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Interferometry is a relative measurement method for optical surface testing, and thus its testing accuracy depends
on the accuracy of the reference surface. Absolute measurement is one of the most effective methods to improve the
testing accuracy in interferometry. We present an efficient absolute measurement method based on Zernike poly-
nomial fitting algorithms. With our proposed method, the profiles of both the test surface and the reference surface
can be calculated simultaneously. We further carried out simulation analysis to scientifically evaluate the test accu-
racy of the proposed method. Finally, we conducted actual experiments to demonstrate the feasibility and practi-
cability of our method. ©2020Optical Society of America

https://doi.org/10.1364/AO.403268

1. INTRODUCTION

Interferometry is widely used in optical surface testing. It can
accurately measure the difference between the reference surface
and the testing surface. In general, the precision of interfer-
ometry is limited by the accuracy of the reference surface. If
the reference surface can be considered as a perfect one or is
accurately known in advance, then the testing surface can be
determined with a relatively high precision. However, both
the reference surface and the testing surface are unknown
in actual testing. As a result, if we want to improve the test-
ing accuracy to the level of nanometer or sub-nanometer in
interferometry, we should instead conduct absolute measure-
ment, where the surface errors of the reference surface can be
excluded.

The earliest absolute measurement method can be traced
to the use of a liquid surface that has the same radius of curva-
ture as the earth to serve as an ideal reference flat surface [1,2].
However, the instability problem associated with the liquid itself
and the static electricity charge problem that perturbs the shape
of the liquid surface make the method difficult to apply in actual
flat surface testing. Then, the traditional three-flat method was
proposed [3], and its related modified methods were studied by
scholars [4–9]. In all of these three-flat methods, three reference
surfaces are needed and complex procedures are necessary in
testing. Keenan proposed a differential method [10], which
was then extended and improved by Bloemhof [11], Ma et al.
[12], and Huang et al. [13]. To accomplish the absolute testing

of a 1.6 m diameter flat surface, Su et al. proposed a maximum
likelihood method [14]. Combined with a 1 m reference surface
and the stitching testing method, the flat mirror was measured
with accuracy up to 2 nm [14]. Su et al. provided a shift-rotation
absolute method to test a flat surface [15], and Yan et al. applied
an orthonormal polynomial fitting absolute method to test the
tertiary mirror at the Thirty Meter Telescope [16]. Aiming to
solve the absolute testing of a high-numerical-aperture spherical
surface, Yang et al. provided a high-order shift-rotation absolute
measurement method [17,18].

In this paper, we propose an efficient absolute measurement
method based on Zernike polynomial fitting algorithms. Our
proposed method can reconstruct both the reference surface and
the test surface simultaneously. In a situation where the refer-
ence surface error cannot be ignored, our proposed method can
accomplish absolute testing with high accuracy. To demonstrate
the performance of our absolute measurement method, both
simulation and experiment are carried out. The paper is organ-
ized as follows. In Section 2, the basic theory of our proposed
absolute measurement method is introduced. In Section 3,
we conduct a simulation based on our proposed method to
show the surface reconstruction accuracy of the algorithm. In
Section 4, the actual experiment and the relative testing results
are provided to demonstrate the feasibility and practicability of
our method. The conclusion is given in Section 5.
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2. THEORY

The testing surface can be described as a sum of Zernike poly-
nomials in its domain as shown in Eq. (1). And the reference
surface can also be expressed as a sum of Zernike polynomials in
its domain as shown in Eq. (2). As both the reference surface and
the test surface are usually described with discrete pixel points
in domain areas, a kind of orthonormal Zernike polynomial is
applied in the actual surface error description [19,20]:

Wt ≈

k∑
i=1

ai Zi , (1)

Wr ≈

m∑
i=1

bi Z ′i . (2)

In Eqs. (1) and (2), Wt and Wr represent the test surface
and the reference surface, respectively; ai and bi represent the
relative Zernike coefficients; k and m represent the number
of Zernike terms chosen to describe the test surface and the
reference surface, respectively; and Zi and Z ′i represent the i th
Zernike polynomial term over the test surface and the reference
surface, respectively.

