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A B S T R A C T   

Large rigid-body displacement parameters within finite element analysis results are hard to be 
extracted. We propose an algorithm to solve this problem. Firstly, the constraint equations are 
established. The linear coordinate equations and objective function are then constructed. By using 
Lagrange multiplier method and Taylor series expansion, the solution algorithm is derived. Nu
merical simulation results reveal that the algorithm can separate ultra-large rigid-body rotation 
within the range of ±180◦ with the accuracy of less than 1‰ and the solving efficiency is more 
than twice that of the trigonometric function method. The application experiments show that the 
algorithm can meet the actual engineering requirements.   

1. Introduction 

In order to break through the limitation of spacecraft on the space-based observatory aperture, the deployable optical system using 
segmented primary mirror emerged as the times require, and it has attracted great attention of all countries in the world [1–5]. The 
most representative example is the James Webb Space Telescope (JWST) whose primary mirror is composed of 18 segmented mirrors 
[6]. However, the deployable optical system also provides huge challenges while bringing the aperture merit. Among them, the 
co-phasing adjustment of the segments is one of the most critical challenges, which determines the success or failure of the mission. 

The primary mirror co-phasing is to adjust the position and attitude of segments with high precision by the phasing mechanism, so 
that all segments can form an optical surface which can provide the imaging ability of the equivalent design aperture [7–11]. This is a 
challenging task, which requires phasing devices achieving nano-positioning accuracy within millimeter range of motion. In order to 
achieve this target, it is necessary to adopt the iterative optimization method based on finite element analysis result. However, the 
analysis result can only give the deformation map, and cannot separate the rigid-body displacement parameters which are the basic 
data for the design of the phasing mechanism. This is extremely inconvenient for the hexapod design and optimization. 

The rigid-body displacement separation usually adopts a trigonometric function model which is established according to the co
ordinate transformation principle. There are two methods to solve this trigonometric function model. The first is commonly used 
[12–15]. In order to reduce the solution difficulty, the model is linearized according to the small-angle approximation theory, sinθ ≈ θ 
and cosθ ≈ 1. This method has good convergence and computational complexity. But the disadvantages are also obvious. Firstly, this 
method is only applicable to the parameters extraction for tiny rigid-body displacement. Secondly, its accuracy is not constant, but 
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decreases with the increase of the rigid-body rotation. The second method, called TFM (trigonometric function method), is not 
commonly used because of the large calculation. It does not perform a linear approximation, but directly solve the model by using the 
least-squares iteration. This method can separate the angular displacement within ±180◦, but needs to derive the partial derivatives of 
the advanced nonlinear equations, and a large number of trigonometric functions are calculated for each iteration. Therefore, its 
solution efficiency is terrible. In addition, the method does not converge for some special conditions, for example, the triaxial rotation 
angles are − 90◦ respectively. 

In order to solve the problem that large rigid-body displacement parameters in the finite element analysis results are hard to be 
extracted, a high precision and efficient rigid-body displacement extraction algorithm is proposed based on constrained optimization 
method. The constraint equations are established, by analyzing the properties of coordinate transformation matrix. The linear coor
dinate equations of deformed nodes and the objective function are constructed using the generalized rigid body displacement vector. 
By using Lagrange multiplier method and Taylor series expansion, the solution method of these linear equations is derived, and the 
solution program is developed. Finally, this algorithm is compared with the trigonometric functions method through numerical 
simulations and application experiments. 

