
sensors

Article

Irradiance Restoration Based Shadow Compensation
Approach for High Resolution Multispectral Satellite
Remote Sensing Images

Hongyin Han 1,2 , Chengshan Han 1, Liang Huang 1,2, Taiji Lan 1 and Xucheng Xue 1,*
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

Changchun 130033, China; hanhongyin15@mails.ucas.edu.cn (H.H.); hancs@ciomp.ac.cn (C.H.);
huangliang@ciomp.ac.cn (L.H.); lantaiji@ciomp.ac.cn (T.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: xuexucheng@ciomp.ac.cn; Tel.: +86-0431-8617-8588

Received: 29 September 2020; Accepted: 22 October 2020; Published: 24 October 2020
����������
�������

Abstract: Numerous applications are hindered by shadows in high resolution satellite remote sensing
images, like image classification, target recognition and change detection. In order to improve remote
sensing image utilization, significant importance appears for restoring surface feature information
under shadow regions. Problems inevitably occur for current shadow compensation methods in
processing high resolution multispectral satellite remote sensing images, such as color distortion of
compensated shadow and interference of non-shadow. In this study, to further settle these problems,
we analyzed the surface irradiance of both shadow and non-shadow areas based on a satellite sensor
imaging mechanism and radiative transfer theory, and finally develop an irradiance restoration
based (IRB) shadow compensation approach under the assumption that the shadow area owns the
same irradiance to the nearby non-shadow area containing the same type features. To validate
the performance of the proposed IRB approach for shadow compensation, we tested numerous
images of WorldView-2 and WorldView-3 acquired at different sites and times. We particularly
evaluated the shadow compensation performance of the proposed IRB approach by qualitative visual
sense comparison and quantitative assessment with two WorldView-3 test images of Tripoli, Libya.
The resulting images automatically produced by our IRB method deliver a good visual sense and
relatively low relative root mean square error (rRMSE) values. Experimental results show that the
proposed IRB shadow compensation approach can not only compensate information of surface
features in shadow areas both effectively and automatically, but can also well preserve information of
objects in non-shadow regions for high resolution multispectral satellite remote sensing images.

Keywords: irradiance restoration; shadow compensation; WorldView-3; multispectral satellite remote
sensing image

1. Introduction

Optical satellite remote sensing images play an increasingly important role in a number of
applications like building reconstruction, height evaluation, resource assessment, change detection
and precision agriculture, along with the increasingly spatial resolution of optical satellite remote
sensing images provided by high spatial resolution (HSR) satellites, such as QuickBird, WorldView-2,
WorldView-3, and Jilin-1 [1–8]. However, shadows inevitably formed by clouds and land surface
features interfere more seriously in these HSR optical satellite remote sensing images [9]. Notably,
the shadow often weakens feature information due to the absence of direct light compared with the
corresponding non-shadow [9–11]. Besides, significant information not only exists in most non-shadow
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regions, but also appears in shadow regions for applications like image classification, change detection,
and target detection. Given this situation, proper correction of the shadow plays an important role for
further applications of these valued HSR optical satellite remote sensing images. Therefore, shadows
should be well pre-processed before additional applications of these HSR images.

Shadow is normally processed with two main steps: shadow detection (or extraction) and
shadow compensation (or restoration). Researchers have devoted themselves to shadow detection and
compensation [9–20]. In this paper, we make every reasonable effort to develop a relatively simple but
effective automatic shadow compensation method. Numerous shadow compensation methods have
been presented to alleviate the negative shadow interference of images. These methods can be mainly
categorized into two types: the image enhancement (IE) based class and the imaging mechanism (IM)
based class (also called the irradiance-based one).

Typical IE-based shadow compensation methods include statistical correction (like histogram
matching, gamma correction, linear correlation correction (LCC) and gray stretching) [13,21–23],
Retinex-based correction [24], and homomorphic filtering (HF) [25]. Suzuki et al. [26] presented a
dynamic shadow compensation method, which could enhance the visibility of features under shadow
regions in urban aerial images. This method compensated both the intensity and saturation per pixel of
the shadow in accordance with the pre-calculated posterior probabilities. Wang et al. [27] compensated
shadows in color aerial remote sensing images by applying different adjustment parameters over
red (R), green (G), and blue (B) components, respectively. This shadow compensation method well
improved the visibility of features in the shadow areas blocked by trees or buildings. Guo et al. [28]
developed a simple shadow compensation algorithm for IKONOS images by mapping the gray values
for pixels in both shadow and non-shadow regions and eliminating the visual difference by histogram
matching. Sarabandi et al. [29] analyzed shadow compensation effects of histogram matching, gamma
correction, and LCC for IKONOS and QuickBird images, and drew a conclusion that the LCC method
performed better than histogram matching and gamma correction for these satellite remote sensing
images. Su et al. [30] also provided a shadow compensation method by utilizing histogram matching
in HIS color space rather than usually in RGB space. Chen et al. [31] compensated shadows based on
the statistical relationship between shadow and non-shadow regions. In addition, Yamaziki et al. [14]
and Liu et al. [16] developed a shadow compensation method with a piecewise linear equation based
on the LCC method, which delivered an excellent performance over QuickBird images. As for the
Retinex-based correction, related research mainly focused on the single scale Retinex (SSR) [32] and
the multi-scale Retinex (MSR) [24]. Related research on shadow compensation also appeared in the
frequency domain. For instance, Hao et al. [25] applied the HF technology on compensating shadows
in SPOT remote sensing images, which offered a novel thought.

