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The theoretical calculation model for a mosaic error was established based on the plane equation for a grating sur-
face and the relationship equation for a mosaic grating surface. A mosaic grating was obtained based on this model.
In the experiment, the mosaic error was calculated based on the diffraction wavefronts of two groups of mosaic
gratings that were obtained simultaneously with a Zygo interferometer. The difference between the wavefront of
the mosaic grating and the average wavefront of the mosaic grating element was 0.031λ. The maximum far-field
intensity of the mosaic grating was 90% of that without an error. This model provides a theoretical basis for the
numerical mosaic between gratings. In addition, the mosaic error can be calculated with this model, and the quality
of the mosaic grating can be evaluated. ©2020Optical Society of America

https://doi.org/10.1364/AO.389274

1. INTRODUCTION

Diffraction gratings have been widely used as optical elements
in various applications, including spectrometers [1–3], lasers
[4–6], and couplers [7–9]. Large-size diffraction gratings are
mainly used in astronomical spectrometers and laser systems for
nuclear fusion [10–13]. In view of the difficulty of fabricating
single large-size diffraction gratings, grating tiling is the main
technique for fabricating large-size diffraction gratings.

Grating tiling technology involves placing two or more rel-
atively small-sized gratings together and rectifying the mosaic
errors between the mosaic gratings to meet certain tolerance
requirements so that the mosaic gratings can be used as a single
large-size grating. There are two methods for the correction of
mosaic errors: direct correction and indirect correction. Direct
correction mainly refers to calculating a mosaic error according
to a theoretical model and adjusting the mosaic error through a
mosaic device. Indirect correction mainly refers to adjusting a
mosaic error based on the change of a far-field diffraction spot
and a far-field interference fringe. Compared with indirect
correction, direct correction has a higher correction accuracy
and shorter correction time.

Early on, Qiao et al. [14], Harimoto [15], and Zeng and
Li [16–18] corrected mosaic errors based on the indirect
method. Prior to 2019, Cong et al. [19–21] established the
theoretical calculation model of a mosaic error based on a three-
dimensional space matrix and achieved the tiling of two echelle

gratings based on the direct method. However, based on the
theoretical calculation model, two optical paths with completely
different structures needed to be built to obtain zero-order and
non-zero-order diffraction wavefronts to calculate the mosaic
error. This procedure is difficult to apply in engineering pro-
jects. Moreover, the zero-order diffraction light of an echelle
grating is weak for a certain incident angle, so an interferometer
cannot detect the zero-order diffraction wavefront. Therefore,
the theoretical calculation model of a mosaic error needs further
study to be more suitable for practical engineering applications.

In this study, based on the plane equation for a grating surface
and the relationship equation for a mosaic grating surface, a
theoretical calculation model for the mosaic error was estab-
lished. A mosaic grating was obtained based on the theoretical
calculation model of the mosaic error. In the experiment, the
mosaic error was calculated based on the diffraction wavefronts
of two groups of mosaic gratings that were obtained simultane-
ously with a Zygo interferometer. The diffraction wavefronts
of two groups of mosaic gratings were obtained using only a
structural optical path, which made the theoretical calculation
model of the mosaic error more suitable for practical engineer-
ing applications. This model provides a theoretical basis for the
numerical mosaic between gratings. In addition, the mosaic
error can be calculated and the quality of mosaic grating can be
evaluated by this model.
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2. THEORETICAL CALCULATION MODEL FOR
THE MOSAIC ERROR

A. Relationship Equation for the Mosaic Grating
Surfaces

There were six dimensional errors between the mosaic gratings
in this study, as shown in Fig. 1. The six dimensional mosaic
errors are listed as follows:1θx , which was the error of rotation
around the x axis (grating vector direction); 1θy , which was
the error of rotation around the y axis (grating line direction);
1θz, which was the error of rotation around the z axis (grating
normal direction);1x , which was the error of translation along
the x axis (grating vector direction); 1y , which was the error
of translation along the y axis (grating line direction); and1z,
which was the error of translation along the z axis (grating nor-
mal direction). Among these errors, the translation error 1y
only affected the effective area of the mosaic grating and did not
affect the mosaic grating performance, so it could be ignored.