2. Basic theory 

2.1. Constraint equations 

The spatial position and attitude can be described by a coordinate system fixed to the segmented mirror. Once the system is 
established, the position of any point in the segment can be described by a 3 × 1 vector. According to the homogeneous coordinate 
transformation theory, the homogeneous coordinate vector of any point in two coordinate systems has the following correlation: 

[Ax, Ay, Az, 1]T = A[Bx, By, Bz, 1]T (1)  

where [Ax, Ay, Az,1]T is the homogeneous coordinate vector defined in the coordinate system {A}. [Bx, By, Bz,1]T is the homogeneous 
coordinate vector defined in the coordinate system {B}. A is the homogeneous coordinate transformation matrix which is composed of 
the attitude transformation matrix R and the position translation vector T: 

A =

[
R T
0 1

]

(2) 

For coordinate transformation between Cartesian coordinate systems, the attitude matrix can be expressed as: 

R =

⎡

⎣
nx ox ax
ny oy ay
nz oz az

⎤

⎦ (3)  

where [nx, ny, nz]
T, [ox, oy, oz]

T and [ax, ay, az]
T are three unit principal vectors and orthogonal to each other. 

Therefore, the constraint equations can be written as: 

n2
x + n2

y + n2
z = 1 (4)  

o2
x + o2

y + o2
z = 1 (5)  

a2
x + a2

y + a2
z = 1 (6)  

nxox + nyoy + nzoz = 0 (7)  

oxax + oyay + ozaz = 0 (8)  

nxax + nyay + nzaz = 0 (9)  

2.2. Derivation of rigid-body displacement parameters extraction algorithm 

Poi is the original position vector of the node i on the segmented mirror surface. 

Poi = [ xoi yoi zoi ]
T (10)  

and Pdi is the post-deformation position vector of the node i on the segmented mirror surface, which is given in the analysis result. 

Pdi = [ xdi ydi zdi ]
T (11) 

It should be noted that the vector Pdi contains not only the rigid-body displacement deformation, but also the surface distortion. 
The rigid-body displacement deformation does not change the relative position between nodes, which is beneficial for the parameters 
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extraction, while the surface distortion will change the relative position between nodes, which is harmful. 
The TFM uses the RPY rotation sequence in robotics to generate the attitude transformation matrix (Eq. (3)), which can reduce the 

number of variables from the original 9 to 3. This algorithm is intuitive and easy to understand, but has significant disadvantage: It 
needs to derive the partial derivatives of the advanced nonlinear equations, calculate a large number of trigonometric functions for 
each iteration, and do not converge for some special conditions, for example, the triaxial rotation angle is -90 degrees. 

In order to avoid the above problems, a linear model based on generalized rigid-body displacement vector u is proposed: 

Pi =

⎡

⎣
xi
yi
zi

⎤

⎦ =

⎡

⎣
nxxoi + oxyoi + axzoi + tx
nyxoi + oyyoi + ayzoi + ty
nzxoi + ozyoi + azzoi + tz

⎤

⎦ (12)  

and: 

u = [nx, ny, nz, ox, oy, oz, ax, ay, az, tx, ty, tz, ]
T (13)  

where Pi is the position vector of node Poi after rigid-body motion u. 
Because of the factors such as fitting residual, surface distortion and analysis errors, Pi is not equal to Pdi, and the residual v is: 

vi = Pdi − Pi =

⎡

⎣
xdi − nxxoi − oxyoi − axzoi − tx
ydi − nyxoi − oyyoi − ayzoi − ty
zdi − nzxoi − ozyoi − azzoi − tz

⎤

⎦ (14) 

The objective function can be written as: 

Q(u) = vT v (15) 

According to the least squares theory, when u takes the best value, the objective function is minimum. In this way, the parameters 
extraction process can be transformed into a constrained optimization problem: 

{
minQ(u)
φi(u) = 0 i = 1, 2, 3, 4, 5, 6 (16)  

where 

φ1(u) = n2
x + n2

y + n2
z − 1 = 0 (17)  

φ2(u) = o2
x + o2

y + o2
z − 1 = 0 (18)  

φ3(u) = a2
x + a2

y + a2
z − 1 = 0 (19)  

φ4(u) = nxox + nyoy + nzoz = 0 (20)  

φ5(u) = nxax + nyay + nzaz = 0 (21)  

φ6(u) = oxax + oyay + ozaz = 0 (22) 

According to the Lagrange multiplier method, the objective function with constraints can be expressed as: 

E(u, λ) = Q(u) + 2λT φ(ς) (23)  

where λ = [λ1, λ2, λ3, λ4, λ5, λ6]
T . 