Additionally, the IM-based methods have attracted more attention in recent years. Guo et al. [15]
developed a new imaging model based on the radiative transfer theory to compensate for the lost
information in shadow areas, where shadow could be considerably suppressed. Ye et al. [33] explored
a light source color rate (LSCR) based shadow compensation method for aerial images with the Shades
of Gray algorithm [34], in which the uncertainty caused by parameters of the Minkowski norm was
further analyzed. Wen et al. [9] also proposed a shadow compensation approach for various scales
remote sensing images based on the reflectance equality relationship (RER) reducing the number
of parameters and the corresponding error propagated by these parameters although the shadow
parameter f was computed manually. Lin et al. [35] and Silva et al. [11] also presented the direct and
environment light based method (DELM) for shadow compensation purpose based on the illumination
distinction between shadow and non-shadow areas.

Though numerous shadow detection methods have been developed, problems inevitably occur
for current shadow compensation methods in processing high resolution multispectral satellite remote
sensing images, such as color distortion of compensated shadow and interference of non-shadow.
In this paper, we proposed an irradiance restoration based (IRB) shadow compensation approach
for HSR optical multispectral satellite remote sensing images by simplifying the isotropic reflected
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irradiance based on a single angle, which was developed under the assumption that the shadow
area owns the same irradiance to the nearby non-shadow area containing the same type features.
For testing the shadow compensation performance of our proposed IRB approach, we carried out
comparative experiments over test images of WorldView-2 and WorldView-3 acquired at different sites
and times. Particularly, we evaluated the shadow compensation performance of the proposed IRB
approach both qualitatively and quantitatively against several shadow compensation methods (i.e.,
LCC [16,21], LSCR [33], MSR [24,36], HF [25] and DELM [11,37]) with two WorldView-3 test images of
Tripoli, Libya.

The rest proceeds as in the following. The proposed IRB shadow compensation approach
is described in detail in Section 2. Performance evaluation is conducted both qualitatively and
quantitatively with comparative experiments in Section 3. Discussion of influential elements is
presented in Section 4. Conclusions are finally drawn in Section 5.

2. Method

2.1. The Derivation of the Irradiance Restoration Based (IRB) Approach

The sun is usually regarded as the unique light source in optical satellite remote sensing imaging
fields. Figure 1 illustrates the light transfer process in both non-shadow and nearby shadow regions
for the optical satellite sensor [9].
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Specifically, the surface irradiance (Enshw) of the non-shadow aera includes three parts: direct
irradiance (Ed), scattered irradiance (Es) (also named diffuse irradiance), and ambient (or reflected)
irradiance (Ea). However, the surface irradiance (Eshw) of the shadow area mainly consists of Es and Ea,
because Ed is often inevitably occluded by clouds and surface features for the shadow area. The surface
irradiance compositions of the non-shadow area and the shadow area are expressed in the following
equations [25,35,38]:

Enshw = Ed + Es + Ea (1)

Eshw = Es + Ea (2)

Generally, the radiant existence (Mnshw) of the Earth’s surface in the non-shadow area is expressed
with the corresponding Enshw:

Mnshw = ρnshwEnshw (3)

where ρnshw is the surface reflectance of the non-shadow area.
In addition, the radiance from the Earth’s surface of the non-shadow area (Learth

nshw) can be expressed
with the corresponding radiant existence (Mnshw) of the Earth surface in the non-shadow area:

Learth
nshw =

Mnshw
π

(4)
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where π is the solid angle.
Therefore, Learth

nshw can be directly described with the corresponding Enshw by substituting Equation (3)
for Mnshw in Equation (4), as follows [39]:

Learth
nshw =

ρnshw

π
Enshw (5)

Our purpose is to restore information of shadow regions in the acquired images. Therefore, we
mainly concentrate on the light propagation path from the Earth surface to the satellite sensor. In the
light propagation process, atmospheric influence should be taken into consideration, because the
radiance of land-surface features propagates through the atmosphere before arriving at the satellite
sensor. The atmospheric influence mainly results in an attenuated radiance from the Earth surface,
and a path radiance (Lp) that is directly reflected to the satellite sensor by the atmosphere, but does
not arrive at the Earth surface [40]. Hence, the total radiance of the non-shadow area arriving at the
satellite sensor (Lsensor

nshw ) can be expressed with the attenuated Learth
nshw and Lp:

Lsensor
nshw = τLearth

nshw + Lp (6)

where τ is the atmospheric transmittance from the Earth surface to the satellite sensor.
Here, the image radiance of the non-shadow area is calculated in accordance with

