilted
optical system into the system’s intrinsic coma and the misalignment-induced coma, as expressed
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by Eq. (5):

WCOMA3 =

[
(
∑
j
W (j)131H) · ρ

]
(ρ · ρ)︸                          ︷︷                          ︸

intrinsic coma

−

[∑
j
W (j)131σ

(j) · ρ

]
(ρ · ρ)︸                             ︷︷                             ︸

misalignment - induced field - constant coma

. (5)

Therefore, the misalignment-induced coma is the field constant coma, which is the sum of the
misalignment-induced coma contributions of all surfaces in the optical system, and its RMS
value and direction are expressed by Eq. (6):

M(H)coma =
∑
j

M(H)(j)coma =
∑
j

(
−

1
2
√
2
W131jσ

(j)
)
, (6)

where M(j)coma denotes misalignment-induced coma contribution of the j-th surface in the optical
system.
The aberration field decenter vectors of the optical surfaces can be obtained by tracing the

Optical Axis Ray (OAR, the ray that is emitted from the center of the field of view and passes
through the center of the aperture stop) [14]. Therefore, in an optical system including n optical
surfaces, in the case where the k-th surface is decentered and/or tilted, the aberration field decenter
vectors of the optical surface j can be expressed by

σ(j)k =
(Tk + ckDk)

īj
αj, (7)

where

αj =


0 while j = 1, 2, · · · , k − 1

1 while j = k

(ij · ȳk − īj · yk)∆nk� , while j = k + 1, k + 2, · · · , n

, (8)

where Tk and Dk denote the tilt and decenter of the k-th surface, ck denotes the curvature of the
k-th surface. Since the decenter error can be equivalent to the tilt error for the spherical surface,
(Tk + ckDk) is called the equivalent tilt parameter. ij and īj denote the marginal ray incident
angle and the principal ray incident angle on the j-th surface. yk and ȳk denote the heights of the
marginal ray and the principal ray. ∆nk = nk ′ − nk, which denotes the change of refractive index
across interface of the k-th surface. � denotes the optical invariant. See the appendix for the
detailed derivation process.
According to the Seidel coma formula:

W131 = −
1
2
i īyn2∆

(u
n

)
, (9)

where ∆
( u
n
)
denotes the so-called “aplanatic” parameter.

Substituting Eqs. (7)–(9) into Eq. (6), it can be obtained that when the k-th surface is
misaligned in the optical system, the misalignment-induced coma is

M(H)k,coma =

n∑
j=1

M(H)(j)k,coma =


n∑
j=k

1
4
√
2
ij nj2 yj∆

(u
n

)
j
αj

︸                            ︷︷                            ︸
sensitivity coefficient of the misalignment - induced

coma to the equivalent tilt parameter

(Tk + ckDk). (10)
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In Eq. (10), let Dk =


0

0

 , then we can get the expression of the misalignment-induced

coma when there is only tilt misalignment; let Tk =


0

0

 , we can get the expression of the

misalignment-induced coma when there is only decenter misalignment. The term in the square
bracket is commonly known as the sensitivity coefficient of the misalignment-induced coma to
the misalignments, which indicates the sensitivity of the misalignments.

So far, we derive the expression of the coma introduced by the decenters and tilts of the optical
components. The total misalignment coma of the system is the sum of the misalignment coma
introduced by each surface. It can be seen from Eq. (10) that the coma contribution of each
surface is linear with the equivalent tilt parameter. According to the value of αj, the optical
surfaces can be divided into three categories: the surfaces before the decentered and/or tilted
surface, the decentered and/or tilted surface itself and the surfaces behind the decentered and/or
tilted surface. There is no misalignment aberration contribution on the optical surfaces before
the decentered and/or tilted surface. For the decentered and/or tilted surface itself, its coma
contribution is proportional to the incident angle of the marginal ray, the height of the marginal
ray, the square of the local object space refractive index, and the “aplanatic” parameter of the
surface. For the surfaces behind the decentered and/or tilted surface, the scale factor has one
more parameter (ij · ȳk − īj · yk)∆nk/�, which differs from the decentered and/or tilted surface
itself.

