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Abstract. To obtain satisfactory performance in characterizing optical freeform surfaces with
local features, this paper proposes a model of a radial basis function with slope-based shape
factor and distribution (RBF-SSD). Compared to previous RBF-slope models with only
slope-based shape factors, the RBF-SSD model relates both shape factors and distribution with
the surface slope, ensuring greater fitting ability can be achieved when fitting a surface with local
features. Fitting experiments for two different surfaces demonstrated the fitting ability of the
RBF-SSD model. An off-axis three-mirror system with 3° × 3.6° field of view was designed
as an example to show the optical design efficacy of our model. © 2020 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.12.125101]
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1 Introduction

With more degrees of design freedom, optical freeform surfaces are playing important roles in
the design of optical systems, especially off-axis optical systems. Owing to their arbitrary shapes,
freeform surfaces can provide enhanced aberration control and high optical performance, thus
leading to a smaller number of elements and lighter system weight.1–5 The emergence of single-
point diamond turning enables the fabrication of non-rotationally symmetric free-form surfaces.
In the design of optical systems with optical freeform surfaces, it is necessary to find a proper
mathematical model to characterize the freeform surface because different models will exhibit
different fitting features. The Zernike polynomial model,6 which contains a polynomial sequence
orthogonal to the unit circular disk and is closely related to the Seidel aberration, is a popular
optical freeform surface model. This model has been widely used in the fields of surface char-
acterization, optical design, and optical testing.7,8 Another practical freeform surface model is the
Q-type polynomial, which offers a rough interpretation of the shape at a glance and facilitates a
range of estimates of manufacturability.9,10 Both the Zernike polynomial and Q-type are global
models, which means any changes of the coefficient of any term in the polynomial will influence
the sag value of the whole aperture when fitting a surface. This leads to deterioration of fitting
performance for complicated or asymmetric surfaces, and thus additional polynomial terms or
special sample grid distributions are needed for a satisfactory performance.11,12 To obtain better
performance in the design of freeform surfaces, the radial basis function (RBF) model was first
introduced in optical design by Cakmakci et al.13,14 The surface described by the RBF model is
formed by a certain number of independent RBFs in which each basis has limited influence on
the entire aperture scope. Therefore, the RBF model is a local-type freeform surface model and
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has great potential to be used to balance large aberrations in asymmetric systems, which always
have strong local variations.

Although the original RBF model proposed by Cakmakci et al.15 has some successful appli-
cations in optical system design,16,17 its fitting ability is still limited for inefficient distribution
and identical shape factors. To improve the fitting ability of the RBF model, some new RBF
models have been proposed. Anisotropic RBF models with adaptive grid refinement have been
introduced in Ref. 18, which refine the local RBF distribution until the global error is below the
specified value and shows an improved fitting ability when fitting complicated surfaces.
However, the adaptive grid refinement method is computationally expensive and time-
consuming because of the self-adaptive process. We recently proposed a new RBF-slope model,
which establishes the relationship between the shape factor and surface slope without the need
for complex and repeated computations,19 and then fabricated the single mirror magnifier rep-
resented by the RBF-slope model using single-point diamond turning method.20 However, it
should be recognized that most basis functions of this model are still nearly uniformly distributed
over the aperture, which also limits the model’s fitting ability for large local surface shape var-
iations. As can be seen in Fig. 1, when fitting a paraboloid with a bump, even for a 784 basis
(a very large number), the fitting error in the bumpy area is clearly larger than the error of other
areas. Thus, the RBF-slope model is not appropriate for characterizing surfaces with large slope
variations if high fitting precision is expected. To achieve high fitting precision for local-feature
surfaces, we propose the RBF with slope-based shape factor and distribution (RBF-SSD) model
in this paper, which relates both shape factor and distribution with surface slope.

The remainder of this paper is organized as follows: Sec. 2 briefly introduces the RBF-Slope
model and RBF-SSD model, and compares the fitting features of these two models in principle.
Then, the fitting experiments for a double-curved freeform surface and a bumpy paraboloid with
two RBF models is presented to demonstrate the better fitting ability of the RBF-SSD model in
Secs. 3 and 4, respectively. In Sec. 5, we show the design process of an off-axis three-mirror
system with the RBF-SSD model and the optical performances of different freeform surface
models are compared and analyzed.