Equations (1) and (5) as the following equation:

Lsensor
nshw =

τρnshw
π Enshw + Lp

=
τρnshw
π (Ed + Es + Ea) + Lp

(7)

Similarly, the image radiance of the shadow area is also expressed in a similar way:

Lsensor
shw =

τρshw
π Eshw + Lp

=
τρshw
π (Es + Ea) + Lp

(8)

where ρshw is the surface reflectance of the shadow area.
Thus, image radiance can be described in a general way combining Equations (7) and (8),

as follows [11]:
L =

τρ

π
(kEd + Es + Ea) + Lp (9)

where ρ is the surface reflectance, and k is the shadow approximation parameter, in which k = 0 refers
to shadow and k = 1 denotes non-shadow.

Additionally, the absence of Ed in the shadow area contributes to the difference between
non-shadow and shadow areas. For retrieving information of the shadow area containing the
same type features to the nearby non-shadow area, an assumption can be arranged in which the same
surface irradiance of the non-shadow area is owned by the nearby shadow area. Namely, the shadow
area receives Es, Ea, and a hypothesized direct irradiance (Ehyp

d ) under the assumption above. In this

case, the corresponding hypothesized radiance of the shadow area (Lhyp
shw) can be considered as the

compensated radiance, which is received by the satellite sensor hypothetically but not actually, as
shown in Equation (10).

Lhyp
shw =

τρshw
π

(
Ehyp

d + Es + Ea
)
+ Lp

=
τρshw
π

(kEd+Es+Ea)
(
Ehyp

d +Es+Ea

)
(kEd+Es+Ea)

+ Lp

=
(
L− Lp

) (
Ehyp

d +Es+Ea

)
(kEd+Es+Ea)

+ Lp

(10)
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In the shadow compensation process, because Ehyp
d is developed under the assumption that the

shadow area contains the same type features as the nearby non-shadow area, Ehyp
d can be regarded

approximately equal to Ed in the corresponding nearby non-shadow area (i.e., Ehyp
d = Ed). Therefore,

Equation (10) can be rewritten as in the following:

Lhyp
shw =

(
L− Lp

)  E
hyp
d

Es+Ea +1

(
k

Ed
Es+Ea +1

) + Lp

=
(
L− Lp

)
(r+1)
(kr+1) + Lp

(11)

where r is the irradiance coefficient defined by Equation (12).

r =
Ehyp

d
Es + Ea

=
Ed

Es + Ea
(12)

In order to calculate r with image radiance, Lp is first moved from the right-hand side to the
left-hand side in both Equations (7) and (8), then items of Equation (8) are divided by the corresponding
items of Equation (7), as shown in Equation (13):

Lsensor
shw − Lp

Lsensor
nshw − Lp

=
ρshw(Es + Ea)

ρnshw(Ed + Es + Ea)
(13)

In addition, the surface reflectance of the non-shadow area is reasonably equal to that of the
nearby shadow area containing the same type features (i.e., ρnshw = ρshw) [9]. Thus, Equation (13) can
be further rewritten as Equation (14):

Lsensor
shw − Lp

Lsensor
nshw − Lp

=
Es + Ea

Ed + Es + Ea
=

1
r + 1

(14)

Hence, the irradiance coefficient r can be obtained in the image radiance from with the
following equation:

r =
Lsensor

nshw − Lsensor
shw

Lsensor
shw − Lp

(15)

For clarity, the compensated image radiance of the shadow area (Lcomp
shw ) can be represented by the

following equation:

Lcomp
shw =

(
L− Lp

) (r + 1)
(kr + 1)

+ Lp (16)

Note that Equation (16) only needs to estimate Lp avoiding the uncertainty of the estimation of
parameters τ and ρ. Thus, the solution of Equation (16) is promising.

For pixels of both shadow and non-shadow areas in the target image, Equation (16) can be further
expressed as follows:

Lcomp
shw =

 L k = 1
L + r

(
L− Lp

)
k = 0

(17)

2.2. Workflow of the IRB Approach

In our study, the target image is first divided into shadow and non-shadow regions with
the logarithmic shadow index (LSI) shadow detection method and further refined with a certain
manual operation. Consequently, shadow regions are compensated with the proposed IRB method
pixel-by-pixel and non-shadow regions are left unchanged. The developed IRB approach is mainly
accomplished in five steps described as in the following, as shown in Figure 2.
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• Step 1: Radiance calibration

Optical satellite remote sensing images are usually saved in a digital number (DN) value form.
For instance, the Worldview-3 data is saved in the 11-bit DN value form [41]. Radiance calibration is
often applied prior to shadow correction, in which the image DN value is converted into radiance pixel
by pixel with the image metadata in the acquired image files through a certain calibration algorithm or
directly over a professional software. In this study, the radiance calibration process is carried out with
the radiometric calibration module in the ENVI 5.2.

