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Abstract: Themonotonicity of depth in a geometric constraint based absolute phase unwrapping
is analyzed and a monotonic discriminant of ∆(uc,vc) is presented in this paper. The sign of
the discriminant determines the distance selection for the virtual plane to create the artificial
absolute phase map for a given structured light system. As ∆(uc,vc) ≥ 0 at an arbitrary point on
the CCD pixel coordinates the minimum depth distance is selected for the virtual plane, and the
maximum depth distance is selected as ∆(uc,vc) ≤ 0. Two structured light systems with different
signs of the monotonic discriminant are developed and the validity of the theoretical analysis is
experimentally demonstrated.
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1. Introduction

Recently, three-dimensional (3D) shape measurement has become one of the most active research
areas in optical metrology [1]. Among 3D shape measurement techniques, the structured
light method possesses advantages of fast-speed, high-accuracy and non-destruction, and has
been applied in diverse fields [2–4], including reverse engineering, hyperspectral imaging, and
microscopic measurement.
In structured light technology, the phase recovery from the fringe patterns is required and

the main popular methods include phase-shifting algorithm [5], Fourier transform method [6],
windowed Fourier transform [7] and deep learning [8]. By the above fringe analysis methods only
wrapped phase ranging from −π to π can be obtained, and the phase unwrapping is required to
obtain a continuous phase distribution. Conventional phase unwrapping methods can be classified
into two categories, the spatial phase unwrapping (SPU) and temporal phase unwrapping (TPU)
[9]. SPU provides a relative phase by integrating the phase gradient over a path that covers the
domain of interest. Although SPU has the advantages of simplicity and convenience, it fails in
simultaneously measurement of multiple isolated objects. In contrast, TPU unwraps the wrapped
phase by capturing additional images, and the retrieval of absolute phase is achieved. This
method is competent for the measurement of multiple isolated objects and has the advantage of
stronger suppression of noise than SPU. In a review paper, Zuo et al. [10] thoroughly studied
three types of TPUmethods, including multi-frequency, multi-wavelength and number-theoretical
approaches.
Although TPU can retrieve the absolute unwrapped phase, it is not suitable for high-speed

measurement applications due to the additional images’ acquisition. In order to solve afore-
mentioned problems, An et al. [11] proposed an absolute phase unwrapping method based on
geometric constraints of the structured light system. In the method, an artificial absolute phase
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map, Φmin, at a given virtual depth plane z = zmin, is firstly generated based on the internal
and external parameters of the calibrated structured light system. Then, the fringe order of
each pixel in the wrapped phase map is determined by computing the difference between the
wrapped phase and the artificial absolute phase. Finally, with the determined fringe orders, the
absolute phase is obtained from the wrapped phase. The geometric constraint method has the
advantages of high-speed, simple system setup, simultaneous multiple objects’ measurement and
robustness to noise. This method has also been applied to other phase recovery to improve the
accuracy and speed of 3D measurement. For example, Hyun and Zhang [12] used this method to
enhance two-frequency phase-shifting. Li et al. [13] proposed a single-shot method based on
geometric constraint to overcome the limitation in Fourier transform profilometry and reduce the
motion-induced error [14]. In recent years, researchers have also proposed many methods to
improve its measurement depth [9,15,16].

However, we found in our actual experiments that the selection of closest depth distance for the
virtual plane used in reference [11] to generate an artificial absolute phase map was not always
correct, and for some systems the maximum depth distance should be selected. Therefore, how
to determine the correct depth distance for the virtual plane in a given structured light system is
the first important issue in the application of geometric constraint.

In order to solve this issue, in this paper, based on the theory of An et al. [11], the monotonicity
of the depth z(uc, vc) with respect to projector pixel coordinate of up by means of geometric
constraint is theoretically investigated and a discriminant of ∆(uc, vc) determined by the internal
and external parameters of the calibrated structured light system is presented. It is shown that
as ∆(uc, vc) ≥ 0 at arbitrary point on the CCD pixel coordinates, the minimum depth distance
is selected for the virtual plane to create the artificial absolute phase map, and the maximum
depth distance must be selected as ∆(uc, vc) ≤ 0. Several experiments with different structured
light systems are conducted to verify the correctness of the proposed monotonic discriminant of
∆(uc, vc).