3.2. Misalignment-induced three-order astigmatism

The astigmatism of the misaligned optical system can be expressed by Eq. (11) [13]:

WATS3 =
1
2

∑
j
W (j)222[(H − σ

(j))
2
· ρ2]. (11)

Similar to the processing of the coma, Eq. (11) is deformed to decompose the third-order
astigmatism of the misaligned optical system into the system’s intrinsic astigmatism and
misalignment-induced astigmatism, as shown in Eq. (12):

WATS3 =
∑
j

1
2
W (j)222H

2 · ρ2

︸                ︷︷                ︸
intrinsic astigmatism

−(
∑
j
W (j)222Hσ(j)) · ρ2

︸                      ︷︷                      ︸
misalignment - induced
field - linear astigmatism

+
∑
j

1
2
W (j)222σ

(j)2 · ρ2

︸                      ︷︷                      ︸
misalignment - induced

field - constant astigmatism

. (12)

The misalignment-induced astigmatism is divided into two types, one is the field-linear astig-
matism, and the other is the field-constant astigmatism. The RMS value and direction of the
misalignment-induced astigmatism can be represented by

M(H)ast =
∑
j

M(H)(j)ast =
∑
j
−

1
√
6
W (j)222Hσ(j) +

∑
j

1
2
√
6
W (j)222σ

(j)2, (13)

where M(H)(j)ast denotes misalignment-induced astigmatism contribution of the j-th surface in the
optical system.
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According to the Seidel astigmatism formula:

W222 = −
1
2
ī2 yn2∆

(u
n

)
. (14)

Substituting Eqs. (7), (8) and (14) into Eq. (13). it can be obtained that when the k-th surface is
misaligned in the optical system, the misalignment-induced astigmatism is

M(H)k,ast =
n∑
j=1

M(H)(j)k,ast =
n∑
j=k

[
1

2
√
6
īj yj nj2∆

(u
n

)
j
Hαj

]
(Tk + ckDk)

−

n∑
j=k

[
1

4
√
6
yj nj2∆

(u
n

)
j
αj

2
]
(Tk + ckDk)

2.
(15)

In Eq. (15), let Dk =


0

0

 , then we can get the expression of the misalignment-induced

astigmatism when there is only tilt misalignment; let Tk =


0

0

 , we can get the expression of
the misalignment-induced astigmatism when there is only decenter misalignment.

Similar to the case of coma, when an optical surface is misaligned, the surface in front of the
misaligned surface will not introduce misalignment aberration. Only the misaligned surface itself
and a series of surfaces behind the misaligned surface will do. The misalignment-introduced
astigmatism is divided into two parts: field-linear astigmatism and field-constant astigmatism.
The field-linear astigmatism is proportional to the equivalent tilt parameter. For the decentered
and/or tilted surface itself, the proportional coefficient is related to the principal ray incident
angle, the height of the marginal ray, the square of the local object space refractive index and
the “aplanatic” parameter. For the optical surfaces after the decentered and/or tilted surface,
the proportionality factor is increased by a factor (ij · ȳk − īj · yk)∆nk/�. The field-constant
astigmatism is proportional to the square of the equivalent tilt parameter. For the decentered
and/or tilted surface itself, the proportional coefficient is related to the height of the marginal
ray, the square of the local object space refractive index and the “aplanatic” parameter. For the
optical surfaces after the decentered and/or tilted surface, the proportionality factor is increased
by a factor (ij · ȳk − īj · yk)2∆nk2/�2.
It can be seen that the total misalignment-introduced astigmatism and the decenters/tilts are

quadratic relations. The field-constant astigmatism can be considered as terms of higher order
than the field-linear astigmatism. Therefore, when the misalignments are very small, the quadratic
term (the field-constant astigmatism) can be ignored. The misalignment aberration is dominated
by field-linear astigmatism. The misalignment-introduced astigmatism can be approximated as a
linear function of the equivalent tilt parameter, as shown in Eq. (16):

M(H)k,ast =


n∑
j=k

1
2
√
6
īj yj n1j2∆

(u
n

)
j
Hαj

︸                                ︷︷                                ︸
sensitivity coefficient of the misalignment - induced

astigmatism to the equivalent tilt parameter

(Tk + ckDk). (16)