• Step 2: Shadow detection

In the shadow correction process, shadow detection is a pre-process prior to shadow compensation,
which extracts shadow regions in the target image and classifies the target image into non-shadow and
shadow parts [42–45]. In this step, the LSI shadow detection method [46] is first utilized to produce
the shadow mask image. Problems of non-shadow misclassification and shadow omission are still
inevitable for the current shadow detection process. Consequently, we manually refine the shadow
detection result of the LSI shadow detection method to further alleviate shadow detection problems.

• Step 3: Path radiance estimation

The path radiance Lp is an important element for the whole shadow compensation process,
which can be estimated with various algorithms, like the dark object subtraction (DOS), the histogram
method, and the improved dark object subtraction (IDOS) [47,48]. In this study, we estimate the Lp

value per band of the target image with the IDOS algorithm.

• Step 4: Irradiance coefficient computation

As shown in Equation (15), the irradiance coefficient r is derived with Lsensor
nshw , Lsensor

shw and Lp.
As mentioned in Step 3 above, Lp values are estimated with the IDOS algorithm. In this step,
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we compute Lsensor
nshw and Lsensor

shw with the Minkowski norm on the basis of the color constancy theory [33,34],
respectively, as shown in Equation (18):

Lest = a


M∑

x=1

N∑
y=1

( f (x, y))p

M×N



1
p

(18)

where a is the gain factor, p is an adjustable parameter, f (x, y) is the radiance value of the target image
with the coordination (x, y), and M×N refers to the amount of pixels in either the non-shadow area or
the shadow area of the target image.

• Step 5: Shadow compensation and optimization

The shadow compensation task is initially accomplished with the shadow detection result (Step 2),
Lp (Step 3) and r (Step 4) in accordance with the solution of Equation (17).

For pixels belonging to the shadow area (i.e., k = 0), refining parameters α and β are additionally
applied to optimize the compensation result by the solution of Equation (17). The optimized
compensated radiance Lopt

shw is shown with the following equation:

Lopt
shw =

 L k = 1
αL + βr

(
L− Lp

)
k = 0

(19)

where α and β are refining parameters.
As shown in Equation (19), refining parameters α and β are additionally applied to optimize

the shadow compensation result by the initial solution of Equation (17), which contributes to the
refined resulting image after shadow compensation. Particularly, parameter α is mainly employed to
optimize the impact of the original shadow on the compensation result, and parameter β is utilized
to refine the influence of the path radiance and the irradiance coefficient on the compensation result.
However, it is unrealistic to form an explicit mathematical model for the refining parameters used
in the image interpretation of high resolution remote sensing images, because complex and diverse
ground features are usually caught in these images. Therefore, we refer to the experimental solution
with similar optimization for defining the refining parameters for shadow detection of high resolution
remote sensing images by Zhang et al. [49]. We finally decide to choose the experimental solution to
defining the refining parameters α and β. As for the restriction of the refining parameters α and β,
the additional experimental results reveals that the restriction of α+ β is both simple and valid for
optimizing the compensation result, although there are many ways to restrict the refining parameters α
and β. With these considerations, we further explore the restriction of α+ β by ranging α+ β from 1 to 6
in experiments with both the quantitative measurement, relative root mean square error (rRMSE), and
the visual sense of compensation results. We finally determine to restrict the refining parameters α and
β with α+ β = 3. Subsequently, under the restriction of α+ β = 3, we traverse the refining parameters
α and β in the interval of 0.1 from 0.1 to 3, and define values of α and β. A related discussion and
analysis on the parameter sensitivity of compensation results are provided in additional experiments
in Section 4.

3. Performance Evaluation

3.1. Test Images

The proposed IRB shadow compensation approach was accomplished on a DELL personal
computer with 64-bit Windows 7 operation system equipped with a 3.2 GHz CPU and a 4 GB RAM.
To verify the shadow compensation performance of the proposed IRB approach, we run comparative
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experiments with many images from WorldView-3 of Tripoli, Libya, and Rio de Janeiro, Brazil, and
WorldView-2 of Washington DC, USA, which are respectively called WV3-Tripoli, WV3-Rio, and
WV2-WDC. The corresponding discussion is provided in the next section (Section 4: Discussion).
Particularly, qualitative and quantitative assessments are performed in this section to evaluate the
shadow compensation performance of the proposed IRB approach against several shadow compensation
methods (i.e., LCC, LSCR, MSR, HF, and DELM) with two test images from WorldView-3 of Tripoli,
Libya [41], as shown in Figure 3a,b (respectively called Tripoli-1 and Tripoli-2). Specifically, the test
image Tripoli-1 in Figure 3a is a 400 × 300 pixel image, which covers typical ground objects, such as
shadow, various scale urban buildings, asphalt roads, bare land, and grass. The test image Tripoli-2
in Figure 3b is a 260 × 195 pixel image mainly consisting of shadow, buildings, asphalt roads, grass,
playground, and parks.
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3.2. Qualititave Evaluation

For evaluating shadow compensation results, the subjective visual sense evaluation method
intuitively reflects the compensation effect of specific regions in target images and is conducive to
analyzing the performance among various shadow compensation methods for a specific shadow [14,16].
In this part, the shadow compensation effect is first analyzed for test images Tripoli-1 and Tripoli-2
from the perspective of qualitative visual sense comparison. Shadow compensation results of test
images by the proposed IRB shadow compensation approach are respectively discussed in terms of R,
G and B components. Then, a comprehensive visual sense comparison is also made between shadow
compensation results by various shadow compensation algorithms (i.e., IRB, LCC, LSCR, MSR, HF,
and DELM).