2 RBF-SSD Model

2.1 RBF-Slope Model

In general, the sag of a freeform surface can be represented by a base conical shape and an
additional sum of basis functions. For the RBF model, the mathematical form can be expressed
as follows:

EQ-TARGET;temp:intralink-;e001;116;186

zðx; yÞ ¼ cðx2 þ y2Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p þ
X
i

wie−ε
2
i ððx−x0iÞ2þðy−y0iÞ2Þ; (1)

where zðx; yÞ denotes the sag of the freeform surface in the aperture, c is the vertex curvature,
and (x; y) are the Cartesian coordinates. The second term represents the combination of RBF
ϕiðk~r − ~rikÞ, where ~r denotes a vector pointing to any location in the aperture, ~ri is the vector
pointing to the center of the RBF, and k ·k is the Euclidean norm with wi denoting the

Fig. 1 Fitting error in 0.8-aperture as fitted by RBF-Slope model with 784 basis functions.
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coefficients. The function can typically take the Gaussian form, as indicated in the second form
of the equation. The use of the Gaussian function offers the following advantages: smoothness,
approximate local characteristics (the value of Gaussian function rapidly reduces with the
increase in the distance away from the center), and good analyticity of solution.14 The parameter
(x0i; y0i) and shape factor εi determine the center position and the width of the basis function,
respectively. According to local properties of Gaussians, the shape factor εi of each basis func-
tion determines its influence range; a larger shape factor induces a smaller range and sharper
basis function. This local property of the basis function sequence distribution throughout the
aperture enables higher fitting ability in the Gaussian RBF than the Zernike polynomial, which
leads to greater advantages of the RBF model for characterizing asymmetrical optical freeform
surfaces.

As a new RBF model, the RBF-Slope model builds the relationship between the shape factor
and surface slope, leading to improved characterization ability compared with conventional RBF
models.19 The RBF-slope model follows two principles. The first is that all the centers of the
basis function sequence are distributed within the aperture to avoid the waste of basis outside of
the aperture. The second principle is that the shape factor εi of each basis function is set to be
proportional to the peak-to-valley value of the surface sag in corresponding unit, which can be
described by the following equation:

EQ-TARGET;temp:intralink-;e002;116;520εi ¼ k
PVi

Si
; (2)

where PVi denotes the peak-to-valley value of the surface sag in unit i and Si is the area of this
unit. Coefficient k is related to the average shape factor specified in advance. According to this
principle, the relationship between the shape factor and surface slope has been built. The shape
factor can vary with the responding surface slope across the surface, allowing the basis functions
to be either flatter or more peaked depending on what is needed, adding to the flexibility of the
RBF model. This allows the RBF-slope model to be appropriate to fit surfaces with different
slopes such as asymmetric surfaces.

2.2 RBF-SSD Model

Although the RBF-slope model relates the shape factor and surface slope and works better in
surface fitting than the original RBF model, a serious problem resulting from uniform distribu-
tion still exists that limits the model’s fitting ability. As shown in Fig. 2, when fitting a surface
region with large slope (sharp area), the shape factors within this region will be set to be large.
If the density of basis functions is large enough, then there will be a serious gap between neigh-
boring basis in the sharp region leading to a poor fit. Therefore, the characterizing ability of the
model will be limited. To solve this problem and to further improve the fitting ability of the RBF
model, we propose an RBF-SSD model in this paper.

Based on the RBF-slope model, the RBF-SSD model also follows the two principles of RBF-
slope, i.e., all the centers of the basis function sequence are distributed within the aperture, and

Fig. 2 Basis functions for RBF-Slope model (a) and RBF-SSD model (b) when fitting a sharp
surface region.
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the shape factor is proportional to the surface slope. In addition, to avoid the decrease of the
fitting accuracy of the model at the edge of the aperture, a certain number of basis functions are
deliberately set at the edge of the aperture. Apart from these two principles, to improve the
distribution of basis, the basis density of the RBF-SSD model is also set to be nearly proportional
to the surface slope; this is the third principle of this model. As shown in Fig. 2, according to the
third principle, under the situation of a fitting surface region with a large slope, there will be more
basis for fitting. Comparing Figs. 2(a) and 2(b), we can see the gap between the two basis sets
can be eliminated by adding more basis, which means increasing the basis density in this region.
With a slope-based shape factor, adding slope-based basis distribution in the meantime, the RBF-
SSD model has more potential to obtain a better surface fitting performance.

The rule for determining the basis distribution when fitting a surface with a circular aperture
can be described in the following steps. First, divide the aperture into n × n square units, where n
is close to the root of basis numberN. Then, determine the basis number in each unit according to
the surface slope of the unit. It is impossible to make basis numbers in every unit be accurately
proportional to the surface slope when the total basis number is not large enough; thus, there will
be some units with the same basis number when their surface slopes are close. The relationship
between basis number di and surface slope Si in unit i can be described by following equation:

EQ-TARGET;temp:intralink-;e003;116;415di ¼ floorfN � ½Si∕sumðSiÞ�g; (3)

where floor means rounding down the following number. After determining the basis number of
each unit, the distribution for different basis number in every unit is shown in Fig. 3.