Section 2 explains principles of the proposed method. Section 3 presents several experimental
results to validate the method. Section 4 gives the summary of this paper.

2. Principle

2.1. N-step phase-shifting algorithm

For the N-step phase-shifting algorithm with equal phase shifts, the nth fringe pattern can be
described as

In = I ′(x, y) + I ′′(x, y) cos(φ(x, y) +
2πn
N
), (1)

where I ′(x, y) is the average intensity, I ′′(x, y) is the intensity modulation, and φ(x, y) is the phase
to be solved. Simultaneously solving the N equations by a least-squares method, φ(x, y) can be
written as

φ(x, y) = −tan−1(

N∑
n=1

In sin( 2nπ
N )

N∑
n=1

In cos( 2nπ
N )

). (2)

Since the arctangent function only ranges from −π to π, a phase unwrapping algorithm is needed
to obtain the absolute phase value

Φ(x, y) = φ(x, y) + 2πk(x, y), (3)

where Φ(x, y) denotes the absolute unwrapped phase of φ(x, y) and k(x, y) is an integer number
called the fringe order [17]. Essentially, the process of the absolute phase unwrapping in the
structured light system is to determine the fringe order of k(x, y) for each stripe captured by CCD.
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2.2. Structured light system model and calibration

In structured light system, a well-known linear pinhole model is usually used to describe the
imaging process of a camera. Its mathematical expression is as follows,

sc[uc, vc, 1]T = Pc[xw, yw, zw, 1]T , (4)

Pc = Ac[Rc, tc], (5)
where sc is a scale factor, superscript c denotes camera, superscript w denotes the world coordinates,
Ac is the intrinsic matrix of the camera, Rc and tc are the camera’s extrinsic matrices, and Pc is a
3 × 4 projector matrix used to describe the process of projecting a point (xw, yw, zw) of the world
coordinates to 2D image coordinates (uc, vc). The projector can be regarded as an inverse camera.
Similarly, the pinhole model of the projector is as follows,

sp[up, vp, 1]T = Pp[xw, yw, zw, 1]T , (6)

Pp = Ap[Rp, tp], (7)
where sp is a scale factor, superscript p denotes projector, Ap is the intrinsic matrix of the projector,
Rp and tp are the projector’s extrinsic matrices, and Pp is a 3× 4 projector matrix used to describe
the process of projecting a point (xw, yw, zw) of the world coordinates to DMD coordinates (up, vp).

In the actual calibration process, in order to make the projector be able to capture images, Zhang
and Huang [18] proposed a phase assistant method to establish a one-to-one correspondence
relationship between the camera and projector pixels using two sets of orthogonal sinusoidal
fringe patterns. Then the calibration target images captured by CCD are mapped onto the DMD
plane using this established correspondence.

2.3. Absolute phase unwrapping using geometric constraint

Once the structured light system is calibrated by the method described in section 2.2, the projector
matrices Pc and Pp can be estimated. Then, there are six equations with seven unknowns
(sc, sp, xw, yw, zw, up, vp) provided by Eqs. (4) and (6). Generally, in order to acquire 3D shape
information of an object, another constraint equation is provided by the retrieval of absolute phase
from the captured fringe patterns. The projector pixel coordinates up and vp can be determined
by the following equations,

up =
ΦV (uc, vc)

2π
T , (8)

vp =
ΦH(uc, vc)

2π
T , (9)

where ΦV and ΦH are the absolute phase maps along the vertical and horizontal directions,
respectively, and T is the fringe period.
An et al. [11] proposed an alternative approach. It was suggested that if a virtual plane was

placed at the closest distance from the camera coordinate system zw = zw
min, the remaining six

parameters could be solved uniquely. With Eq. (4), the correspondent xw
min and yw

min for each
camera pixel (uc, vc) can be expressed as,

xw
min

yw
min

 =


pc
31u

c − pc
11 pc

32u
c − pc

12

pc
31v

c − pc
21 pc

32v
c − pc

22


−1 

pc
14 − pc

34u
c − (pc

33u
c − pc

13)zmin

pc
24 − pc

34v
c − (pc

33v
c − pc

23)zmin

 . (10)