Then a measurement result can be expressed as in Eq. (3):

D1 = D′1 + residuals= a11 Z1(x , y )+ a12 Z2(x , y )

+ a13 Z3(x , y )+ a14 Z4(x , y )−
k∑

i=5

ai Zi (x , y )

+

m∑
i=5

bi Z ′i (x
′, y ′)+ residuals, (3)

where D1 is the map of first interferometry; D′1 is the part of data
that can be described analytically by Zernike polynomials; resid-
uals is the part of the map that cannot be described by Zernike
polynomials; a11, a12, a13, and a14 represent the relative piston,
tip, tilt, and defocus in the map of first interferometry; x and y
are global coordinates of the testing surface; and x ′ and y ′ are the
coordinates of the reference surface.

When there are translations d x and dy between the testing
surface and the reference surface along the x and y directions,
Eq. (4) can be obtained:

D2 = D′2 + residuals= a21 Z1(x , y )+ a22 Z2(x , y )

+ a23 Z3(x , y )+ a24 Z4(x , y )−
k∑

i=5

ai Zi (x , y )

+

m∑
i=5

bi Z ′i (x
′
+ d x , y ′ + dy )+ residuals. (4)

Considering that N measurements are taken in total, the goal
of our proposed absolute measurement algorithm is to minimize
the value of Eq. (5):

S =
N∑

i=1

(Di − D′i )
2
=min . (5)

By calculating the partial derivative of Eq. (5) as described
in Eq. (6), the function can be transformed into matrix form as
shown in Eq. (7):

∂S
∂ai1
= 0

∂S
∂ai2
= 0

∂S
∂ai3
= 0

∂S
∂ai4
= 0

∂S
∂a j
= 0

∂S
∂b j ′
= 0

(
i = 1 · · · N, j = 5 · · · k, j ′ = 5 · · ·m

)
,

(6)

P = Q · R . (7)

The final least-squares equation derived from Eq. (7)
becomes

P1

P2

P3
...

PN

Pa

Pb


=



Q11 Q12 Q13 · · · Q1N Q1a Q1b

Q21 Q22 Q23 · · · Q2N Q2a Q2b

Q31 Q32 Q33 · · · Q3N Q3a Q3b
...

...
...

. . .
...

...
...

QN1 QN2 QN3 · · · QNN QNa QNb

Qa1 Qa2 Qa3 · · · QaN Qaa Qab

Qb1 Qb2 Qb3 · · · QbN Qba Qbb





R1

R2

R3
...

RN

Ra

Rb


.

(8)

To better explain each term in Eq. (8), a detailed description
of each element is shown in the following.

P is a [(k +m − 8)+ 4N] rows vector that can be
described as

Pi =



∑
i

Di Z1∑
i

Di Z2∑
i

Di Z3∑
i

Di Z4

 (i = 1 · · · N) Pa =



N∑
i=1

Di Z5

N∑
i=1

Di Z6

...
N∑

i=1
Di Zk



Pb =



N∑
i=1

Di Z ′5
N∑

i=1
Di Z ′6

...
N∑

i=1
Di Z ′m


. (9)

Q is a matrix of size [(k +m − 8)+ 4N], and the elements in
it can be expressed by Eqs. (10)–(16):

Qii =



∑
i

Z2
1

∑
i

Z1 Z2
∑

i
Z1 Z3

∑
i

Z1 Z4∑
i

Z2 Z1
∑

i
Z2

2

∑
i

Z2 Z3
∑

i
Z2 Z4∑

i
Z3 Z1

∑
i

Z3 Z2
∑

i
Z2

3

∑
i

Z3 Z4∑
i

Z4 Z1
∑

i
Z4 Z2

∑
i

Z4 Z3
∑

i
Z2

4

 (i = 1, 2 · · · N),

(10)



10586 Vol. 59, No. 33 / 20 November 2020 / Applied Optics Research Article

Qij =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (i, j = 1, 2 · · · N, i 6= j ), (11)

Qia = Qai =



∑
i

Z1 Z5
∑

i
Z2 Z5

∑
i

Z3 Z5
∑

i
Z4 Z5∑

i
Z1 Z6

∑
i

Z2 Z6
∑

i
Z3 Z6

∑
i

Z4 Z6

...
...