The distributions for basis numbers of 1, 2, 3, and 4 are shown in Figs. 2(a)–2(d), respec-
tively. These distribution patterns are chosen to make the distribution as uniform as possible
when there are many contiguous units with the same basis number. If the basis number equals
or exceeds five, then one basis is located on the center of unit and other basis are uniformly
distributed on a circle around the unit center.

The last step of this process is making the basis outside the aperture uniformly arranged
around the edge of the aperture to ensure that every basis function affects the sag of the target
surface. Next, we performed two fitting experiments with the RBF-slope model and RBF-SSD
model, to explore the fitting performance of the proposed new model.

3 Fitting for Paraboloid with Bump

To demonstrate the fitting ability of the RBF-SSD model, we chose a paraboloid with a bump as
the target surface for fitting. The sag of surface can be described with following equation:

EQ-TARGET;temp:intralink-;e004;116;185z ¼ ðx2 þ y2Þ
80

þ 0.050e−0.25½ðx−7Þ2þðyþ6Þ2� þ 0.6e−0.49½ðxþ3Þ2þðy−2Þ2� þ 0.03e−0.81½ðx−5Þ2þðy−7Þ2�:

(4)

The surface was formed by a paraboloid and three Gaussian functions. The three Gaussian
functions formed an obvious local variation in the paraboloid surface, as shown in Fig. 4. Fitting
this bumpy surface with local variation, the features of different RBF models would be obvious.
Therefore, the RBF-slope model and RBF-SSD model are applied to fit this surface to compare
their fitting performance.

Fig. 3 The distribution for different basis number.
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The basis numbers of both models are 484, which is large enough to obtain a sub-nm order
fitting precision in this fitting. Around 6000 sample points are chosen to create the database,
which are uniformly and regularly distributed in the entire aperture. The average shape factors of
the two RBF models vary from 2 to 7, such that the best shape factor values of both models are
within this range after some pre-experiments. The fitting problems are solved by the least-
squares method. To deal with the ill-condition problems of least squares, the Householder trans-
formation was used in the fitting process.21

Figure 5 shows the fitting results of the RBF-slope model and RBF-SSD model, where the
fitting precision was evaluated by the logarithm of root mean square (RMS) errors for different
average shape factors. Both RBF models showed low RMS, which denotes high fitting precision,
in the shape factor range of 2 to 7. The RBF-SSD model even exhibited ∼1 order higher pre-
cision than the RBF-Slope model in the range of 3 to 6. With other shape factors out of the range
of 2 to 7, the RBF-SSD model did not show obviously better fitting performance, because these
average shape factor values did not match the basis number and distribution of model. However,
only the best shape factor is of great interest.

Figures 6(a) and 6(b) show the shape factors over the entire aperture for two RBF models
with the average shape factor of 5, which is the best average shape factor of the RBF-SSD model.
For the RBF-Slope model, only shape factors were related to surface slope. However, for the
RBF-SSD model, apart from shape factors, the basis distribution was also related to surface
slope, which can be seen from the observation that the basis in the edge and the bump is denser
than other area. The fitting RMS of two RBF models with average shape factor of 5 are shown in
Figs. 6(c) and 6(d) for comparison. It can be clearly seen that the fitting error of the RBF-Slope

Fig. 4 Sag of paraboloid with a bump.

Fig. 5 Fitting performances of RBF-Slope and RBF-SSD models

Xiao et al.: Model of radial basis functions with slope-based shape factor. . .
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model in the bumpy region was more serious than those of other regions, because the basis
number in this region is not enough to match large shape factors or sharp basis. For the RBF-
SSD model, the denser basis distribution in regions with large slope variation corresponds to
larger sharper shape factors to achieve a better fitting result, which is demonstrated in Fig. 6(d).
We can see that the fitting error remained small without an obvious change over the whole aper-
ture, indicating that the RBF-SSD model showed better fitting performance than the RBF-Slope
model for this bumpy surface. Table 1 compares the fitting accuracy of different models to this
surface numerically, which also proves that RBF-SSD has the strongest fitting ability.

4 Fitting for a Double-Curved Freeform Surface

The fitting experiment for a bumpy paraboloid demonstrated the improved fitting ability of the
RBF-SSD model. However, an optical surface rarely has a bump. To investigate the fitting per-
formance of the model for a real optical surface, we used the RBF-SSD model in the fitting for

Fig. 6 Shape factors of (a) RBF-slope model and (b) RBF-SSD model. Fitting errors for (c) RBF-
slope model and (d) RBF-SSD model.