Figure 4 lists the resulting images of the test image Tripoli-1 compensated before and after by
the presented IRB approach in terms of R, G, and B components. As shown in Figure 4b, significant
improvement in the gray value of shadow regions is achieved in the R component of the resulting
image compared with the original one in Figure 3a. In particular, most areas with relatively severe
shadow effect in Figure 4a are well compensated in Figure 4b, such as areas A-D. Moreover, information
of features in shadow regions in Figure 4a is mostly restored in Figure 4b compared with nearby
similar ground features, which can be obviously seen by comparing small buildings in region A
and bare ground and asphalt roads in region B in both Figure 4a,b. Therefore, the R component of
Tripoli-1 processed by IRB shows a significant improvement in visual sense opposed with the original
one. Similarly, shadow regions of G and B components in Figure 4d,f also achieve obvious visual
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sense improvement, which is consistent with the compensation result of R component in Figure 4b,
when compared with those in Figure 4c,e. Consequently, not only is obvious improvement in visual
sense acquired by the IRB shadow compensation approach for the test image Tripoli-1, but good
consistency is also shown among the compensation results of R, G, and B components.
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Figure 5 also presents R, G, and B components of test image Tripoli-2 compensated before and after
by the proposed IRB shadow compensation method. As shown in Figure 5b, obvious improvement in
brightness of shadow regions is observed intuitively in the R component of Tripoli-2 compensated by the
IRB method on comparing shadow regions in the original R component of Tripoli-2 shown in Figure 5a
and the corresponding ones in the compensated R component shown in Figure 5b. For instance, several
ground objects covered by shadow in regions E-H are almost completely revealed in the compensated
R component of Tripoli-2 seen in Figure 5b. Specifically, by comparing ground features under shadow
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in regions E-H of both Figure 5a,b, the information of typical ground targets is clearly restored by the
IRB method in Figure 5b, like grass under building shadow in region E, asphalt roads in region F, tops of
buildings in region G, and grass under small shadow in region H, which are mostly covered by shadow
in Figure 5a. Therefore, it can be observed that the R component of Tripoli-2 is well compensated by
the proposed IRB method, and the visual sense of the compensated R component has been significantly
improved compared with the original one. Analogous to the compensation result of the R component
of Tripoli-2, G and B components also acquire a dramatical improvement in terms of the gray value of
shadow regions, as shown in Figure 5d,f. Moreover, the compensation results of R, G, and B components
are relatively consistent. Hence, not only is meaningful improvement of the visual sense achieved by the
IRB shadow compensation approach, but strong consistency is also shown in compensation results in
terms of R, G, and B components of Tripoli-2.
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In addition to visual sense comparison regarding compensation results by the IRB shadow
compensation approach in terms of R, G, and B components of test images Tripoli-1 and Tripoli-2,
related analysis is also carried out to compare compensation results by the IRB approach and several
shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM).

Figure 6 illustrates the shadow compensation results of the test image Tripoli-1 by the IRB approach
and several shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM). As presented in
Figure 6a, obviously, the resulting image by the IRB method reveals more details about ground targets
under shadow and significant improvement is also shown in a visual sense by comparing the shadow
compensation result in Figure 6a with the original test image Tripoli-1 in Figure 3a. A similar color
effect of shadow regions is also achieved in the compensation result to that of the adjacent similar
objects, such as small buildings and grass in region A, blue houses in region B, and nearby shadow of
buildings in regions C and D shown in Figure 6a. As illustrated in Figure 6b, the shadow compensation
result by LCC also improves the visibility of objects in the shadow regions. Similarly, the shadow
compensation result by LSCR and DELM in Figure 6c,f also shows great improvement of shadow
areas in visual sense, even though the improvement effect is not as obvious as the results by IRB
and LCC listed in Figure 6a,b. However, the shadow effect is still obvious in the resulting image by
the MSR shadow compensation method shown in Figure 6, like almost similar shadow regions A–D
appearing in Figure 3a. Additionally, color distortion and non-shadow interference occur obviously in
the resulting image by HF, as shown in Figure 6e. Generally speaking, the proposed IRB algorithm
well restores the information of objects in shadow regions of the test image Tripoli-1, and achieves a
relatively good visual sense compared with the comparative shadow compensation methods.
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Figure 6. Shadow compensation results of various shadow compensation algorithms for the test image
Tripoli-1. (a) The irradiance restoration based (IRB) method. (b) The linear correlation correction (LCC)
method [16,21]. (c) The light source color rate (LSCR) method [33]. (d) The multi-scale Retinex (MSR)
method [24,36]. (e) The homomorphic filtering (HF) method [25]. (f) The direct and environment light
based method (DELM) [11,37].