...
...∑

i
Z1 Zk

∑
i

Z2 Zk
∑

i
Z3 Zk

∑
i

Z4 Zk


(i = 1, 2 · · · N), (12)

Qib = Qbi =



∑
i

Z1 Z ′5
∑

i
Z2 Z ′5

∑
i

Z3 Z ′5
∑

i
Z4 Z ′5∑

i
Z1 Z ′6

∑
i

Z2 Z ′6
∑

i
Z3 Z ′6

∑
i

Z4 Z ′6

...
...

...
...∑

i
Z1 Z ′m

∑
i

Z2 Z ′m
∑

i
Z3 Z ′m

∑
i

Z4 Z ′m


(i = 1, 2 · · · N), (13)

Qbb =



N∑
i=1

Z ′5 Z ′5
N∑

i=1
Z ′5 Z ′6 · · ·

N∑
i=1

Z ′5 Z ′m
N∑

i=1
Z ′6 Z ′5

N∑
i=1

Z ′6 Z ′6 · · ·
N∑

i=1
Z ′6 Z ′m

...
...

. . .
...

N∑
i=1

Z ′m Z ′5
N∑

i=1
Z ′m Z ′6 · · ·

N∑
i=1

Z ′m Z ′m


, (14)



∑
1

D1 Z1∑
1

D1 Z2∑
1

D1 Z3∑
1

D1 Z4∑
2

D2 Z1∑
2

D2 Z2∑
2

D2 Z3∑
2

D2 Z4

.

.

.
N∑

i=1
Di Z5

N∑
i=1

Di Z6

.

.

.
N∑

i=1
Di Zk

N∑
i=1

Di Z′5

N∑
i=1

Di Z′6

.

.