The grating surface could be regarded as the composition
of n points numerically, and its surface could be represented
by coordinates such as [x1i , y1i , z1i ] and [x2i , y2i , z2i ], where,
i = 1, 2, . . ., n. The origin of the coordinates was the center
of the surface of the mosaic grating. According to the prin-
ciple of three-dimensional coordinate transformation, the
two coordinate systems of the mosaic grating surface could
be completely coincident after rotation and translation. The
relationship between the two surfaces of the mosaic grating can
be expressed as

G2i
T
= Rz(1θz) · R y (1θy ) · Rx (1θx )

·

G1i
T
+

1x + L
1y
1z

 , (1)

where X T represents the transpose of the matrix X . G1i and G2i

represent any points on G1 and G2 gratings, respectively. L is
the side length of the grating along the x direction. Rx , R y , and
Rz are the rotation matrices rotating around the x , y , and z axes,
respectively, which can be obtained according to the rotation
rule of space points around the coordinate axes [22]. Therefore,
Rx (1θx ), R y (1θy ), and Rz(1θz) can be expressed as

Fig. 1. Mosaic errors for the mosaic gratings. The x axis was parallel
to the grating vector direction, the y axis was parallel to the grating line
direction, and the z axis was parallel to the grating normal direction.

Rx (1θx ) =

1 0 0
0 cos(1θx ) sin(1θx )

0 −sin(1θx ) cos(1θx )



R y (1θy ) =

 cos(1θy ) 0 −sin(1θy )

0 1 0
sin(1θy ) 0 cos(1θy )



Rz(1θz) =

 cos(1θz) sin(1θz) 0
−sin(1θz) cos(1θz) 0

0 0 1


. (2)

The two elements of the mosaic gratings were from the same
master grating, and the grating surface could be regarded as
completely consistent. Therefore, the overall surface coordinate
of grating G2 could be shifted to the G1 direction by L . Then,
Eq. (1) could be transformed as

G2i
T
= Rz(1θz) · R y (1θy ) · Rx (1θx ) ·

G1i
T
+

1x
1y
1z

 .

(3)
In the experiment with the grating tiling, the error of rotating
was generally within 200 µrad, and the error of translation
was generally within 2 µm. Therefore, the mosaic error could
be regarded as a small amount. In addition, the z term in the
equation represents the profile error of the grating surface. The
profile error was the peak to valley (PV) of the grating surface,
which was generally less than 0.25λ (λ= 632.8 nm) for a
qualified grating, so z was also a small amount. According to the
principle of small quantity approximation, the first-order small
quantity was retained, and the second-order small quantity
was ignored. By simplifying Eq. (3), the relationship equation
between mosaic grating surfaces could be written as x2i

y2i

z2i

=
 x1i +1x + y1i ·1θz

y 1i +1y − x1i ·1θz

z1i +1z+ x1i ·1θy − y1i ·1θx

 . (4)

B. Plane Equation for the Grating Surface

The plane equation for the grating surface could be obtained
from the plane fitting equation for the least squares method and
the relationship between the grating surface and the diffraction
wavefront. Based on the principle of the grating diffraction
wavefront detected by the Zygo interferometer [23], the transla-
tion of the grating only affects the effective area of the diffraction
wavefront detected. In addition, to facilitate the mosaic of
gratings, the grating is usually adjusted to have only one-
dimensional rotation error with the reference mirror before
detecting the diffraction wavefront. Therefore, according to the
principle that spatial two-point coordinates can be transformed
into each other after rotation and translation, the geometric
relationship between the coordinates of the points on the grating
surface and the coordinates of the diffraction wavefront can be
expressed as

1T
=
[
R y (θi )+ R y (θk)

]
· GT , (5)
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where θi is the incident angle, θk is the diffraction angle, R y (θi )

is the rotation matrix of the rotation θi angle around the y axis,
R y (θk) is the rotation matrix of the rotation θk angle around
the y axis, G is the corresponding point of the grating surface,
and 1 is the corresponding point of the diffraction wavefront.
1= [u, v, w], where u and v are the pixels on the detector cor-
responding to the detected diffraction wavefront, and the units
of u and v are one pixel. The detector in the Zygo interferometer
has 512× 480 pixels, and the size of a pixel is 18.512 µm. w
is the wavefront of the grating, the measurement accuracy of
which could reach 10−10 µm.