The term in the square bracket is the sensitivity coefficient of the misalignment astigmatism to
the equivalent tilt parameter at the field H.
In this paper, we still retain the contribution of the field-constant astigmatism during the

establishment process of the as-built performance evaluation model to improve the accuracy of
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the model. After substituting Eqs. (10) and (15) into Eq. (2), we can obtain the optical system
as-built performance evaluation model.
In addition to the quantitative calculation of as-built performance, the analysis results in this

section can also help optical designers to qualitatively determine whether the tolerances of optical
surfaces are tight. According to the analysis results, the incident angle and the height of the
marginal ray and the incident angle of the principal ray on the surface are closely related to
the tolerance requirements. The larger the three parameters, the tighter the tolerances of the
optical surface. Optical designers often call the lens which is quite well behaved with no steep
bending or severe angles of incidence as “happy lens”. The advantage of this lens is that the
tolerances is loose. This is the experience that optical designers have summarized over the years.
This experience is in good agreement with the results of this paper. It can also be seen that the
influence of the decenters and tilts of the rear surface of the lens is generally greater than that
of the front surface, since the misalignment aberration is also related to the local object space
refractive index. Due to the third-order coma and astigmatism coefficient are proportional to the
“aplanatic” parameter, so it can be considered to some extent that a relatively large misalignment
aberration is introduced when the optical surface with large third-order aberration coefficients is
decentered and/or tilted.

4. Optimization example

4.1. Initial optical system

In this section, we will optimize a Cooke triplet system. Firstly, we use the traditional method to
optimize the nominal performance of the system with software Code V 11.1, and then the as-built
performance optimization method proposed in this paper is used. In addition to comparing
as-built performance, we also use Code V’s built-in (SAB) method and Zemax OpticStudio’s
built-in “TOLR” method to optimize the as-built performance. Finally, we will use Monte Carlo
tolerance analysis to evaluate and compare the as-built performance of the optimization results of
the four methods. We set the decenter and tilt of all surfaces as system manufacturing tolerances,
and the tolerance distribution is uniformly distributed. In tolerance analysis, the maximum value
of the tolerance on decenters in x and y directions of each surface is set to 0.1mm, and the
maximum value of the tolerance on tilts about x and y axes is set to 23’. The tilt angle and the
position of the image plane are used as compensators
The Cooke triplet system is taken from the sample lens library in Code V. The lens design

parameters are shown in Table 1.

Table 1. lens data of Cooke triplet system

Surface Surface type Radius (mm) Thickness (mm) Glass Semi-aperture (mm)

Object sphere infinity infinity

1 sphere 16.878 3.250 NSK16 8.11

2 sphere 247.026 4.984 7.55

3(stop) sphere −35.957 1.250 NF2 3.85

4 sphere 15.886 6.099 4.28

5 sphere 49.081 3.250 NSK16 8.36

6 sphere −27.621 38.714 8.66

7(image) sphere infinity - 17.94

The original lens has an entrance pupil diameter of 10mm, a focal length of 50mm, and a half
field of view of 20°. The wavelength data are 546.1 nm (weight: 2), 486.1 nm (weight: 1) and
656.3 nm (weight: 1), respectively. Since the actual imaging usually uses a square field of view,
the field of view is changed to 14°×14° in the optimization, and the vignetting is removed. The
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aberration field of the optical system will no longer be symmetrical due to the misalignments of
the optical elements, so 25 field points distributed at equal intervals in the 14°×14° field of view
are selected for optimization to more accurately evaluate system performance, as shown in Fig. 1.

Fig. 1. Field points selected for optical system optimization, which is marked with black
dots.

4.2. Case 1: Traditional optimization method

First, we use traditional optimization method to optimize only the nominal performance. All
the radius of curvature and thickness are set as the optimization variables. The system focal
length limit is added in the specific constraints menu to make the focal length equal to 50mm, so
that the focal length remains unchanged during the optimization process. The wavefront error
variance is set to error function for optimization. The standard optimization method in Code V is
used. The optimized optical system is shown in Table 2.

