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Abstract
In this paper, we use exact matrix diagonalization to explore the many-body localization
(MBL) transition of the Heisenberg Ising spin-1/2 chain with nearest neighbor couplings
and disordered external fields. It demonstrates that the fidelity, magnetization and spin-
spin space correlation can be used to characterize the many-body localization transition in
this closed spin system which is also in agreement with previous analytical and numerical
results. We test the properties for the middle third many-body eigenstates. It shows that for
this model with random-field, the excited-state fidelity exhibits a pronounced drop at the
transition and then gradually tends to be stable in the localized phase, the critical point and
the final value of averaged fidelity are all size dependent. It demonstrates that disordered
external fields drive the occurrence of the MBL transition. Moreover, we investigate the
magnetization and spin-spin space correlation in this model to verify the conclusion we got
and further explore the properties of ergodic phase and localized phase.

Keywords Many-body localization transition · Disorder system · Ising spin chain

1 Introduction

Much attention has been devoted to researching the properties of disordered systems with
interactions over the past decades. Early seminal paper by Anderson in 1958 [1] has showed
that the closed quantum system of single particles shows a complete absence of diffusion in
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both the ground state and excited states with sufficiently strong quenched disorder, and since
then this proposition has attracted extensive attention and has ultimately led to the complete
conclusion that non-interacting systems in one or two dimensions will be localized for arbi-
trary disorder, even for very small disorder, which was named Anderson localization [2, 3].
Generalizing Anderson localization concept to interacting quantum systems, Anderson also
predicted that for sufficiently strong disorder, a closed interacting quantum system would
also be localized which has been confirmed by Basko et al. with new arguments much more
recently [4] which revived the idea of many-body localization (MBL). MBL at finite temper-
ature serves as a counter example of the basic hypothesis of statistical physics, showing that
interacting quantum systems fail to approach thermal equilibrium with sufficiently strong
disorder. While many-body interaction often leads to the Anderson localization breakdown
because of the new channels for energy or particle transport [5, 6].

There are many distinctions between the localized phase with stronger disorder and
delocalized phase at lower disorder which is named ergodic phase. The eigenstates ther-
malization hypothesis(ETH) [7–10] indicates that the systems should reach local thermal
equilibrium. On the contrary, one of the key features of MBL is the system remember
its initial state instead of thermally equilibrate. MBL is a quantum phase transition that
occurs at nonzero (or even infinite) temperature, where the system fail to quantum statisti-
cal mechanics equilibrium. Like the more familiar ground-state quantum-phase transitions,
this transition is a sharp change in the properties of the many-body eigenstates of the Hamil-
tonian, while MBL transition at nonzero temperature appears to be only a dynamical phase
transition [11]. These fundamental questions about the dynamics of MBL were experimen-
tally proved since such systems can be produced and studied with strongly interaction,
and this phenomenon have attracted growing attention because of the significant effect in
quantum information [12–17]. Many studies [18–29] have confirmed that this novel dynam-
ical phase transition can happen in the interacting disordered systems and explored many
features of the MBL phase.

Generally a dramatic change in the state around the quantum critical point should result
in a great difference of physics, which was used to distinguish between the ergodic regime
and the MBL one. In this letter we mainly study the Heisenberg Ising model with disordered
external field [30]. This transition is a quantum phase transition can occurring at nonzero
(even infinite) temperature, in order to distinguish our research from ground-state phase
transition we pay attention to the middle third of the eigenstates. Recently, generous of
effort [31–43] has been devoted to the properties of fidelity, a popular concept in quantum
critical phenomena. As a measure of similarity between states, fidelity can be used to signal
any phase transition. It emerged from quantum-information science and plays an important
role in quantum phase transitions (QPTs) [44]. In particular, the minimum of fidelity near a
critical point has been studied in several models [45–47]. In this letter we mainly study the
excited-state fidelity to characterize many-body localization transition. Following Ref. [31],
the fidelity of the n-th excited state |Ψn(λ)〉 of the system is defined here as the overlap of
the excited states with parameters λ and λ + δλ:

Fn(λ, λ + δλ) = 〈Ψn(λ)|Ψn(λ + δλ)〉, (1)

2 Model Used for Numerics

As Anderson’s original proposal many-body localization appears to occur for a wide variety
of spin models. To investigate the MBL transition, we study a specific simple spin model, a
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one-dimensional Heisenberg Ising spin-1/2 chain with random fields along the z direction.
Considering open boundary conditions, the Hamiltonian reads as follows:

H =
N−1∑

i

J Sz
i S

z
i+1 +

N∑

i

hiS
z
i , (2)

N is the number of spins, Sz
i is the spin operator at the i-th qubit, and at each site i, the

disorder realization of the static-random fields hi are independent random variables with a
probability distribution that is uniform in [−h, h]. For convenience of calculations, we take
J=1. We will study the behavior of systems given in (2) by exact diagonalization to explore
whether the MBL transition can occur in this model and then explore some properties of
ergodic phase and localized phase. To test fidelity of excited states, for the small parame-
ter perturbation δhi for each site, we let δhi = εhi (ε = 10−5). It is worth noting that the
parameter perturbation δhi for each site are also different random variables. Then, for each
disorder realization, we find the many-body eigenstates |Ψn〉 that are in the middle one third
of the energy-ordered list of all data. Our qualitative conclusions do not depend on the exact
values of these parameters. We then compute the fidelity Fn for each eigenstate |Ψn〉. Aver-
aging over all selected excited states and disorder realizations yields the mean value E[F ].
The numerical analyses were performed using standard libraries for exact matrix diagonal-
ization. This model has two global conservation laws: one for the total energy and one for
the total magnetization Sz along the z direction. The total Sz symmetry and parallel pro-
gramming techniques were employed to make the computations feasible. For each disorder
amplitude |h|, we used 104 disorder realizations for N=6 and N=8, 2000 realizations for
N=10 and N=12, and 200 realizations for N=14 to obtain the data shown in this paper.

3 Results and Discussion

In Fig. 1, we plot the averaged excited-state fidelity E[F ] as a function of the disorder
strength h for system sizes fromN = 6 toN = 14, for the energies in the middle one third of
the spectrum. It shows that the MBL transition dose occur in this isolated Ising model with
the increase of disorder strength. One can see the E[F ] versus h show a sequential decline
until the disorder strength reach the critical point, then tend to be stable gradually. Notably,
the final value of E[F ]c is size dependent and decreases as the system size increases. As
the pronounced data change shown in Fig. 1, the critical disorder strength hc are all exact
values for different system sizes, for N=6, hc = 2.6, N=8, hc = 3.1, N=10, hc = 3.4, N=12,
hc = 3.6, N=14, hc = 3.7. So we get the extent of the critical point hc ∈ [2.6,3.7] for the
breakdown of egodic phase, which agree with the prediction in [18, 24]

There are many distinctions between the ergodic phase and the localized phase, which are
caused by the differences of many-body eigenstates of the Hamiltonian. As is known that in
the ergodic phase (h < hc), the many-body eigenstates are thermal, so the isolate quantum
system can relax to thermal equilibrium [9, 48, 49]. On the contrary, in the localized phase
(h > hc), the many-body eigenstates are not thermal and the isolate quantum system does
not relax to thermal equilibrium [4]. So we can further confirm the occurrence of MBL
transition by probing how thermal the many-body eigenstates appear to be. We study the
local expectation value of the z component of spin, for each disorder realization, and identify
the critical points hc for the model given in (2).

m
(n)
i = 〈Ψn|sz

i |Ψn〉, (3)
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Fig. 1 Averaged fidelity as a function of the disorder strength h for system sizes from 6 to 14. The system
sizes N are indicated in the legend. E[F ] versus h show a sequential decline until the disorder strength reach
the critical point and then become stable gradually. Notably, the final value of E[F ]c is size dependent and
decreases as the number of system size increases