According to the extremum condition, we have: 

∂E(u, λ)
∂u

= − 2vT ·

⎡

⎢
⎢
⎢
⎢
⎣

∂f1(u)
∂u
⋮

∂fn(u)
∂u

⎤

⎥
⎥
⎥
⎥
⎦
+ 2λT

⎡

⎢
⎢
⎢
⎢
⎣

∂φ1(u)
∂u
⋮

∂φm(u)
∂u

⎤

⎥
⎥
⎥
⎥
⎦
= 0 (24)  

∂E(u, λ)
∂λ

= 2φ(u) = 0 (25)  

where 

fi(u) =

⎡

⎣
nxxoi + oxyoi + axzoi + tx
nyxoi + oyyoi + ayzoi + ty
nzxoi + ozyoi + azzoi + tz

⎤

⎦ (26) 
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Let: 

F =

⎡

⎢
⎢
⎢
⎢
⎣

∂f1(u)
∂u
⋮

∂fn(u)
∂u

⎤

⎥
⎥
⎥
⎥
⎦
; M =

⎡

⎢
⎢
⎢
⎢
⎣

∂φ1(u)
∂u
⋮

∂φm(u)
∂u

⎤

⎥
⎥
⎥
⎥
⎦

(27) 

And: 

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1

∂u1

∂f1

∂u2
⋯

∂f1

∂u12

∂f2

∂u1

∂f2

∂u2
⋯

∂f2

∂u12

⋮ ⋮ ⋱ ⋮
∂f3n

∂u1

∂f3n

∂u2
⋯

∂f3n

∂u12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28)  

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂φ1

∂u1

∂φ1

∂u2
⋯

∂φ1

∂u12

∂φ2

∂u1

∂φ2

∂u2
⋯

∂φ2

∂u12

⋮ ⋮ ⋱ ⋮
∂φ6

∂u1

∂φ6

∂u2
⋯

∂φ6

∂u12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29) 

Therefore, Eq. (24) can be simplified as: 

− 2vT ·F + 2λT M = 0 (30) 

If after k iterations, a set of solutions u(k), λ(k) is found. Perform Taylor series extension of φ(u) at u(k), and ignore the high level terms. 
The constraint equation can be expressed as: 

φ(u) = φ(u(k)) + M(k)(u(k+1) − u(k)) (31) 

It can be obtained from Eqs. (17)–(22): 

φ(u(k)) + M(k)(u(k+1) − u(k)) = 0 (32) 

Similarly, perform Taylor series extension of v(u) at u(k), and ignore the high level terms. So the residual of the (k+1)th iteration can 
be written as: 

v(u(k+1)) = v(u(k)) − F(u(k+1) − u(k)) (33) 

Connect with Eq. (29) and the generalized rigid-body displacement vector of the (k+1)th iteration is: 

uT(k+1) = uT(k) + [vT(u(k)) ·F − λ(k)T M(k)] · (FT ·F)− 1 (34) 

Connect with Eq. (30) and the Lagrange multiplier of the kth iteration is: 

λ(k)T = [φ(k)
T + v(k)T ·F · (FT ·F)− 1M(k)

T ] · [M(k) · (FT ·F)− 1M(k)
T ]

T
(35) 

Substitute Eq. (35) into Eq. (34), we can calculate the new generalized rigid-body displacement vector (GRDV), and carry out the 
next iteration. 