Table 2. Lens data obtained by traditional optimization method

Surface Surface type Radius (mm) Thickness (mm) Glass Semi-aperture (mm)

Object sphere infinity infinity

1 sphere 13.296 2.527 NSK16 6.27

2 sphere 337.649 3.118 5.89

3(stop) sphere −41.917 1.000 NF2 3.95

4 sphere 12.606 6.391 4.01

5 sphere 46.199 2.262 NSK16 6.97

6 sphere −35.535 38.982 7.18

7(image) sphere infinity - 17.39

4.3. Case 2: Our as-built performance optimization method

Then, we use the as-built performance evaluation model in this paper to establish the error
function in the form of user-defined Macro-PLUS function, while the focal length limit is still
added to the specific constraints. The selection of the optimization variables remains the same,
then the initial system in Table 1 is optimized.
In the as-built performance evaluation model, the decenter value Dk and the tilt value Tk

are set to the 0.0399mm and 9.176’, which are the mean of two-dimensional decenter and tilt
tolerance, and are also equal to 0.399 times the maximum value of two-dimensional decenter and
tilt tolerance. The wavelength of 546.1 nm is selected for calculation
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The optical system optimized by the local optimization algorithm is shown in the Table 3. The
evaluation of as-built performance only needs to trace the paraxial principal and marginal rays,
so the calculation amount is small, and the optimization process can be completed in 1-2 minutes.
The CPU used in the optimization is Intel Core. i7-7700HQ @ 2.80GHz.

Table 3. Lens data obtained by our as-built performance optimization method

Surface Surface type Radius (mm) Thickness (mm) Glass Semi-aperture (mm)

Object sphere infinity infinity

1 sphere 16.949 3.297 NSK16 7.26

2 sphere 281.318 5.000 6.61

3(stop) sphere −34.716 1.198 NF2 3.66

4 sphere 16.097 5.881 3.91

5 sphere 48.859 2.741 NSK16 7.03

6 sphere −27.714 38.460 7.33

7(image) sphere infinity - 17.42

4.4. Case 3: Code V’s built-in SAB method

Code V’s built-in SAB method can be used in automatic design for improving the as-built
performance by using wavefront differential coefficients to reduce the tolerance sensitivity. We
used the SAB method to optimize the initial system to compare the optimization results. The
optimization variables and tolerance values are set the same as in case 2, and the image plane
position and tilt are set as compensators. The optimization takes about 1-2 minutes. The system
obtained by the optimization are shown in Table 4.

Table 4. Lens data obtained by the SAB method

Surface Surface type Radius (mm) Thickness (mm) Glass Semi-aperture (mm)

Object sphere infinity infinity

1 sphere 16.435 4.423 NSK16 6.98

2 sphere 493.583 3.777 5.93

3(stop) sphere −36.204 0.950 NF2 3.71

4 sphere 15.672 6.217 3.91

5 sphere 51.659 2.354 NSK16 7.06

6 sphere −29.266 38.435 7.28

7(image) sphere infinity - 17.39

4.5. Case 4: Zemax OpticStudio’s built-in TOLR method

The Zemax OpticStudio software also includes tolerance sensitivity optimization method. The
optimization operand “TOLR” can be used to optimize for reduced sensitivity to tolerances. The
optimization settings remain the same. After about 8 hours of optimization, the system shown in
Table 5 can be obtained.

4.6. Comparison of optimization results

The optical systems optimized by the above 4 methods are shown in Fig. 2.
The nominal performance (rms wavefront error vs. field angle) of the optical system obtained

by the four optimization methods are shown in Fig. 3.
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Table 5. Lens data obtained by the TOLR method

Surface Surface type Radius (mm) Thickness (mm) Glass Semi-aperture (mm)

Object sphere infinity infinity

1 sphere 16.876 3.051 NSK16 7.83

2 sphere 248.649 4.950 7.32

3(stop) sphere −35.668 1.017 NF2 3.80

4 sphere 16.040 6.016 4.16

5 sphere 49.607 2.828 NSK16 7.92

6 sphere −27.622 39.121 8.17

7(image) sphere infinity - 17.37

Fig. 2. Optical systems optimized by (a) the traditional optimization method, (b) our as-built
performance optimization method, (c) the SAB method and (d) the TOLR method.