The numerical matrix of the diffraction wavefront obtained
with the detector could be fitted into a plane based on the prin-
ciple of least squares plane fitting. The plane fitting equation for
the least squares method could be expressed as

w= a · u + b · v + c , (6)

where a , b, and c are constants that represent the plane coef-
ficients. a , b, and c could be determined according to the
principle of the least squares method [24].

Therefore, by substituting Eq. (5) and grating equation
Eq. (7) into Eq. (6), the plane equation for the grating surface
could be obtained as shown in Eq. (8):

sinθi + sin θk =
mλ
d
, (7)

where d is the grating constant, m is the diffraction order, and λ
is the wavelength of the detection light:

z=
a · (cos θi + cos θk)−

mλ
d

(cos θi + cos θk)+ a · mλ
d

· x

+
2b

(cos θi + cos θk)+ a · mλ
d

· y

+
c

(cos θi + cos θk)+ a · mλ
d

. (8)

C. Calculation of the Mosaic Error between the
Mosaic Gratings

According to Eq. (8), the plane equation for the mosaic grating
could be obtained as follows:

z1i =
a11 · (cos θi + cos θk)−

mλ
d

(cos θi + cos θk)+ a11 ·
mλ
d

· x1i

+
2b11

(cos θi + cos θk)+ a11 ·
mλ
d

· y1i

+
c 11

(cos θi + cos θk)+ a11 ·
mλ
d

, (9)

z2i =
a12 · (cos θi + cos θk)−

mλ
d

(cos θi + cos θk)+ a12 ·
mλ
d

· x2i

+
2b12

(cos θi + cos θk)+ a12 ·
mλ
d

· y2i

+
c 12

(cos θi + cos θk)+ a12 ·
mλ
d

, (10)

where a11, b11, and c 11 are the coefficients of the plane equation
for the G1 surface; a12, b12, and c 12 are the coefficients of the
plane equation for the G2 surface; d is the grating constant; m
is the diffraction order; and λ is the wavelength of the detection
light.

The displacement error in the y direction had no effect on the
overall performance of the mosaic grating, such as dispersion,
resolution, and wavefront, so it could be ignored. By substi-
tuting Eq. (4) into Eq. (10), another expression for the plane
equation for the grating G1 surface could be obtained, as shown
in Eq. (11):

z1i =
a12 · (cos θi + cos θk)−

mλ
d −1θy · (cos θi + cos θk)

(cos θi + cos θk)+ a12 ·
mλ
d

· x1i

+
2b12 +1θx · (cos θi + cos θk)−1θz ·

mλ
d

(cos θi + cos θk)+ a12 ·
mλ
d

· y1i

+
c 12 −1x · mλ

d −1z · (cos θi + cos θk)

(cos θi + cos θk)+ a12 ·
mλ
d

.

(11)

Based on the z axis, the corresponding coefficients of the two
plane equations for the G1 surfaces were equal. According to
Eqs. (9) and (11), Eq. (12) could be obtained as follows:

a12 · (cos θi + cos θk)−
mλ
d −1θy · (cos θi + cos θk)

(cos θi + cos θk)+ a12 ·
mλ
d

=
a11 · (cos θi + cos θk)−

mλ
d

(cos θi + cos θk)+ a11 ·
mλ
d

,

2b12 +1θx · (cos θi + cos θk)−1θz ·
mλ
d

(cos θi + cos θk)+ a12 ·
mλ
d

=
2b11

(cos θi + cos θk)+ a11 ·
mλ
d

,

c 12 −1x · mλ
d −1z · (cos θi + cos θk)

(cos θi + cos θk)+ a12 ·
mλ
d

=
c 11

(cos θi + cos θk)+ a11 ·
mλ
d

. (12)