Finally, the parameters extraction method based on the constrained-least-squares optimization method (COM) can be expressed as: 

(36)  
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3. Solving program 

After the parameters extraction algorithm is completed, a solving program is developed. The flow chart is shown in Fig. 1. It can be 
seen that the ultra-large-scale Jacobian matrix F is only calculated once during entire solution process, and so does the diagonal matrix 
FTF. In addition, the computational complexity of matrix F is very low, only assigning Poi to F. The Jacobian matrix M, which needs to 
be updated for each iteration, is very small in scale, and the update is to replace the old GRDV with the new. Therefore, compared with 
the TFM, the COM has the characteristics of simple to solve, less calculation and high efficiency. 

Fig. 1. The flow chart of the COM algorithm.  
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4. Numerical simulations 

After the solving program is completed, numerical simulations are achieved to verify the validity of the program. The simulations 
adopt the following procedures: Firstly, produce n feature points which are evenly distributed on a spherical mirror with diameter 200 
mm and radius of curvature 1000 mm. The nominal position of these points are indicated by p→. Then, design the GRDV u→v to be 
verified, calculate these feature points position p→d after rigid-body motion u→v according to the coordinate transformation. It should be 
noted that the vector u→v is arbitrary and can be generated randomly or manually. Finally, the position vectors before and after the 
rigid-body motion are substituted into the solving program, and the rigid-body displacement u→ is obtained. Comparing u→with u→v, we 
can verify the validity and accuracy of the program. 

The mirror surface used in numerical simulations is shown in Fig. 2, on which there are 4936 feature points. It should be noted that 
the program can be applied not only to the regular surface, but also to irregular surface, bodies and discrete points, although the 
numerical simulations is performed on a spherical surface. 

In order to comprehensively test the program, 10 sets of rigid-body displacement vectors are produced using a random program. 
The 10 sets of vectors are shown in Table 1. The rigid-body rotation is described using the RPY (roll, pitch, yaw) rotation sequence. 

4.1. Simulations without interference 

The simulation result without interference is shown in Table 2. It can be seen from Table 2 that the program can separate the rigid- 
body displacement with errors close to zero. 

4.2. Simulations with uniform distribution interference 

In order to verify the anti-interference ability of the algorithm, a uniformly distributed interference, which can simulate the finite 
element simulation analysis errors, is added. For comparison purpose, the parameters to be verified are the same as those in Table 1. 
Fig. 3 shows the uniform distribution interference with a peak-to-valley value of 0.02 mm, and the simulation result under the 
interference is shown in Table 3. 

Form Table 3, we can discover the following laws: Firstly, compared with the simulations without interference, the accuracy for the 
simulations with the uniform distribution interference has decreased significantly, but still is better than 2e-3‰. Secondly, for the 10 
sets of rigid body displacement simulations with significant differences, the COM program has the same residual (rms 3.3e-3 mm), 
which indicates that its accuracy consistency is excellent. Finally, the residual is at the same level as the interference (rms 5.8e-3 mm), 
which states that the algorithm has sufficient solving accuracy to completely separate the deformation caused by the rigid-body 
displacement. The reason why the residual is slightly smaller than the interference is because the rigid-body motion will partially 
compensate the surface distortion. And the program can automatically calculate this optimal compensation value, which becomes part 
of the GRDV solving residual. All the above laws prove that the COM algorithm proposed in this paper is effective. 

4.3. Simulations with Zernike polynomial distribution interference 

Zernike polynomials are usually used to evaluate the quality of optical surface in optical engineering. The simulations with 0.01 
mm Z4 to Z13 Zernike polynomials interference (shown in Fig. 4), which is used to simulate the surface distortion, are achieved, and 
the verification result is shown in Table 4. 

From Table 4, we can find the similar laws as Table 3. It needs to be additionally stated that because the rigid-body motion has 
greater compensation ability on the Zernike polynomials, the parameters extraction precision is slightly lower than that for uniform 
distribution interference. But the program accuracy is still better than 0.8‰, which is higher than the finite element simulation analysis 

Fig. 2. The diagram of the spherical surface without deformation.  
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Table 1 
Ten groups of rigid-body displacement conditions to be verified.  