.
N∑

i=1
Di Z′m



=



∑
1

Z2
1

∑
1

Z1 Z2
∑
1

Z1 Z3
∑
1

Z1 Z4 0 0 0 0 · · ·
∑
1

Z1 Z5
∑
1

Z1 Z6 · · ·
∑
1

Z1 Zk
∑
1

Z1 Z′5
∑
1

Z1 Z′6 · · ·
∑
1

Z1 Z′m∑
1

Z2 Z1
∑
1

Z2
2

∑
1

Z2 Z3
∑
1

Z2 Z4 0 0 0 0 · · ·
∑
1

Z2 Z5
∑
1

Z2 Z6 · · ·
∑
1

Z2 Zk
∑
1

Z2 Z′5
∑
1

Z2 Z′6 · · ·
∑
1

Z2 Z′m∑
1

Z3 Z1
∑
1

Z3 Z2
∑
1

Z2
3

∑
1

Z3 Z4 0 0 0 0 · · ·
∑
1

Z3 Z5
∑
1

Z3 Z6 · · ·
∑
1

Z3 Zk
∑
1

Z3 Z′5
∑
1

Z3 Z′6 · · ·
∑
1

Z3 Z′m∑
1

Z4 Z1
∑
1

Z4 Z2
∑
1

Z4 Z3
∑
1

Z2
4 0 0 0 0 · · ·

∑
1

Z4 Z5
∑
1

Z4 Z6 · · ·
∑
1

Z4 Zk
∑
1

Z4 Z′5
∑
1

Z4 Z′6 · · ·
∑
1

Z4 Z′m

0 0 0 0
∑
2

Z2
1

∑
2

Z1 Z2
∑
2

Z1 Z3
∑
2

Z1 Z4 · · ·
∑
2

Z1 Z5
∑
1

Z1 Z6 · · ·
∑
2

Z1 Zk
∑
2

Z1 Z′5
∑
2

Z1 Z′6 · · ·
∑
2

Z1 Z′m

0 0 0 0
∑
2

Z2 Z1
∑
2

Z2
2

∑
2

Z2 Z3
∑
2

Z2 Z4 · · ·
∑
2

Z2 Z5
∑
1

Z2 Z6 · · ·
∑
2

Z2 Zk
∑
2

Z2 Z′5
∑
2

Z2 Z′6 · · ·
∑
2

Z2 Z′m

0 0 0 0
∑
2

Z3 Z1
∑
2

Z3 Z2
∑
2

Z2
3

∑
2

Z3 Z4 · · ·
∑
2

Z3 Z5
∑
1

Z3 Z6 · · ·
∑
2

Z3 Zk
∑
2

Z3 Z′5
∑
2

Z3 Z′6 · · ·
∑
2

Z3 Z′m

0 0 0 0
∑
2

Z4 Z1
∑
2

Z4 Z2
∑
2

Z4 Z2
∑
2

Z2
4 · · ·

∑
2

Z4 Z5
∑
1

Z4 Z6 · · ·
∑
2

Z4 Zk
∑
2

Z4 Z′5
∑
2

Z4 Z′6 · · ·
∑
2

Z4 Z′m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.∑
1

Z1 Z5
∑
1

Z2 Z5
∑
1

Z3 Z5
∑
1

Z4 Z5
∑
2

Z1 Z5
∑
2

Z2 Z5
∑
2

Z3 Z5
∑
2

Z4 Z5 · · ·
N∑

i=1
Z5 Z5

N∑
i=1

Z5 Z6 · · ·
N∑

i=1
Z5 Zk

N∑
i=1

Z5 Z′5
N∑

i=1
Z5 Z′6 · · ·

N∑
i=1

Z5 Z′m

∑
1

Z1 Z6
∑
1

Z2 Z6
∑
1

Z3 Z6
∑
1

Z4 Z6
∑
1

Z1 Z6
∑
1

Z2 Z6
∑
1

Z3 Z6
∑
1

Z4 Z6 · · ·
N∑

i=1
Z6 Z5

N∑
i=1

Z6 Z6 · · ·
N∑

i=1
Z6 Zk

N∑
i=1

Z6 Z′5
N∑

i=1
Z6 Z′6 · · ·

N∑
i=1

Z6 Z′m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.∑
1

Z1 Zk
∑
1

Z2 Zk
∑
1

Z3 Zk
∑
1

Z4 Zk
∑
2

Z1 Zk
∑
2

Z2 Zk
∑
2

Z3 Zk
∑
2

Z4 Zk · · ·
N∑

i=1
Zk Z5

N∑
i=1

Zk Z6 · · ·
N∑

i=1
Zk Zk

N∑
i=1

Zk Z′5
N∑

i=1
Zk Z′6 · · ·

N∑
i=1

Zk Z′m

∑
1

Z1 Z′5
∑
1

Z2 Z′5
∑
1

Z3 Z′5
∑
1

Z4 Z′5
∑
2

Z1 Z′5
∑
2

Z2 Z′5
∑
2

Z3 Z′5
∑
2

Z4 Z′5 · · ·
N∑

i=1
Z′5 Z5

N∑
i=1

Z′5 Z6 · · ·
N∑

i=1
Z′5 Zk

N∑
i=1

Z′5 Z′5
N∑

i=1
Z′5 Z′6 · · ·

N∑
i=1

Z′5 Z′m

∑
1

Z1 Z′6
∑
1

Z2 Z′6
∑
1

Z3 Z′6
∑
1

Z4 Z′6
∑
2

Z1 Z′6
∑
2

Z2 Z′6
∑
2

Z3 Z′6
∑
2

Z4 Z′6 · · ·
N∑

i=1
Z′6 Z5

N∑
i=1

Z′6 Z6 · · ·
N∑

i=1
Z′6 Zk

N∑
i=1

Z′6 Z′5
N∑

i=1
Z′6 Z′6 · · ·

N∑
i=1

Z′6 Z′m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.∑
1

Z1 Z′m
∑
1

Z2 Z′m
∑
1

Z3 Z′m
∑
1

Z4 Z′m
∑
2

Z1 Z′m
∑
2

Z2 Z′m
∑
2

Z3 Z′m
∑
2

Z4 Z′m · · ·
N∑

i=1
Z′m Z5

N∑
i=1

Z′m Z6 · · ·
N∑

i=1
Z′m Zk

N∑
i=1

Z′m Z′5
N∑

i=1
Z′m Z′6 · · ·

N∑
i=1

Z′m Z′m





a11

a12

a13

a14

a21

a22

a23

a24
.
.
.

a5

a6
.
.
.

ak

b5

b6
.
.
.

bm



.

(18)

Qaa =



N∑
i=1

Z5 Z5

N∑
i=1

Z5 Z6 · · ·
N∑

i=1
Z5 Zk

N∑
i=1

Z6 Z5

N∑
i=1

Z6 Z6 · · ·
N∑

i=1
Z6 Zk

...
...