Based on Eq. (12), 1θx and 1θz affected each other. 1θx and
1θz could not be calculated separately.1x and1z also affected
each other, and 1x and 1z could not be calculated separately.
However, the coefficients of 1θz and 1x were both mλ/d .
Therefore, keeping the coefficients of1θz and1x unchanged,
for another detection light with the same diffraction order and a
different incident angle, another expression for the plane equa-
tion for the G1 and G2 surfaces could be obtained, and Eq. (13)
could be obtained as follows:
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a22 ·
(
cos θi

′
+ cos θk

′
)
−

mλ
d −1θy ·

(
cos θi

′
+ cos θk

′
)(

cos θi
′
+ cos θk

′
)
+ a22 ·

mλ
d

=
a21 ·

(
cos θi

′
+ cos θk

′
)
−

mλ
d(

cos θi
′
+ cos θk

′
)
+ a21 ·

mλ
d

,

2b22 +1θx ·
(
cos θi

′
+ cos θk

′
)
−1θz ·

mλ
d(

cos θi
′
+ cos θk

′
)
+ a22 ·

mλ
d

=
2b21(

cos θi
′
+ cos θk

′
)
+ a21 ·

mλ
d

,

c 22 −1x · mλ
d −1z ·

(
cos θi

′
+ cos θk

′
)(

cos θi
′
+ cos θk

′
)
+ a22 ·

mλ
d

=
c 21(

cos θi
′
+ cos θk

′
)
+ a21 ·

mλ
d

,

(13)

where a21, b21, and c 21 are the coefficients of the plane equation
for the G1 surface; a22, b22, and c 22 are the coefficients of the
plane equation for the G2 surface; θi

′ is the incident angle; and
θk
′ is the diffraction angle.
Therefore, according to Eqs. (12) and (13), the mosaic errors

could be calculated as follows:



1θx =

2b21·[(cos θi
′
+cos θk

′)+a22·
mλ
d ]

(cos θi
′+cos θk

′)+a21·
mλ
d

−
2b11·[(cos θi+cos θk )+a12·

mλ
d ]

(cos θi+cos θk )+a11·
mλ
d

−(2b22−2b12)

(cos θi ′+cos θk ′)−(cos θi+cos θk )

1θy =−

a11·(cos θi+cos θk )−
mλ
d

(cos θi+cos θk )+a11·
mλ
d
·[(cos θi+cos θk )+a12·

mλ
d ]−a12·(cos θi+cos θk )+

mλ
d

(cos θi+cos θk )

1θz =
2b12+1θx ·(cos θi+cos θk )

mλ
d

−
2b11·

[
(cos θi+cos θk )+a12·

mλ
d

]
(cos θi+cos θk )·

mλ
d +a11·

(
mλ
d

)2

1z=−

c21·
[
(cos θi

′
+cos θk

′)+a22·
mλ
d

]
(cos θi

′+cos θk
′)+a21·

mλ
d

−
c11·[(cos θi+cos θk )+a12·

mλ
d ]

(cos θi+cos θk )+a11·
mλ
d

−(c22−c12)

(cos θi ′+cos θk ′)−(cos θi+cos θk )

1x = c12−1z·(cos θi+cos θk )
mλ
d

−
c11·

[
(cos θi+cos θk )+a12·

mλ
d

]
(cos θi+cos θk )·

mλ
d +a11·

(
mλ
d

)2

. (14)

3. EXPERIMENT

A. Wavefront Detection System for a Mosaic Grating

Figure 2 shows the experimental optical path diagram of the
wavefront detection system for the mosaic grating. As shown in
Fig. 2, a Zygo interferometer was used to detect the wavefronts
of the mosaic gratings. A prism was used to generate a second
incident angle for the detection beam in the same error detection
optical path. Mirrors 1 and 2 were used to make the two incident
angle detection beams return to their original path after grating
diffraction to allow the Zygo interferometer to detect the grating
wavefront. The key parameters for all of the components are
listed in Table 1. In the experiment, the first incident angle θi

was 68◦, the first diffraction angle θk was 60.75◦, the second
incident angle θi

′ was 74.66◦, and the second diffraction angle

Fig. 2. Experimental optical path diagram of the wavefront detec-
tion system for the mosaic grating.