Number 
rigid-body translation/mm rigid-body rotation /◦

tx  ty  tz  θx  θy  θy  

1 − 381 391 429 150 156 − 120 
2 − 2 459 − 150 − 77 − 133 37 
3 460 47 − 303 93 25 − 85 
4 − 160 − 361 − 249 123 − 18 − 108 
5 85 − 351 116 − 43 − 176 68 
6 − 276 − 242 − 27 − 83 − 35 − 115 
7 251 341 − 148 − 153 − 122 − 18 
8 − 245 − 246 331 − 161 106 − 150 
9 6 314 85 11 − 68 − 98 
10 199 − 256 50 101 10 149  

Table 2 
Verification results of the COM program under no interference.  

Number 
Translation errors/mm Rotation errors /◦

rms(v)/mm  
Δtx  Δty  Δtz  Δθx  Δθy  Δθy  

1 0 0 0 7.e-15 0 0 2.e-13 
2 − 1.e-13 − 1.e-13 − 6.e-14 − 8.e-15 0 0 1.e-13 
3 − 6.e-14 7.e-15 0 − 1.e-14 − 1.e-14 − 1.e-14 2.e-13 
4 0 − 1.e-13 0 − 2.e-13 0 2.e-14 2.e-13 
5 3.e-13 0 -2.e-13 − 3.e-14 0 7.e-15 2.e-13 
6 0 0 − 7.e-15 5.e-17 0 3.e-16 4.e-14 
7 2.e-13 0 0 3.e-14 -4.e-13 3.e-14 6.e-13 
8 0 − 3.e-14 0 − 9.e-16 − 1.e-14 0 9.e-14 
9 3.e-14 0 − 4.e-14 0 0 0 1.e-13 
10 − 1.e-13 0 − 6.e-14 − 4.e-15 0 0 8.e-14  

Fig. 3. The diagram of the uniform distribution noise with peak-to-valley value of 0.02mm.  

Table 3 
Verification results of the COM program under uniform distribution interference.  

Number 
Translation errors/mm Rotation errors /◦

rms(v)/mm  
Δtx  Δty  Δtz  Δθx  Δθy  Δθy  

1 − 7.7e-5 5.3e-5 − 6.1e-5 8.9e-7 − 5.9e-6 − 1.7e-5 3.3e-3 
2 2.9e-5 5.3e-5 9.4e-5 1.7e-5 − 3.8e-6 − 1.2e-5 3.3e-3 
3 − 3.9e-7 − 7.4e-5 8.4e-5 1.3e-5 1.1e-5 − 1.2e-5 3.3e-3 
4 1.2e-6 -1.1e-4 3.1e-5 − 8.6e-6 -2.1e-5 − 8.6e-6 3.3e-3 
5 − 8.3e-5 5.5e-6 7.4e-5 2.1e-5 9.2e-6 − 6.1e-6 3.3e-3 
6 1.2e-6 1.1e-4 − 3.1e-5 − 1.3e-5 9.0e-13 − 1.5e-5 3.3e-3 
7 − 4.9e-6 − 9.8e-5 5.3e-5 − 1.1e-5 1.3e-5 − 1.3e-5 3.3e-3 
8 − 1.3e-5 1.1e-4 − 2.0e-5 − 1.1e-5 − 9.0e-7 − 1.6e-5 3.3e-3 
9 1.1e-4 − 6.3e-6 3.7e-5 7.5e-6 − 1.0e-5 − 1.5e-5 3.3e-3 
10 − 3.1e-5 4.4e-5 9.8e-5 − 1.9e-5 − 1.4e-6 − 1.1e-5 3.3e-3  

H. Yang et al.                                                                                                                                                                                                           



Optik 224 (2020) 165748

8

accuracy, and can meet the engineering requirement. 