Substituting (xw
min, y

w
min, z

w
min) into Eq. (6), the correspondent projector pixel coordinates (u

p, vp)

can be described as,
up =

pp
11xw

min+pp
12yw

min+pp
13zw

min+pp
14

pp
31xw

min+pp
32yw

min+pp
33zw

min+pp
34

vp =
pp
21xw

min+pp
22yw

min+pp
23zw

min+pp
24

pp
31xw

min+pp
32yw

min+pp
33zw

min+pp
34

. (11)
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where pc
ij and pp

ij are the matrix elements of the Pc and Pp respectively, with subscripts of i and
j being the row and column numbers respectively. Without losing generality, we assume that
the projected fringe patterns are along the vertical direction. The absolute phase ΦV

min(u
c, vc)

corresponding to zw
min can be determined as,

Φ
V
min(u

c, vc) =
2π
T

up. (12)

Then, the fringe order of k(uc, vc) can be determined as,

k(uc, vc) = ceil

[
ΦV

min(u
c, vc) − φ(uc, vc)

2π

]
, (13)

where ceil is a function that gives the nearest upper integer number. Due to the generated phase
ΦV

min(u
c, vc) is absolute phase, this method gives absolute phase unwrapping. Essentially, by

means of geometric constrains the wrapped phase is unwrapped by referring to the generated
phase of ΦV

min(u
c, vc) which is an ideal noiseless absolute phase distribution. Therefore this

method has advantage of strong suppression of noise. This is compared with TUP method where
the phase unwrapping is done by referring to the absolute phase distribution with noise.

2.4. Monotonicity analysis

In this part, we theoretically investigate the monotonicity of absolute phase unwrapping by
geometric constraint in detail, and a monotonic discriminant is derived which is used to determine
the correct depth distance of the virtual plane for a given structured light system.
Since ceil is a function that gives the nearest upper integer number, the unwrapped phase
Φ(uc, vc) is always greater than the generated phase ΦV

min(u
c, vc) for arbitrary point on the CCD

pixel coordinates, and the mathematical expression is as

Φ(uc, vc) ≥ ΦV
min(u

c, vc). (14)

Moreover, the depth distance of arbitrary point at the tested object is always greater than this
known closest distance, i.e.,

z(uc, vc) ≥ zw
min(u

c, vc). (15)
Obviously, if the two conditions of Eqs. (14) and (15) are simultaneously true for arbitrary point
on the CCD pixel coordinates, the measurement depth of z(uc, vc) must be a monotonically
increasing function as unwrapped phase of Φ(uc, vc). As shown in Eq. (8), the absolute phase
of ΦV (uc, vc) monotonically increases as the projector pixel of up. Therefore, to know the
monotonicity of depth z(uc, vc) as Φ(uc, vc), we only need to investigate the variation of depth
z(uc, vc) with respect to up, i.e.

z(uc, vc) → Φ(uc, vc) =
2π
T

up → up. (16)

Solving Eqs. (4) and (6) simultaneously leads to
ucPc

3,4 − Pc
1,4

vcPc
3,4 − Pc

2,4

upPp
3,4 − Pp

1,4


=


Pc
1,1 − ucPc

3,1 Pc
1,2 − ucPc

3,2 Pc
1,3 − ucPc

3,3

Pc
2,1 − vcPc

3,1 Pc
2,2 − vcPc

3,2 Pc
2,3 − vcPc

3,3

Pp
1,1 − upPp

3,1 Pp
1,2 − upPp

3,2 Pp
1,3 − upPp

3,3




x

y

z


. (17)

In order to facilitate the derivation process, we abbreviate the above formula as follows
b1

b2

b3


=


m1 m2 m3

m4 m5 m6

m7 m8 m9




x

y

z


, (18)
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b1 = ucPc
3,4 − Pc

1,4, b2 = vcPc
3,4 − Pc

2,4, b3 = upPp
3,4 − Pp

1,4,m1 = Pc
1,1 − ucPc

3,1,

m2 = Pc
1,2 − ucPc

3,2,m3 = Pc
1,3 − ucPc

3,3, m4 = Pc
2,1 − vcPc

3,1,m5 = Pc
2,2 − vcPc

3,2,

m6 = Pc
2,3 − vcPc

3,3,m7 = Pp
1,1 − upPp

3,1, m8 = Pp
1,2 − upPp

3,2, m9 = Pp
1,3 − upPp

3,3.