Additionally, Figure 7 also depicts shadow compensation results of the test image Tripoli-2 by the
IRB approach and several shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM).
Similar to the discussion of Tripoli-1, IRB, LCC, LSCR, and DELM also perform well in shadow
compensation of Tripoli-2 and achieve a dramatical improvement of shadow regions in visual sense.
For instance, as shown in Figure 7a–c and f, most ground objects under shadow are well restored,
like grass under building shadow in region E, asphalt roads in region F, tops of buildings in region G,
and grass under small shadow in region H. However, as presented in Figure 7d, shadow still exists
obviously in the resulting image by MSR, like large building shadow in regions E, F and G, and small
house shadow in region H. In addition, color distortion and non-shadow interference still appear in
the resulting image by HF shown in Figure 7e. In general, obvious improvement of shadow in the test
image Tripoli-2 in terms of visual sense is achieved in resulting images by IRB, LCC, LSCR, and DELM.

All in all, by comprehensively comparing shadow compensation results of test images Tripoli-1
and Tripoli-2 by IRB and several shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM),
it can be seen that the proposed IRB shadow compensation approach can well restore features of
shadow regions and achieve a relatively good overall visual sense.
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3.3. Quantitative Assessment

In addition to the qualitative evaluation above, the quantitative assessment method is also an
effective assessment way. Meanwhile, the quantitative assessment method is also used to evaluate
the performance of shadow compensation methods for further quantitatively assessing the shadow
compensation results. The root mean square error (RMSE) is a widely used indicator for quantitative
assessment [9]. However, considering the difference of the absolute RMSE values for shadow
compensation results in terms of R, G, and B components, the relative RMSE (rRMSE) is more
reasonable instead of the absolute RMSE to assess shadow compensation results in terms of R, G, and B
components. Accordingly, the rRMSE is defined by the following equation [9]:
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rRMSE =
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× 100% (20)

where fresult(x, y) and fre f (x, y) are radiance values of the shadow compensation resulting image
and the corresponding reference image with the coordination (x, y), and M×N refers to the amount
of pixels.

Specifically, the performance of the IRB approach is evaluated by comparing rRMSE of the resulting
image against the rRMSE of the original image and the rRMSE of resulting images by several shadow
compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM), where a smaller rRMSE value delivers
a better shadow compensation performance. In the following section, rRMSE is mainly utilized to
quantify the performance of the proposed IRB shadow compensation approach for test images Tripoli-1
and Tripoli-2 in terms of R, G, and B components. Figure 8a,b depict rRMSE of shadow compensation
results for test images compensated before and after by various shadow compensation algorithms (i.e.,
IRB, LCC, LSCR, MSR, HF, and DELM) in terms of R, G, and B components, respectively. As shown in
Figure 8a,b, obviously, rRMSE values of resulting images by MSR and HF are relatively high, which
shows the poor shadow compensation ability of MSR and HF. However, relatively small rRMSE values
of resulting images are acquired by IRB and LCC compared with the rRMSE of the original images for
test images Tripoli-1 and Tripoli-2 in terms of R, G, and B components, which reveals the good shadow
compensation performance of IRB and LCC. Similarly, small rRMSE values of resulting images are
also achieved by LCSR and DELM compared with the rRMSE of the original images. Since the rRMSE
values of resulting images by IRB and LCC are smaller than those by LCSR and DELM, IRB and LCC
can deliver a better shadow compensation performance.
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Additionally, Figure 9a,b illustrate ∆rRMSE between non-shadow regions in the original image
and those in the shadow compensation resulting images by various shadow compensation algorithms
for test images in terms of R, G, and B components. As depicted in Figure 9a,b, ∆RMSE values are more
than zero for resulting images by MSR and HF, which reveals that feature information in non-shadow
regions are corrupted to some extent. However, ∆RMSE values are zero or approximately zero for
resulting images by IRB, LCC, LSCR, and DELM, which delivers that IRB, LCC, LSCR, and DELM can
well preserve feature information in non-shadow regions, while compensating for shadow.

Generally speaking, the proposed IRB method not only further alleviates the color distortion
problem compared with typical image enhancement based shadow compensation methods (like MSR
and HF), but also acquires a relatively good visual sense similar to that by LCC. Besides, the relatively
small rRMSE and zero or approximately zero ∆RMSE also reveal the relatively good performance of
the proposed IRB method for shadow compensation and non-shadow preservation. Better agreement
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is also shown for R,G, and B components of results in terms of both visual sense and quantitative
measurement (rRMSE) by the proposed IRB method against the compared methods.
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4. Discussion

The presented IRB algorithm achieves a good shadow compensation performance in the
comparative experiments above with test images Tripoli-1 and Tripoli-2. However, as described
in the workflow of the proposed IRB algorithm in Section 2, uncertainties may appear in Step 3 (path
radiance estimation) and Step 4 (irradiance coefficient computation). Meanwhile, in Step 5 (shadow
compensation), the shadow compensation result is also sensitive to refining parameters α and β. In this
section, a corresponding discussion is given to evaluate the effect of these elements. Thus, additional
experiments are performed to discuss potential influence elements of the IRB approach on the shadow
compensation results with test images Tripoli-1 and Tripoli-2.