Table 1 Results of fitting the paraboloid with a bump using different models.

Models RMS (mm) PV (mm)

RBF-direct 2.6144 × 10−5 7.4876 × 10−4

RBF-slope 2.7094 × 10−5 4.8810 × 10−4

RBF-SSD 2.4215 × 10−6 4.6838 × 10−5

Xiao et al.: Model of radial basis functions with slope-based shape factor. . .
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a double-curved freeform surface, which is a smooth optical surface, as plotted in Fig. 7.
The expression of this surface is

EQ-TARGET;temp:intralink-;e005;116;481z ¼ ðcxx2 þ cyy2Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðð1þ kxÞc2xx2 þ ðð1þ kyÞc2yy2Þ

q þ
XN
n¼0

XM
m¼0

Anmxnym; (5)

where the vertex curvature radius in x direction is rx ¼ 1∕cx ¼ −452.62713 mm and the
aspherical coefficient in the x direction is kx ¼ 0; the vertex curvature radius and aspherical
coefficient in the y direction are ry ¼ 1∕cy ¼ −443.4353 mm and ky ¼ 0, respectively. The
coefficients of the XY term are given in Table 2.

Without fitting for an obviously large slope variation, the basis number of the RBF model
needed for fitting a double-curved freeform surface is much less compared with the basis number
for fitting a bumpy paraboloid and it is set to 64. The fitting problems are also solved by least

Fig. 7 Sag of double-curved freeform surface.

Table 2 Coefficients of XY term.

n

m

0 2 4 6 8 10

0 0 6.0870E-5 1.3454E-10 3.3103E-16 1.0205E-21 1.6538E-28

1 0 −9.6572E-8 −4.4243E-13 −1.7494E-18 −6.7397E-24 —

2 8.4467E-5 3.8820E-10 1.6722E-15 7.5153E-21 −3.8004E-27 —

3 −1.7731E-8 −5.3407E-13 −4.2865E-18 −2.3053E-23 — —

4 2.1033E-10 1.9627E-15 1.6133E-20 1.9393E-26 — —

5 −4.4504E-14 −3.9729E-18 −4.5485E-23 — — —

6 1.2048E-15 2.2764E-20 9.9380E-26 — — —

7 −3.7513E-18 −6.5159E-23 — — — —

8 1.2433E-20 1.2596E-25 — — — —

9 −1.6717E-23 — — — — —

10 2.7401E-26 — — — — —

Xiao et al.: Model of radial basis functions with slope-based shape factor. . .
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squares, with average shape factors varying from 0.2 to 0.8. The logarithm of RMS for average
shape factors ranging from 0.2 to 0.8 is shown in Fig. 8. Over the shape factor range, the RMS of
the RBF-SSD model is obviously lower than that of the RBF-slope model, which demonstrates
a higher fitting precision.

The optimal average shape factor of the RBF-SSD model, which yielded the best fitting
performances, was 0.43. For this average shape factor, the shape factors of every basis and the
basis distribution are shown in Figs. 9(a) and 9(b). For the double-curved freeform surface, the
slope of the edge is much larger than the slope of the center; therefore, most basis of RBF-SSD
was distributed on the edge of the surface and a few were distributed on the center. Figures 9(c)

Fig. 8 Fitting performances of RBF-Slope and RBF-SSD models.

Fig. 9 Shape factors of (a) RBF-slope model and (b) RBF-SSD model. Fitting errors for (c) RBF-
slope model and (d) RBF-SSD model.

Xiao et al.: Model of radial basis functions with slope-based shape factor. . .
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and 9(d) show the basis distribution and the fitting errors over the entire aperture for the RBF-
slope model and RBF-SSD model, respectively.

We can see that the RBF-SSD model showed much lower fitting RMS over the whole aper-
ture than the RBF-Slope model, demonstrating a higher fitting precision for the double-curved
freeform surface. Unlike fitting for a bumpy paraboloid, where the RBF-SSD model mainly
showed better fitting results in the bumpy area, the improvement in fitting with the RBF-
SSD model existed over the whole aperture in this test because double-curved freeform surfaces
do not have obvious local slope variations, meantime, it can be inferred that RBF-SSD also has
high fitting accuracy for nearly flat surfaces with small slope changes. With stronger fitting
ability, the RBF-SSD model is superior at characterizing and is more efficient in eliminating
aberrations when characterizing asymmetric surfaces in optical system designs than earlier
models.