Then, the depth z(uc, vc) can be written as follows,

z =
(m4m8 − m5m7)b1 + (m2m7 − m1m8)b2 + (m1m5 − m2m4)b3
(m1m9 − m3m7)m5 + (m2m7 − m1m8)m6 + (m3m8 − m2m9)m4

. (19)

In the system calibration, the camera’s coordinate system is selected as the world coordinate
system, and so the projection matrix of the camera can be described as,

Pc =


f c
x 0 uc

0 0

0 f c
y vc

0 0

0 0 1 0


,

m1 = f c
x ;m2 = 0;m3 = uc

0 − uc; b1 = 0;

m4 = 0;m5 = f c
y ;m6 = vc

0 − vc; b2 = 0.
(20)

f c
x and f c

y describe the focal lengths of the camera lens along x and y axes respectively, and (uc
0, v

c
0)

is the principle point coordinate. Thus, Eq. (18) can be simplified as,

z =
m1m5b3

m1m5m9 − m3m5m7 − m1m6m8
. (21)

Generally, the focal lengths of the camera lens in both x and y are approximately equal, and
therefore we assume m1 = m5 without losing generality. So the depth expression can be further
simplified as,

z =
m1b3

m1m9 − m3m7 − m6m8
. (22)

It should be noted that b3,m7,m8,m9 are functions of up. We define two functions as g(up) = m1b3
and h(up) = m1m9 − m3m7 − m6m8. Then, the derivative of the depth z(uc, vc) with respect to
projector pixel coordinate of up can be expressed as

dz
dup
=

dg
dup

h − dh
dup

g

h2
. (23)

Monotonicity is determined by the sign of the numerator, due to the denominator is a square
term. After calculation, the expression of the numerator is derived which is as

∆(uc, vc) = f c
x (h

p
13h

p
34 − hp

33h
p
14) + (u

c
0 − uc)(hp

31h
p
14 − hp

11h
p
34) + (v

c
0 − vc)(hp

32h
p
14 − hp

12h
p
34). (24)

In this paper, we call this expression as the monotonic discriminant. It is a function of the internal
and external parameters of the system, and the pixel coordinates of the CCD. In order to judge its
sign, it is necessary to substitute the calibrated parameters into Eq. (24).
The discriminant gives the insight that there may be a monotonically decreasing form of

the depth distance of z(uc, vc) with respect to the projector pixel coordinate of up. Obviously,
the maximum depth distance, rather than the minimum depth distance, should be selected to
generate the absolute phase of Φmax(uc, vc) for the phase unwrapping in this case. In a summary,
as ∆(uc, vc) ≥ 0 at arbitrary point on the CCD pixel coordinates the minimum depth distance is
selected for the virtual plane to create the artificial absolute phase map, and the maximum depth
distance is selected as ∆(uc, vc) ≤ 0.
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3. Experiment

To verify the performance of the proposed discriminant, we develop a structured light system,
shown in Fig. 1. The hardware system includes a single CCD (DAHENG MER-131-210U3M-L)
and a projector (DLP6500). The camera’s resolution is 1024 × 1280 pixels and the projector’s
resolution is 1080 × 1920 pixels. The camera has a focal length of 12.5 mm and sensor unit
size of 4.8µm × 4.8µm. The projector has a focal length of 23 mm and sensor unit size of
7.6µm × 7.6µm.

Fig. 1. Structured light system setup which meets the condition of monotonic increase of
depth distance z(uc, vc) as projector pixel coordinate up (∆(uc, vc) ≥ 0).

In this paper, the structured light system is calibrated by the methods proposed in reference
[19]. The calibration results of the system are as follows. The intrinsic parameter matrices for
the camera and the projector are, respectively,

Ac =


2650.16 0 631.99

0 2650.16 506.73

0 0 1


, and Ap =


2896.53 0 1002.45

0 2896.67 544.85

0 0 1


.