4.1. Influence Analysis of Path Radiance Estimation

The IDOS algorithm is utilized to estimate the path radiance value for each band of the target
image. The relative scattering model and the starting haze value (SHV) band, which are used in
the estimation of the path radiance with the IDOS algorithm, usually maintain the estimation result.
Available bands of WorldView-3 [41] and regular five relative scattering models [47] are listed in
Tables 1 and 2, respectively. Because the test image is captured under sunny and cloudless atmospheric
conditions, the corresponding atmospheric condition can be regarded as very clear. Namely, the λ−4

relative scattering model [47] is applied during the estimation of path radiance. Hence, properly
selecting the SHV band becomes the main influential element in the path radiance estimation.

Table 1. Eight multispectral bands of the WorldView-3 remote sensing image [41].

Band Number Band Name Wavelength Range (nm)

B1 Coastal 397–454
B2 Blue 445–517
B3 Green 507–586
B4 Yellow 580–629
B5 Red 626–696
B6 Red edge 698–749
B7 Near-IR1 765–899
B8 Near-IR2 857–1039
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Table 2. Five relative scattering models [47].

Atmospheric Conditions Relative Scattering Model

Very clear λ−4

Clear λ−2

Moderate λ−1

Hazy λ−0.7

Very hazy λ−0.5

Consequently, in order to study the influence of the path radiance estimation on the shadow
compensation results by the IRB algorithm, the available bands of test images (i.e., B1, B2, B3, B4, B5,
B6, B7, and B8) are respectively set as the SHV band in the additional experiments with test images
Tripoli-1 and Tripoli-2. Figure 10a,b illustrate the rRMSE of shadow compensation results with various
SHV bands for test images Tripoli-1 and Tripoli-2 in terms of R, G, and B components, respectively.Sensors 2020, 20, x FOR PEER REVIEW 17 of 24 
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As illustrated in Figure 10a,b, it can be observed that the SHV band slightly impacts the shadow
compensation performance of the IRB algorithm. Specifically, when B1, B2, or B3 is set as the SHV
band for the IRB algorithm, relatively lower rRMSE values of R, G, and B components are almost
acquired at the same time for test images Tripoli-1 and Tripoli-2, which shows that a better shadow
compensation effect is achieved for test images Tripoli-1 and Tripoli-2 with B1, B2, or B3 as the SHV
band. Accordingly, in this study, B2 is finally utilized as the optimized SHV band for test images.

4.2. Influence Analysis of Irradiance Coefficient Computation

The Minkowski norm is utilized in the irradiance coefficient computation together with the path
radiance. As for the calculation of the Minkowski norm, related studies [33,34] noted that uncertainties
of shadow correction effect in natural and aerial images are mainly sensitive to the parameter p. In order
to further explore the influence of the parameter p on the shadow compensation effect of HSR optical
satellite remote sensing images, the parameter p is respectively set as from 1 to 30 with an integral
interval of 1 in the additional experiments with test images Tripoli-1 and Tripoli-2. Figure 11a,b
respectively present the rRMSE of shadow compensation results with various p values for test images
Tripoli-1 and Tripoli-2 in terms of R, G, and B components.

As can be observed in Figure 11a,b, obviously, relatively lower rRMSE values are acquired for R,
G, and B components with p value of 4, 5, 6, or 7 for test images Tripoli-1 and Tripoli-2. Additionally,
the rRMSE curves in Figure 11a,b show an increasing trend for test images Tripoli-1 and Triploli-2 with
the p value from 1 to 30. Consequently, in this study, we handle test images with parameter p value of 5.
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4.3. Sensitivity Analysis of Refining Parameters

In this study, the initially derived shadow compensation solution is further optimized with
parameters α and β. According to the optimized solution given in Equation (19), the resulting images
are sensitive to refining parameters α and β. In particular, the refining parameter α optimizes the partial
impact of the original shadow on the compensation results, and βmainly affects the influence of both
the path radiance and irradiance coefficient on the compensation results. In this study, the relationship
of α and β is roughly restricted with α+ β. Subsequently, the influence of different α+ β is analyzed by
compensating test images with various α+ β ranging from 1 to 6. Figure 12a,b illustrate rRMSE of
shadow compensation results with various α+ β values for test images Tripoli-1 and Tripoli-2 in terms
of R, G, and B components. As presented in Figure 12a,b, relatively low rRMSE values are acquired for
test images Tripoli-1 and Tripoli-2 when α+ β = 2 or α+ β = 3. In this study, refining parameters α
and β are restricted with α+ β = 3.
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Additionally, the sensitivity of refining parameters α and β are further analyzed by valuing α and
β from 0.1 to 3 with an interval of 0.1 in the additional experiments with test images Tripoli-1 and
Tripoli-2. Figure 13a,b depict rRMSE of shadow compensation results with various α and β values for
test images Tripoli-1 and Tripoli-2 in terms of R, G, and B components, respectively. As presented in
Figure 13a,b, lower rRMSE values are acquired for test images Tripoli-1 and Tripoli-2 in terms of R, G,
and B components, when parameters (α, β) are set as (2.4, 0.6), (2.5, 0.5), (2.6, 0.4), (2.7, 0.3), or (2.8, 0.2),
which shows that better shadow compensation results are achieved with these parameter values of
(α, β). Hence, in this study, we develop the IRB shadow compensation approach over test images with
α = 2.6 and β = 0.4.
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4.4. Shadow Difference Analysis