θk
′ was 56.65◦. In addition, the blaze order of grating is−36th,

which is usually selected as the mosaic order.

B. Mosaic Device

The mosaic device consisted of three rotating tables controlled
by the actuator and two piezoelectric ceramic translation
tables, as shown in Fig. 3 . The rotation of the rotary table
was achieved by adjusting the step number of the actua-
tor. The translation of the translation table was achieved by

adjusting the step number of the piezoelectric ceramics. The
detailed adjustment parameters for the correction of the mosaic
errors with this device are listed in Table 2.

Fig. 3. Mechanical structure of the mosaic device.
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Table 1. Key Parameters for All Components

Components Parameters Performance Index

Zygo interferometer Wavelength 632.8 nm
Beam diameter 100 mm

Type GPI XP/D
Mirror Diameter 100 mm

Reflectivity >90%
PV 0.05λ(λ= 632.8 nm)

Prism Material Quartz
Pass light area 50 mm× 50 mm
Wedge angle 14◦

Mosaic grating element Area 35 mm× 35 mm
Groove density 79 line/mm

Blaze angle 64◦

Mosaic device Rotation accuracy 0.3µrad
Translation accuracy 1 nm

Table 2. Parameters of the Adjustment Mechanisms
Used for the Correcting Errors

Mosaic
Errors 1θx 1θ y 1θz 1x 1z

Step (nm) 30 30 30 1 1
Rotation
radius (mm)

100 70 65 — —

Trip 12.7 mm 12.7 mm 12.7 mm 250µm 250µm
Step angle
(µrad)

0.300 0.429 0.462 — —

Step
number

1θx/0.3 1θy /0.429 1θz/0.462 1x/1 1z/1

4. RESULTS AND DISCUSSION

The correction of the mosaic error included rough correction
and fine correction. The rough correction involved adjusting
the far-field spot coincidence of the mosaic grating. The fine
correction involved adjusting the size of the mosaic error to
meet the requirements. In the experiment, after rough correc-
tion, the −36th diffraction wavefront obtained with the Zygo
interferometer for the mosaic grating was as shown in Fig. 4.
There were two groups of wavefronts for the mosaic grating, as
shown in Fig. 4. The wavefront of the upper two gratings was the
diffraction wavefront at the first incident angle, and the wave-
front of the lower two gratings was the diffraction wavefront at
the second incident angle. The wavefronts of the first and third
gratings are the wavefronts of the reference gratings, and the
wavefronts of second and fourth gratings are the wavefronts of
the adjusting gratings. According to the principle of the least

Fig. 4. −36th diffraction wavefront for the mosaic grating obtained
with the Zygo interferometer at two incident angles.

Table 4. Adjustment Steps of the Actuator and the
Piezoelectric Ceramic for the Correcting Errors

Mosaic Errors 1θx 1θ y 1θz 1x 1z

Step number 150 430 50 176 316

squares method, the plane fitting coefficients of the four wave-
fronts in Fig. 4 could be obtained as shown in Table 3. Then, the
errors between the mosaic gratings in Fig. 4 could be calculated
by Eq. (14) as shown in Eq. (15):

1θx = 44.865 µrad
1θy = 184.39 µrad
1θz = 23.275 µrad
1z= 175.87 nm
1x = 315.97 nm

. (15)

Based on the mechanical adjustment parameters in Table 2, the
step numbers of the actuator and the piezoelectric ceramic could
be calculated as shown in Table 4. Therefore, in the same calcu-
lation process as Eq. (15), after the fine correction process from
the diffraction wavefront in Fig. 4 to the diffraction wavefront
in Fig. 5(a), the errors between the mosaic gratings in Fig. 5(a)
could be calculated as

1θx = 0.822 µrad
1θy = 0.253 µrad
1θz = 0.576 µrad
1z= 8.745 nm
1x = 17.105 nm

, (16)

where Fig. 5(a) shows the −36th diffraction wavefront for the
mosaic grating obtained by the Zygo interferometer after fine
correction, and Table 5 shows the plane fitting coefficients of the
four wavefronts in Fig. 5(a).