Sz
i is the spin operator at site i, |Ψn〉 is the eigenstate. For each site in each disorder

realization, we compare these expectation values for eigenstates that are adjacent in energy;
averaging over all selected excited states, disorder realizations, and sites yields the mean
value of the difference E[|m(n)

i − m
(n+1)
i |]. In the selected energy range, the difference

E[|m(n)
i − m

(n+1)
i |] in energy density between adjacent states |Ψn〉 and |Ψn+1〉 is of order√

N2−N and thus the difference is exponentially decreasing in N as N increases in the
ergodic phase. So If these eigenstates are thermal, then they represent temperatures that
differ only by this exponentially small amount; therefore, the expectation values of sz

i for
two such states should be the same for N → ∞.

In Fig. 2, we plot the averaged difference ln(E[|m(n)
i − m

(n+1)
i |]) as a function of the

system size N for various values of the disorder amplitude h, for energies in the middle
one third of the energy list. As expected, in the ergodic phase (at small h), the averaged
differences E[|m(n)

i −m
(n+1)
i |] tend to vanish exponentially as N increases. Moreover, in the

localized phase (at large h), the averaged differences E[|m(n)
i − m

(n+1)
i |] between adjacent

eigenstates remain large as N increases; our work indicates that disordered external field
does drive the occurrence of the MBL transition of this one-dimensional Heisenberg Ising
spin-1/2 chain with nearest neighbor couplings. Accordingly, we obtain the span of the
critical point hc ∈ (2.5, 3.7) for the many-body localized phase transition in this disordered
Ising spin chain, which is consistent with the previous work [24, 47, 50]. Comparing Figs. 1
and 2, it shows that the behavior of the transition region for the excited-state fidelity is
consistent with that of the difference E[|m(n)

i −m
(n+1)
i |]. This observation indicates that the

the MBL transition does indeed occur in this disordered Ising model.
To further explore the properties of ergodic phase and localized phase and verify the

conclusion of previous work in our model, we next study the spin correlation on length
scales. The correlation functions within a many-body eigenstate |Ψn〉 in the middle one third
of the energy list of the Hamiltonian of sample α was given by

Czz
nα(ij) = 〈Ψn|sz

i s
z
j |Ψn〉α − 〈Ψn|sz

i |Ψn〉〈Ψn|sz
j |Ψn〉α, (4)
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Fig. 2 Averaged difference as a function of the system sizes N from 6 to 14 for various values of the disorder
amplitude h. The values of h are indicated in the legend. In the ergodic phase (h < hc), where the eigen-
states are thermal, the Averaged difference vanish exponentially in N as N increases. On the contrary, in the
localized phase (h > hc), the Averaged difference remain large

In Fig. 3 we plot the average value [ln |Czz
nα(i, i + d)|] as a function of the distance d for

three representative values of h in the two phases and near the critical point. We also select
the eigenstates in the middle one third of the energy list, averaging over all selected excited
states, disorder realizations, and sites to get all the data. In the ergodic phase(h = 0.6),
These distant spins at sites i and j are entangled and correlated: if spin i is flipped, that
quantum of spin is delocalized and may instead be at any of the other sites. In the localized
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Fig. 3 The spin-spin correlations as a function of the distance d for three representative values of h. The
system sizes N are indicated in the legend. In the localized phase (h=6.0), the correlations decrease expo-
nentially with d, while in the ergodic phase ( h=0.5) they are independent of d at large d. The intermediate
behavior (h =3.5) is near the localization transition

International Journal of Theoretical Physics (2020) 59:1330–13371334



phase (h = 6.0), the eigenstates are not thermal. If spin i is flipped within a single eigenstate
that quantum of spin remains localized near site iwith its amplitude for being at site j falling
off exponentially with the distance. The data of Figs. 1–3 all data confirm the occurrence of
MBL transition in the one-dimensional Heisenberg Ising spin-1/2 chain and show some of
the differences between the ergodic phase and localized phase.