In order to discuss shadow difference between different shadow areas in the same image,
we particularly labelled several shadow regions with different shadows and analyzed the compensation
results with rRMSE for test images Tripoli-1 and Tripoli-2. Specifically, as shown in Figure 3a, regions
A-D are labelled in the test image Tripoli-1 (i.e., small buildings and grass in region A, blue houses
in region B, and nearby shadow of buildings in regions C and D). Similarly, regions E-H are also
labelled in the test image Tripoli-2 shown in Figure 3b (i.e., grass under building shadow in region E,
asphalt roads in region F, tops of buildings in region G, and grass under small shadow in region H).
Figures 14a–c and 15a–c respectively depict the rRMSE of various shadow areas of images compensated
before and after by the IRB approach for test images Tripoli-1 and Tripoli-2 in terms of R, G, and
B components.
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As shown in Figures 14a–c and 15a–c, smaller rRMSE values of various shadow areas of the
resulting images are acquired for test images Tripoli-1 and Tripoli-2 in terms of R, G, and B components
compared with the corresponding original ones, which reveals the fact that the IRB approach can well
compensate feature information of shadow regions. As for the distinction of the rRMSE value for
different shadow regions (like regions A-D in the test image Tripoli-1 and regions E-H in the test image
Tripoli-2), the reflectivity of different ground features is the main reason. Therefore, external work will
be carried out in the future for exploring the reflectivity of typical ground features.

4.5. IRB Method Generalization Analysis

As described in Section 2, the IRB approach is evaluated with many images (i.e., WV3-Tripoli,
WV3-Rio, and WV2-WDC) to validate the IRB method generalization. Figure 16a–c respectively
illustrate rRMSE values of both the original WV3-Tripoli images and the shadow compensated
WV3-Tripoli images in terms of R, G, and B components. Similarly, Figures 17a–c and 18a–c also depict
the corresponding rRMSE values for WV3-Rio and WV2-WDC images compensated before and after
by the IRB approach in terms of R, G, and B components.

As can be observed in Figure 16a–c, smaller rRMSE values are achieved by the resulting WV3-Tripoli
images in terms of R, G, and B components compared with the original WV3-Tripoli images. Figures
17a–c and 18a–c also show similar phenomena for WV3-Rio and WV2-WDC images, which together
deliver the IRB approach and is able to well compensate shadow information for HSR multispectral
satellite remote sensing images. Provided this situation, two test images of WV3-Tripoli are particularly
selected in this paper to assessing the IRB approach both qualitatively and quantitively against several
shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM), as previously described in
Section 2.
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5. Conclusions

In this paper, we developed and validated a simple but effective shadow compensation approach
for high spatial resolution optical multispectral satellite remote sensing images on the basis of the
satellite sensor imaging mechanism and radiative transfer theory. According to the distinct surface
irradiance difference between non-shadow and nearby shadow areas, an assumption is first arranged
for shadow areas under which shadow areas acquire the absent direct irradiance compared to the nearby
non-shadow areas containing the same type features. Then, the solution for shadow compensation
is further developed by estimating the path radiance and computing irradiance coefficient. Finally,
refining operations are applied to optimize the initial shadow compensation solution. Additionally,
comparative experiments are carried out to validate the proposed irradiance restoration based (IRB)
shadow compensation. Shadow compensation performance of the proposed IRB method is assessed
by both qualitative visual sense comparison and quantitative analysis against shadow compensation
results by other comparative shadow compensation methods (i.e., LCC, LSCR, MSR, HF, and DELM).
The shadow compensation results and the corresponding small rRMSE of the resulting images together
reveal that the proposed IRB approach not only preserves information of features in non-shadow
areas, but also performs well in restoring information of objects in shadow regions. Additionally,
the proposed IRB method is more reasonable because it is developed on the basis of the satellite sensor
imaging mechanism and radiative transfer theory, rather than only image processing (like LCC, MSR,
and HF). The result images are more suitable for the subsequent image interpretation of high-resolution
remote sensing images (such as change detection and surface feature reflectivity reversion). In the
future, we will attempt to improve shadow compensation performance by further settling shadow
detection problems and considering more influential details for the path radiance estimation combined
with our current study.
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