Table 3. Plane Fitting Coefficients of the Four Wavefronts

First Incident Angle Second Incident Angle

Wavefront1 Wavefront2 Wavefront1 Wavefront2

a11 =−4.9411× 10−5 a12 =−1.4919× 10−5 a21 =−8.7551× 10−5 a22 =−4.4425× 10−5

b11 =−8.0342× 10−6 b12 =−6.4541× 10−6 b21 = 3.4163× 10−7 b22 = 3.0188× 10−6

c 11 = 6.7847× 10−8 c 12 = 2.4079× 10−8 c 21 = 1.0109× 10−7 c 22 = 4.1856× 10−8
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Fig. 5. (a)−36th diffraction wavefront for the mosaic grating obtained with the Zygo interferometer at two incident angles after fine correction.
(b)−36th diffraction wavefront of the mosaic grating at one of the two incident angles. (c) Far-field energy distribution for the mosaic grating. The
pink curve indicates the situation when the error was zero and the blue curve indicates the situation when 1θx = 0.822 µrad, 1θy = 0.253 µrad,
1θz = 0.576 µrad,1z= 8.745 nm, and1x = 17.105 nm.

Table 5. Plane Fitting Coefficients of the Four Wavefronts

First Incident Angle Second Incident Angle

Wavefront1 Wavefront2 Wavefront1 Wavefront2

a11 = 1.6708× 10−5 a12 = 1.6756× 10−−5 a21 = 1.6386× 10−5 a22 = 1.6250× 10−5

b11 =−2.7606× 10−7 b12 =−1.1491× 10−6 b21 =−1.6521× 10−6 b22 =−2.5050× 10−6

c 11 =−1.6194× 10−8 c 12 =−1.5222× 10−8 c 21 =−1.7349× 10−8 c 22 =−1.5539× 10−8

The diffraction wavefront of mosaic grating can be charac-
terized only by the wavefront at an incident angle. Therefore,
Fig. 5(b) was obtained. Figure 5(b) shows the −36th diffrac-
tion wavefront of the mosaic grating at one of the two incident
angles. The PV was 0.403λ. In the experiment, the PV wave-
fronts of the mosaic grating elements were 0.349λ and 0.395λ.
The average PV wavefront of the mosaic grating element was
0.372λ. The difference between the mosaic grating wavefront
and the average wavefront of the mosaic grating element (1PV)
was 0.031λ. In the experiment, when the value of1PV was less
than 0.2λ, we considered that the grating had been perfectly
mosaicked. Therefore, the PV wavefront of the mosaic grating
met the requirement. In addition, except for the wavefront of
the mosaic grating, the far-field energy of the mosaic grating
could also be used to evaluate the quality of the mosaic grating.
As shown in Fig. 5(c), based on Fraunhofer’s principle [25], the
far-field energy distribution of the mosaic grating was obtained
with MATLAB. The maximum far-field diffraction intensity
of the mosaic grating was 90% of that without an error, which
met the requirement that the maximum far-field diffraction
intensity of the mosaic grating was 90% of that without an error.

5. CONCLUSION

The theoretical calculation model of a mosaic error was estab-
lished based on the plane equation for a grating surface and the
relationship equation for a mosaic grating surface. Based on
this model, we determined the mosaic of two echelle gratings.
In the experiment, the mosaic error was calculated based on
the diffraction wavefront of two groups of mosaic gratings that
were obtained simultaneously with a Zygo interferometer. The
difference between the wavefront of the mosaic grating and the

average wavefront of the mosaic grating element (1PV) was
0.031λ. The maximum far-field diffraction intensity of the
mosaic grating was 90% of that without an error. These two
results proved the effectiveness of the theory calculation model
for the mosaic error. Compared with the previous theoretical
calculation model for a mosaic error, this model only needed to
build an optical path with a structure to obtain two groups of
wavefronts for the mosaic grating for error calculation, which
made this theoretical calculation model more suitable for practi-
cal engineering applications. This model is suitable for all blazed
gratings with different line densities and different blazed angles,
and this model provides a theoretical basis for the numerical
mosaic between gratings. In addition, a mosaic error can be
calculated with this model, and the quality of a mosaic grating
can be evaluated.
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