In the determination of extrinsic parameter matrices, the camera’s coordinate system is selected
as the world coordinate system. The extrinsic parameter matrices of the established measurement
system can be acquired which are as

[Rc, tc] =


1 0 0 0

0 1 0 0

0 0 1 0


and [Rp, tp] =


0.9962 −0.0199 0.0846 −148.9366

0.0158 0.9987 0.0489 −28.3887

−0.0854 −0.0473 0.9952 122.0496


.

The values of the monotonic discriminant on the CCD pixel coordinates, ∆(uc, vc), are calculated
by substituting these calibrated system parameters into Eq. (24) and the result is shown in Fig. 2.
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Fig. 2. Calculation result of the monotonic discriminant of the structured light system
shown in Fig. 1.

Obviously, this is the case of the ∆(uc, vc) ≥ 0, indicating that the depth distance of z(uc, vc)

monotonically increases as the projector pixel coordinate of up.
In the 3D measurement experiments, a sculpture shown in Fig. 3(a) is measured by the

three-frequency phase-shifting approach firstly. We adopt nine-, five-, and five-step phase-shifting
method for T1 = 80 pixels, T2 = 120 pixels and T3 = 270 pixels, respectively. Figure 3(b) shows
the acquired wrapped phase from the fringe patterns of T1 = 80 pixels. The 3D measurement
result of the sculpture is shown in Fig. 3(c), where the minimum and maximum distances of this
sculpture depth are zmin = 546.7465 mm and zmax = 595.6813 mm, respectively.

Then, the minimum and maximum distances of the object are separately adopted to generate the
artificial phase map for the absolute phase unwrapping by geometric constraint. To be concrete,
the artificial phase map of Φmin is created at the virtual plane of z = 546 mm, as described
in section 2.3. The wrapped phase shown in Fig. 3(b) is then unwrapped by substituting the
minimum phase map into Eq. (13) and the reconstructed 3D shape of the sculpture is shown in
Fig. 4(a) where the minimum and maximum depths of the sculpture are zmin = 546.7465 mm and
zmax = 595.6813 mm, respectively. This result is the same as that obtained by the three-frequency
phase-shifting approach. In a comparison, as the artificial phase map is created at the virtual plane
of z = 596 mm for the absolute phase unwrapping, the reconstructed 3D shape is as Fig. 4(b),
where the minimum and maximum depths are zmin = 629.7983 mm and zmax = 697.2186 mm,
respectively, different from that obtained by the three-frequency phase-shifting approach. The
above experimental results prove that as ∆(uc, vc) ≥ 0 at arbitrary point on the CCD pixel
coordinates the minimum depth distance should be selected for the virtual plane to create the
artificial absolute phase map by geometric constraint approach.
To more intuitively verify the above conclusion, we randomly select a row on the CCD pixel

coordinates and then compare the depth distributions at this row in Figs. 3(c), 4(a) and 4(b). The
results are shown in Fig. 5 where the red dashed line, the blue solid line and the black solid line
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Fig. 3. 3D shape measurement by the three-frequency phase-shifting approach. (a)
Photograph of the measured sculpture; (b) Wrapped phase acquired from the fringe patterns
of T1 = 80 pixels; (c) 3D measurement result by this approach.

represent the depth distributions at the row in Figs. 3(c), 4(a) and 4(b), respectively. Obviously,
the red dashed line, the blue solid line are overlapping well, and the black solid line deviates
upwards from the red dashed line, further verifying that as ∆(uc, vc) ≥ 0 at arbitrary point on the
CCD pixel coordinates the minimum depth distance should be selected for the virtual plane to
create the artificial absolute phase map.
For the case of monotonic decrease of depth distance, we develop another structured light

system using the same hardware equipment as shown in Fig. 6.
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Fig. 4. Measurement result by geometric constraint approach. (a) 3D shape reconstruction
by geometric constraint approach with z = 546 mm to be the depth of virtual plane; (b) 3D
shape reconstruction by geometric constraint approach with z = 596 mm to be the depth of
virtual plane.

Fig. 5. The depth distributions at a randomly selected row acquired by different absolute
phase unwrapping approaches, with red dashed line, blue solid line and black solid line
representing the depth distribution in Figs. 3(c), 4(a) and 4(b), respectively.
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Fig. 6. Structured light system setup which meets the condition of monotonic decrease of
depth distance z(uc, vc) as projector pixel coordinate up (∆(uc, vc) ≤ 0).