4.4. Comparison of extraction efficiency under different conditions 

In order to get the accurate results, it is necessary to use as many nodes as possible for finite element simulation analysis. In this 
way, the data that need to be processed by the extraction algorithm also increases. Therefore, the extraction efficiency of the program 
is also an important indicator. By adding a timing module to the program, we can obtain the parameter extraction time, which can 
represent the algorithm efficiency. The efficiency of different algorithms under different conditions is shown in Fig. 5. Conditions 1 to 3 
represent simulations without interference, with uniform distributed interference and Zernike polynomial interference, respectively. 

It can be clearly seen from Fig. 5 that the efficiency of two algorithms is not affected by the interferences. No matter what kind of 
interference is added, the calculation time under the same conditions is nearly the same. Furthermore, the calculation time using TFM 
is much higher than that of COM. And, the calculation time of the TFM fluctuates violently for different conditions, but that of the COM 
is almost consistent(less than 2 s). These show that the COM algorithm has the characteristics of high efficiency and good stability. 

5. Application experiments 

In order to verify the actual application effect, the COM is applied to a certain-type deployable telescope which is under devel
opment. The finite element model of the segment system is shown in Fig. 6, which is mainly composed of a foldable bottom plate, a 
motion platform, a co-phasing adjustment device and a segmented mirror which is mounted on the motion platform. Among them, the 
adjustment device adopts the classic hexapod structure. The model has a total of 66,848 nodes and 39,858 elements, which is mainly 
composed of 8-nodes hexahedral elements, and a few 6-nodes pentahedral elements for transitioning complex structural. 

The relationship between the rigid-body displacement of segmented mirror and the displacements l
→

n of the six linear actuators can 
be expressed as: 

l
→

n = A u→n (37)  

where u→n is the rigid-body displacement and A is the transfer matrix. 

Fig. 4. The diagram of the Zernike polynomial distribution noise with the root mean square value of 1.39e-2 mm.  

Table 4 
Verification results of the COM program under the Zernike polynomial distribution interference.  

Number 
Translation errors/mm Rotation errors /◦

rms(v)/mm  
Δtx  Δty  Δtz  Δθx  Δθy  Δθy  

1 1.2e-3 − 4.6e-3 2.2e-3 − 2.9e-4 9.0e-5 − 5.4e-5 8.0e-3 
2 1.5e-3 − 1.1e-3 -4.9e-3 1.4e-5 3.0e-4 − 1.3e-4 8.0e-3 
3 8.2e-4 5.0e-3 − 1.2e-3 − 2.4e-6 2.9e-4 1.6e-4 8.0e-3 
4 3.5e-3 2.1e-3 − 3.3e-3 − 7.3e-5 2.9e-4 − 2.2e-6 8.0e-3 
5 4.3e-3 2.4e-3 − 1.7e-3 − 7.0e-5 3.0e-4 1.5e-5 8.0e-3 
6 7.8e-4 5.2e-3 2.7e-4 9.2e-5 3.1e-4 − 1.6e-4 8.0e-3 
7 7.6e-4 2.3e-3 − 4.7e-3 -3.4e-4 − 2.5e-4 1.6e-4 8.0e-3 
8 − 1.3e-3 − 3.9e-3 3.2e-3 − 1.9e-4 2.0e-4 1.2e-4 8.0e-3 
9 − 3.0e-3 3.3e-4 − 4.3e-3 3.3e-5 2.9e-4 − 1.8e-4 8.0e-3 
10 2.9e-3 − 3.7e-3 − 2.3e-3 − 2.3e-4 − 1.6e-6 3.0e-4 8.0e-3  
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In order to calibrate the kinematics model shown in Eq. (37), the co-phasing adjustment device (shown in Fig. 7) was developed, 
and the kinematics calibration test was completed. Because a cube prism is required to feed back the rigid-body displacement of the 
motion platform, the segmented mirror shown in Fig. 6 is replaced by the cube prism shown in Fig. 7. After the calibration is achieved, 
the cube prism will be replaced with the segmented mirror. Except for the differences mentioned above, all the structures are 
equivalent to the finite element model. 