Fig. 3. The nominal performance (rms wavefront error vs. field angle) of optical systems
obtained by the traditional optimization method, our as-built performance optimization
method, the SAB method and the TOLR method.
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Fig. 4. Monte-Carlo tolerance analysis results of the optical system obtained by (a) the
traditional optimization method, (b) our as-built performance optimization method, (c) the
SAB method and (d) the TOLR method. The full-field average wave aberration rms values
distribution histogram and cumulative curve for 2000 tolerance samples are shown.

It can be seen from Fig. 3 that the nominal value of the wavefront aberration of the optical
system optimized by the traditional method is lower than those of the other three optimization
methods. The full-field average wave aberration rms value obtained by the traditional method is
0.383 waves, while those obtained by our method, the SAB method and the TOLR method are
0.484 waves, 0.486 waves and 0.489 waves, respectively.

Now we will compare the as-built performance of these four systems. We used the Monte-Carlo
tolerance analysis method with 2000 samples to predict the as-built performance. The full-field
average wave aberration rms values of 2000 Monte-Carlo samples are statistically analyzed. The
statistical results are shown in Fig. 4 and Table 6.

Table 6. Comparison of four optimization methods

Average rms wave
aberration for full field

Traditional method Our method SAB method TOLR method

Algorithm type - Analytical Numerical Numerical

Number of rays to be
traced for as-built

performance evaluation

- Only need to trace
two paraxial rays

32 rays traced across
the pupil diameter

for each field

4 rings, and 8 arms
selected

Time required Less than 5s 1-2min 1-2min 8 hours

Nominal value (waves) 0.349 0.454 0.440 0.453

80th percentile (waves) 1.055 0.872 0.863 0.871

Maximum value (waves) 2.048 1.349 1.529 1.456

Standard deviation
(waves)

0.243 0.155 0.165 0.163

As can be seen from Table 6, the nominal value of wavefront aberration of the optical system
designed by the traditional method is smaller than those of the systems obtained by the other
three method by about 0.1 waves. However, according to the Monte-Carlo tolerance analysis
results, the as-built performance of the optical system optimized by the traditional method shows
serious degradation. For the 80th percentile of rms wave aberration, the result obtained by our
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method is 0.183 waves smaller than the traditional method. The results obtained by the three
as-built optimization methods are not much different, and the SAB method optimization results
are slightly better. The maximum wave aberration of the samples obtained by our method is
0.699 waves, 0.180 waves, and 0.107 waves smaller than those of the traditional method, the
SAB method, and the TOLR method, respectively. At the same time, the standard deviation of
the wave aberration of all samples obtained by our as-built performance optimization method is
only 64% of that of the traditional method, which indicates that the optical system obtained by
our method is less sensitive to tolerances.

Both the SAB method and the TOLR method are numerical algorithms, which need to trace a
large number of rays to complete the evaluation of system as-built performance. Our method only
needs to trace two paraxial rays to complete the calculation. From the perspective of optimization
time, both our method and SAB method can complete the optimization in 1 to 2 minutes, while
the TOLR method takes 8 hours.

5. Conclusions

We propose an analytical method for optical system as-built performance optimization based on
nodal aberration theory. This method can evaluate the optical system as-built performance by
only tracking the paraxial principal ray and marginal ray. We derive the analytical relationship
between the surface decenters and tilts that are two most common manufacturing tolerances and
the as-built performance in the form of wave aberrations. The influence of optical surface decenter
and tilt tolerances on as-built performance is related to the incident angles of the principal ray
and the marginal ray, the heights of the principal ray and the marginal ray, the local object space
refractive index, the “aplanatic” parameter and the invariant. The as-built performance evaluation
model can be edited and saved in the form of a macro file in the optical design software, which
can be used as a user-defined error function to optimize the optical system. The Cooke triplet
system optimization example and Monte-Carlo tolerance analysis show that although the nominal
value of system wave aberration of the as-built performance optimization method is 0.105 waves
larger than that of the traditional method, the 80th percentile of Monte-Carlo tolerance sample’s
wave aberration is 0.183 waves smaller than that of the traditional method. In addition, we also
compared our method with Code V’s built-in SAB method and Zemax’s built-in TOLR method.
The optimization results of these three methods are similar. The optimization efficiency of our
method is similar to the SAB method, which is much better than the TOLR method.