The calibration of the system is conducted and the result is as follows. The intrinsic parameter
matrices for the camera and the projector are, respectively,

Ac =


2649.44 0 630.05

0 2649.30 509.65

0 0 1


and Ap =


2896.25 0 1008.81

0 2896.36 544.34

0 0 1


.

The extrinsic parameters matrices for the camera and the projector are, respectively,

[Rc, tc] =


1 0 0 0

0 1 0 0

0 0 1 0


and [Rp, tp] =


0.9826 −0.0043 −0.1858 158.1531

0.0138 0.9987 0.0497 −28.8705

0.1853 −0.0514 0.9813 105.9751


.

Figure 7 shows the acquired values of the discriminant on the CCD pixel coordinates of the
system after calculation. Obviously, this is the case of ∆(uc, vc) ≤ 0, indicating that the depth
distance of z(uc, vc) monotonically decreases as the projector pixel coordinate of up.
We then apply this structured light system to the 3D shape measurements of the sculpture

by different phase unwrapping approaches. Figure 8(a) shows the reconstructed 3D shape by
three-frequency phase-shifting approach, in which the minimum and maximum depth values are
zmin = 517.9246 mm and zmax = 579.4308 mm, respectively. Figure 8(b) shows the reconstructed
3D shape by geometric constraint approach with the artificial phase map of Φmin created at the
virtual plane of z = 517 mm. The minimum and maximum depths are zmin = 463.6201 mm and
zmax = 516.9674 mm, respectively. Obviously, these values are different from that obtained by
three-frequency phase-shifting approach. On the contrary, as the artificial phase map of Φmax is
created at the virtual plane of z = 580 mm for the absolute phase unwrapping, the reconstructed
3D shape is as Fig. 8(c), where the minimum and maximum depths are zmin = 517.9246 mm and
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Fig. 7. Calculation result of the monotonic discriminant of the structured light system
shown in Fig. 6.

zmax = 579.4308 mm, respectively. These values are the same as that obtained by three-frequency
phase-shifting approach. The above experimental results prove that as ∆(uc, vc) ≤ 0 at arbitrary
point on the CCD pixel coordinates the maximum depth distance should be selected to create the
artificial absolute phase map by geometric constraint approach.
We also randomly select a row on the CCD pixel coordinates and then compare the depth

distributions at this row in Figs. 8(a)–8(c). The results are shown in Fig. 9 where the red dashed
line, the black solid line and the blue solid line represent the depth distributions at the row in
Figs. 8(a)–8(c), respectively. It can be seen that the red dashed line and the blue solid line are
overlapping well, and the black solid line deviates downwards from the red dashed line, further
verifying that as ∆(uc, vc) ≤ 0 at arbitrary point on the CCD pixel coordinates the maximum
depth distance should be selected for the virtual plane to create the artificial absolute phase map.
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Fig. 8. The 3D shape measurement results by different methods. (a) 3D shape reconstruction
by three-frequency phase-shifting approach; (b) 3D shape reconstruction by geometric
constraint approach with z = 517 mm to be the depth of virtual plane; (c) 3D shape
reconstruction by geometric constraint approach with z = 580 mm to be the depth of virtual
plane.
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Fig. 9. The depth comparison in a randomly selected row acquired by different phase
unwrapping approaches, with red dashed line, black solid line and blue solid line representing
the depth distributions in Fig. 8(a), Fig. 8(b) and Fig. 8(c), respectively.
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4. Summary

We have theoretically investigated the monotonicity of depth z(uc, vc) with respect to projector
pixel coordinate of up in the absolute phase unwrapping by geometric constraint, and presented
a monotonic discriminant used to choose correct depth distance of the virtual plane to create
the artificial absolute phase map in this paper. The monotonic discriminant indicates that as
∆(uc, vc) ≥ 0 at arbitrary point on the CCD pixel coordinates, the minimum depth distance is
selected for the virtual plane, and on the contrary, as ∆(uc, vc) ≤ 0 the maximum depth distance
must be selected. Experimental results with different structured light systems demonstrate the
validity of the theoretical analysis.
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