5 Design of an Off-Axis Three-Mirror System

With a stronger fitting ability, the RBF-SSD model has greater potential to obtain better per-
formance in optical design because it is able to characterize more flexible and freeform optical
surfaces. We applied the RBF-slope model and RBF-SSD model in the design of an off-axis
three-mirror system. In terms of usage, this system is a reflection system applied to visible light

Fig. 10 Design process of RBF-SSD freeform surface.
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and infrared waves. Since the reflection system has no chromatic aberration, we use 632.8nm
monochromatic light as a design example. The focal length of system was 100 mm and the field
of view (FOV) was 3° × 3.6°. In our design, the first and the second mirrors were represented by
aspherical surfaces, and the third mirror was characterized by the RBF-slope model or RBF-SSD
model. To compare the fitting ability between models clearly, we selected 64 RBF basis func-
tions that are almost the maximum number of Zernike polynomial terms that CodeV can support.
The design process can be illustrated by following steps.

First, the third surface of system was represented by a Zernike polynomial to build an initial
structure. After optimization, the Zernike polynomial term of the third surface was fitted by the
RBF-Slope model and then replaced by it. Next, the set of coefficients of each basis and shape
factor variables was optimized. After obtaining a better result, the RBF-slope term of the surface
was fitted by the RBF-SSD model. The overall system design process is shown in Fig. 10.

Figure 11(a) showed the sag of the RBF-slope term of the third surface, which was the target
to be fitted. It can be clearly seen that the surface slope of two sides of x direction was larger than
the slope of the center. To fit this surface, the shape factors of the RBF-SSD model would be
larger and the basis number would be denser on two sides of the X direction, as shown in
Figs. 11(b) and 11(c). Then the RBF-Slope model was replaced with the RBF-SSD model
in the design and the coefficients of every basis was set as variables prior to optimization.

After optimization, the final 2D layout of the system and the sag of RBF-slope term of the
third surface was shown in Fig. 12, where the third mirror was represented by the RBF-SSD
model. The optical performances of the three models (Zernike polynomial, RBF-Slope, and
RBF-SSD) are given in Table 3, containing the RMSwavefront error (WFE), modulation transfer
function (MTF), and max distortion.

Fig. 11 (a) Sag of RBF-Slope term of the third surface. (b) Distribution of basis and (c) shape
factors of RBF-SSD model for fitting the RBF-slope term of the third surface.
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The MTF at 100 cycles∕mm and RMS WFE in the full FOV for the three models were plot-
ted in Figs. 13 and 14, respectively. Compared with the other two models, the MTF on two sides
of the X FOV is obviously larger when applying the RBF-SSD model, meanwhile the RMSWFE
also decreased for the same FOV. Owing to the relationship between the basis distribution and
surface slope, the basis distributed on two sides of the X direction is denser than other areas to
match the larger shape factors, leading to stronger fitting ability of the RBF-SSD model. With its
stronger fitting ability, the RBF-SSD model has greater potential to efficiently balance aberra-
tions in optical design and obtain great image results, which can be demonstrated by the optical
performance in Figs. 13 and 14. Therefore, with the relationship between basis distribution and
shape factor, the proposed RBF-SSD model can achieve a better optical performance in the
design of this off-axis three-mirror system.

Fig. 12 (a) 2D layout of the designed off-axis three-mirror system. (b) Sag of RBF-slope term of
the third surface.

Table 3 Comparison of optical performance of the three models.

Model Diffraction sine wave MTF (100 cycles∕mm) Max Distortion RMS WFE (λ)

Zernike 0.47296 3.24 0.31144

RBF-slope 0.53855 3.15 0.28069

RBF-SSD 0.60649 3.08 0.25869

Fig. 13 MTF in the full FOV of the optical system with application of (a) Zernike; (b) RBF-Slope;
(c) RBF-SSD models.
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6 Conclusion

We proposed a new RBF model called the RBF-SSD model for characterizing optical freeform
surfaces in this paper. Relating the shape factor and basis distribution to surface slope, the RBF-
SSD model had better fitting ability than the RBF-slope model. Fitting for a bumpy paraboloid
and a double-curved freeform surface demonstrated the improved fitting performance of the
RBF-SSD model compared to the RBF-Slope model. In the design of an off-axis three-mirror
system, owing to the relationship between basis distribution and surface slope, the RBF-SSD
model also showed an improved image quality compared to the other two freeform surface mod-
els. All the results showed that the RBF-SSD model can be applied in characterizing surfaces
with local features in asymmetric optical systems and has potential in obtaining better image
quality, replacing the classical RBF models. We will attempt to use this model in the design of
other systems in the future.
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