. . .
...

N∑
i=1

Zk Z5

N∑
i=1

Zk Z6 · · ·
N∑

i=1
Zk Zk


, (15)

Qba = Qab =



N∑
i=1

Z ′5 Z5

N∑
i=1

Z ′5 Z6 · · ·
N∑

i=1
Z ′5 Zk

N∑
i=1

Z ′6 Z5

N∑
i=1

Z ′6 Z6 · · ·
N∑

i=1
Z ′6 Zk

...
...

. . .
...

N∑
i=1

Z ′m Z5

N∑
i=1

Z ′m Z6 · · ·
N∑

i=1
Z ′m Zk


.

(16)
R is a [(k +m − 8)+ 4N] rows vector that can be written as

Ri =

 a1i

a2i

a3i

a4i

 (i = 1 · · · N) Ra =


a5

a6
...

ak

 Rb =


b5

b6
...

bm

 .

(17)

By combining Eqs. (8)–(17), the description of Eq. (7) can
also be written as follows:
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The coefficients of Zernike terms a5 ∼ ak and b5 ∼ bm can be
calculated from Eq. (18) with the QR decomposition method,
which also means N subaperture testing maps are stitched
together with the above algorithm. Our stitching algorithm
can be expressed with Eqs. (5)–(18). However, the powers of
both the reference surface and the test surface cannot be solved
with the above method. In fact, they can be calculated by other
methods such as pentaprism scanning [21]. The pentaprism
scanning testing method is an important absolute test method
for flat mirrors. During a measurement, a pentaprism is used to
relay a collimated beam from an autocollimator to the surface
under test. The pentaprism scans in a line along the surface to
obtain a series of slope measurements. Multiple scans can be
combined together to get aberration information of the surface
under test [22]. By calculating the Zernike fitting coefficients,
maps of both the reference surface and the test surface can be
obtained.

3. SIMULATION

In this part, in order to validate the accuracy and feasibility of
our proposed absolute measurement method, simulation is
taken to reconstruct both the test surface and the reference sur-
face. In the simulation, a8150 mm diameter reference surface
is used to test a 8150 mm test surface. The surface errors of
them are shown in Fig. 1.

The root mean square (RMS) of the test surface is 9.59 nm,
and the RMS of the reference surface is 9.64 nm. In the test-
ing, nine measurements are designed as shown in Fig. 2. The
central subaperture coincides with the position of the mir-
ror to be measured. The relation between the second and the
ninth subapertures and the position of the mirror to be mea-
sured is (0, 15), (0, −15), (15, 0), (−15, 0), (10, 10), (10,
−10), (−10,−10), and (−10, 10) in the x and y directions,
respectively (the unit in the above translation is mm). Relative
translations are taken between the test surface and the reference
surface in each measurement.

In the simulation, alignment errors in the x and y directions,
tip/tilt errors, piston errors between the reference surface and
the test surface, and noise of 1 nm RMS are considered in each
measurement. A total of 79 terms of Zernike polynomials that
can accurately describe the surface features are used to fit both
the test surface and the reference surface. Usually 37 terms of
Zernike polynomials are used to fit the wavefront estimation in
most applications. In fact, the RMS value deviation percentage
between 37-term and 79-term Zernike polynomials in our

Fig. 1. Original surfaces. (a) Original test surface. (b) Original refer-
ence surface.

Fig. 2. Relative positions between reference surface and test surface
in measurements.

Fig. 3. Reconstructed surfaces. (a) Reconstructed test surface.
(b) Reconstructed reference surface.

simulation is about 0.002. To better describe the simulation
result, 79 terms of Zernike polynomials are chosen.

Combining the theory introduced in Section 2, the sub-
aperture number is 9, which means N is equal to 9 in Eq. (8). A
total of 79 terms of Zernike polynomials are chosen to describe
the surface features of both the test surface and the reference
surface, which means that both k and m are equal to 79 in
Eq. (9). Then P is a (186 ∗ 1) vector in Eqs. (8) and (9). Q is
a (186 ∗ 186) matrix, and R is a (186 ∗ 1) vector in Eqs. (8)
and (9). With our proposed absolute measurement method,
the reconstruction maps of the test and reference surfaces are
shown in Fig. 3.