4 Summary

Disorder is an intrinsic property of all real systems, and the interplay between disorder and
interaction constitutes the driving mechanism of the glass transition (metal-insulator transi-
tion); similarly, the transition from the ergodic to the many-body localized phase is a highly
non-equilibrium phenomenon, but one that is poorly understood at present. In this paper, we
use exact matrix diagonalization to explore the many-body localization (MBL) transition of
the one-dimensional Heisenberg Ising spin-1/2 chain with nearest neighbor couplings and
disordered external fields. In order to get some properties of the many-body eigenstates of
our model near the critical point of the localization transition, we test the fidelity between
two excited states related by a small parameter perturbation δh. The consequence is consis-
tent with previous analysis and numerical results showing that the excited-state fidelity does
characterize the MBL transition. The results show that for this model with random-field,
the fidelity exhibits a sequential decline until the disorder strength reach the critical point,
then tend to be stable gradually, and the critical disorder strength hc are size dependent,
the span is hc ∈ [2.6,3.7] for the breakdown of egodic phase. In order to further explore
the properties of ergodic phase and localized phase, we also study the magnetization and
spin spatial correlations. All the data confirm the occurrence of MBL transition in the one-
dimensional Heisenberg Ising spin-1/2 chain and show some of the differences between the
ergodic phase and localized phase. We hope that the present work provides a novel window
into the remarkable phenomenon of many-body localization.

Acknowledgments This work is supported by ”the Fundamental Research Funds for the Central Uni-
versities” (No. 2412019FZ037). T. T. H was also supported in part by the Government of China through
CSC.

References

1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. Lett. 109, 1492 (1958)
2. Abrahams, E.: 50 Years of Anderson Localization. World Scientific Publishing, Singapore (2010)
3. Lee, P.A., Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287 (1985)
4. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-

electron system with localized single-particle states. Ann. Phys. (Amsterdam) 321, 1126 (2006)
5. Fleishman, L., Anderson, P.W.: Interactions and the Anderson transition. Phys. Rev. B. 21, 2366 (1980)
6. Gornyi, I.V., Mirlin, A.D., Polyakov, D.G.: Interacting electrons in disordered wires: Anderson localiza-

tion and low-T transport. Phys. Rev. Lett. 95, 206603 (2005)
7. Deutsch, J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991)
8. Tasaki, H.: From quantum dynamics to the canonical distribution: General picture and a rigorous

example. Phys. Rev. Lett. 80, 1373 (1998)
9. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum

systems. Nature (London) 452, 854 (2008)
10. Srednicki, M.: Chaos and quantum thermalization. Phys. Rev. E. 50, 888 (1994)
11. Oganesyan, V., Huse, D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75,

155111 (2007)

International Journal of Theoretical Physics (2020) 59:1330–1337 1335



12. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum
criticality. Phys. Rev. Lett. 96, 140604 (2006)

13. Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M.: Nonequilibrium dynamics of closed
interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011)

14. Burrell, C.K., Osborne, T.J.: Bounds on the speed of information propagation in disordered quantum
spin chains. Phys. Rev. Lett 99, 167201 (2007)

15. Zheng, Y., Yang, J., Shen, Z., et al.: Optically induced transparency in a micro-cavity. Light Sci Appl 5,
e16072 (2016). https://doi.org/10.1038/lsa.2016.72

16. Saeed, S., de Weerd, C., Stallinga, P., et al.: Carrier multiplication in germanium nanocrystals. Light Sci
Appl 4, e251 (2015). https://doi.org/10.1038/lsa.2015.24

17. Lai, Y., Lan, Y., Lu, T.: Strong light-matter interaction in ZnO microcavities. Light Sci Appl 2, e76
(2013). https://doi.org/10.1038/lsa.2013.32

18. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)
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