The displacement l
→

n of the linear actuators under the rigid-body motion input can be calculated by using the kinematics model 
(Eq. (37)), which can be used as the boundary condition for finite element simulation analysis. The nonlinear solver is then called to 
obtain the node displacement of the segment, which is used as the input of the COM program. And the rigid-body displacement under 
these nodes displacements is finally acquired. The parameter extraction result is shown in Table 5. It can be seen from Table 5 that the 
algorithm can separate rigid-body displacement parameters with the precision less than 5‰, which is higher than the finite element 

Fig. 5. The efficiency of two algorithms under different conditions.  

Fig. 6. The finite element model of the segment system.  

Fig. 7. The co-phasing adjustment device of the segmented mirror.  
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simulation analysis accuracy, and can meet the actual engineering requirements. 
The deformation maps before and after the parameter extraction are shown in Figs. 8–11 to Figs a in Figs. 8–11 are the deformation 

maps of the finite element simulation analysis, and Figs b, which are surface distortion, are the deformation maps removing the rigid- 
body displacement. Comparing the Figs. a to the Figs. b, it can be seen that the rigid-body displacement deformation completely 
obscures the segment surface distortion, and the deformation map of the finite element analysis result cannot truly reflect the surface 
distortion. Comparing the surface distortion and the calculation residual, we can find that the larger the surface distortion, the lower 
the solution accuracy. This is also because the rigid-body motion can partially compensate the surface distortion. And the larger the 
surface distortion, the larger the compensation is. This compensation cannot be separated from the GSDV parameters, and becomes the 
solving residual. Furthermore, in this application example, 1 g gravity along the y-axis is added, which can produce additional rigid- 
body displacement. All of these are important sources of the COM algorithm error. 

Table 5 
The rigid-body displacement parameters extraction of the segmented co-phasing adjustment simulation results.  

Figure 
Translation errors/mm Rotation errors /◦

rms(v)/mm  
Δtx  Δty  Δtz  Δθx  Δθy  Δθy  

1 − 5.2e-2 − 7.5e-2 − 7.7e-2 9.8e-2 5.4e-3 − 3.8e-3 6.5e-4 
2 4.2e-5 6.7e-3 − 1.1e-5 − 1.6e-3 − 1.1e-5 2.8e-4 6.0e-6 
3 − 2.1e-4 4.9e-3 1.7e-5 − 5.5e-4 − 3.2e-4 − 4.1e-5 4.4e-6 
4 − 4.0e-5 3.6e-3 6.8e-6 − 4.9e-4 − 2.3e-5 4.7e-6 2.3e-6  

Fig. 8. The analysis results and surface distortion of rotating 30◦ around x-axis.  

Fig. 9. The analysis results and surface distortion of rotating -30◦ around y-axis.  
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6. Conclusion 

This paper proposes a COM algorithm based on the properties of coordinate transformation matrix, in an attempt to solve the 
problem that large rigid-body displacement parameters in the simulation analysis results are hard to be extracted. The derivation 
process of this algorithm was discussed in details, the program was developed, the numerical simulations and application experiments 
were achieved. The numerical simulations show that compared with the TFM algorithm, this algorithm can improve the calculation 
efficiency by more than one time without reducing the calculation accuracy, and has the same efficiency and stability for any rigid- 
body displacement parameters to be extracted. The application experiments show that for a certain-type project under development, 
the parameters extraction accuracy is better than 5‰, which is higher than the finite element simulation analysis precision, and can 
further guide the design and optimization of the segment system. The COM algorithm can be applied not only to the regular surface, 
but also to irregular surfaces, bodies and discrete points, and the coordinate-measuring, although the examples are performed on a 
mirror surface. 
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Fig. 10. The analysis results and surface distortion of rotating 24◦ around z-axis.  
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