The RMS of the reconstructed test surface is 9.36 nm, and the
RMS of the reconstructed reference surface is 9.04 nm. It can
be seen from Figs. 2 and 3 that the original surfaces are consis-
tent with the reconstructed surfaces. In order to better explain
the reconstruction accuracy, residual maps between original
surfaces and reconstructed surfaces are analyzed as shown
in Fig. 4.

Fig. 4. Surfaces residuals. (a) Residual of test surface. (b) Residual of
reference surface.
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Fig. 5. (a) Zernike coefficient comparison between original testing
surface and reconstructed testing surface. (b) Zernike coefficient com-
parison between original reference surface and reconstructed reference
surface.

The RMS of the test surface residual is 1.64 nm, and the RMS
of the reference surface is 1.59 nm. It can be seen from Fig. 4
that the residuals are very small and that they are at the same
level as the noise error. The Zernike polynomial coefficients
are also analyzed as shown in Fig. 5. In Fig. 5(a), the Zernike
coefficients of the test surface are compared between the original
test surface and the reconstructed test surface. In Fig. 5(b),
the Zernike coefficients of the reference surface between the
original reference surface and the reconstructed reference sur-
face are also compared. From the fitting curves, it can be seen
that the original Zernike fitting curves are consistent with
Zernike fitting curves of reconstructed surfaces. This means that
our proposed absolute measurement method can reconstruct
both the reference surface and the test surface with satisfactory
accuracy.

4. EXPERIMENT VERIFICATION

We have also applied our absolute measurement method on
a real experiment to further validate the practicability of the
proposed method. In the experiment, a 8150 mm Zygo inter-
ferometer is applied to test the other 8150 mm Zygo standard
surface. The optical metrology layout is shown in Fig. 6, and
the experimental setup is shown in Fig. 7. The registration issue
between testing subapertures is handled with a 6-dof platform,
which includes the X, Y, Z, A, B, and C axes. The relative rela-
tionship between each axis is shown in Fig. 8. The range of
movement and relative accuracy of each axis can be found in
Table 1.

Nine measurements are taken following the relative positions
between the test surface and the reference surface as shown in
Fig. 2. The relative testing maps are shown in Fig. 9. In addition,
a total of 79 terms of Zernike polynomials that can accurately
describe the surface features are used to fit both the test surface

Test Surface
150 mm

Reference surface
150 mm

Fig. 6. Optical metrology layout.

Fig. 7. Experimental setup.

Fig. 8. Description of 6-dof platform.

Table 1. Range and Accuracy of 6-dof Platform

Axis Range of Movement Accuracy

X 1000 mm 0.01 mm
Y 500 mm 0.01 mm
Z 800 mm 0.02 mm
A 90◦ 4′′

B 3◦ 4′′

C 360◦ 10′′

and the reference surface. With our proposed absolute measure-
ment method, both the test surface and the reference surface are
reconstructed as shown in Fig. 10. The RMS of the test surface is
12.73 nm, and the RMS of the reference surface is 6.36 nm. By
removing the reconstructed reference surface and the test surface
from the central measurement result shown in Fig. 8, the relative
residual map is shown in Fig. 11. The RMS of the residual map
is 1.24 nm. It can be seen from Fig. 11 that the high-frequency
errors are the main components of the residual map. In actual
testing, there is 0.046λ power, which cannot be decomposed
into reference and test surfaces. The power of the test surface
should be tested and added in our above reconstructed map in
the end.
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Fig. 9. Measurement maps.

Fig. 10. Reconstructed surfaces. (a) Reconstructed test surface.
(b) Reconstructed reference surface.

Fig. 11. Residual map.

5. CONCLUSION

In this paper, we have proposed an absolute measurement
method based on Zernike polynomial fitting. Both the refer-
ence surface and the test surface can be reconstructed at the
same time. Our simulation results and experimental results
have demonstrated that our proposed method can correctly
reconstruct absolute surfaces with satisfactory accuracy. Since
no rotation between the test surface and the reference surface
is conducted during testing, part of the surface errors cannot

be extracted. We will further study the relationship between
the residual error extraction and the relative rotation in future
research.
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