Appendix: Derivation for aberration field decenter vectors for optical system in
which a surface is decentered and/or tilted

The OAR tracing method used in the derivation for the aberration field decenter vectors was first
proposed by Buchroeder [11].

a. Derivation of the centers of object/images and entrance/exit pupils in an optical
system with tilted and/or decentered components

For any tilted and/or decentered optical surface, the centers of object/images (Q/ Q’) and the
center of the entrance/exit Pupils (E/ E’) can be recursively calculated by Eqs. (17) and (18) in
the order of the optical surfaces [14]:

δQ# ′

ȳ′o
=

δQ#

ȳo
+ (

y∆n
�
)(T + Dc), (17)

δE# ′

yE ′
=

δE#

yE
− (

ȳ∆n
�
)(T + Dc), (18)
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where δQ#/ȳo and δQ# ′/ȳ′o locate the center of the object field and center of the image field
normalized by the paraxial field height, ȳo and ȳ′o. δE#/yE and δE# ′/yE ′ locate the center of the
entrance pupil and center of the exit pupil normalized by the pupil radius, yE and yE ′.

b. Calculation of OAR parameters

The OAR can be described by two parameters: The slope angle of the OAR before refraction that
is denoted as ū#

OAR and the height from the mechanical reference axis of the OAR that is denoted
as ȳ#

OAR. The mechanical reference axis is the optical axis in a rotationally symmetric optical
system, which is unaffected by decenters and tilts. ū#

OAR and ȳ#
OAR can be calculated by

ū#
OAR = ū

δQ#

ȳo
+ u

δE#

yE
, (19)

ȳ#
OAR = ȳ

δQ#

ȳo
+ y

δE#

yE
, (20)

where u and ū denote the slope angle of the marginal ray and principal ray.

c. Derivation of aberration field decenter vectors

The aberration field decenter vectors can be calculated using Eq. (21) [14]:

σ(j) = −
ū#
OAR,j + ȳ#

OAR,jcj − (Tj + cjDj)

īj
. (21)

In an optical system that contains n optical surfaces, only the k-th optical surface is tilted and/or
decentered, the surfaces before the k-th optical surface remains ideal, so

ū#
OAR,j =


0

0

 , while j = 1, 2, · · · , k. (22)

ȳ#
OAR,j =


0

0

 , while j = 1, 2, · · · , k. (23)

Tj =


0

0

 , while j = 1, 2, · · · , k − 1. (24)

Dj =


0

0

 , while j = 1, 2, · · · , k − 1. (25)

σ(j)k =


0

0

 , while j = 1, 2, · · · , k − 1. (26)

For the tilted and/or decentered surface k,

σ(k)k =
(Tk + ckDk)

īk
. (27)

The optical surfaces after the tilted and/or decentered surface k is also maintained in an ideal
state, so for these surfaces,

Tj =


0

0

 , while j = k + 1, k + 2, · · · , n, (28)
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Dj =


0

0

 , while j = k + 1, k + 2, · · · , n. (29)

However, because the k-th optical surface is tilted and/or decentered, the OAR no longer travels
along the mechanical reference axis, so

δQ# ′
j

ȳ′o,j
=

δQ#
j

ȳo,j
=

δQ# ′
k

ȳ′o,k
= (

yk∆nk
�
)(Tk + Dkck), while j = k + 1, k + 2, · · · , n, (30)

δE# ′
j

yE,j
=

δE#
j

yE,j
=

δE# ′
k

y′E,k
= −(

ȳk∆nk
�
)(Tk + Dkck), while j = k + 1, k + 2, · · · , n, (31)

ū#
OAR,j = (ūjyk − uj ȳk)

∆nk
�
(Tk + Dkck), while j = k + 1, k + 2, · · · , n, (32)

ȳ#
OAR,j = (ȳjyk − yj ȳk)(

∆nk
�
)(Tk + Dkck), while j = k + 1, k + 2, · · · , n. (33)

Substituting Eqs. (32) and (33) into Eq. (21), we can get

σ(j)k =
[
(uj+yj ·cj)·ȳk−(ūj+ȳjcj)yk

īj

]
∆nk
� (Tk + Dkck) = (Tk+ckDk)

īj
(ij · ȳk − īj · yk)∆nk� ,

while j = k + 1, k + 2, · · · , n.
(34)
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