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ABSTRACT The fusion of infrared and visible images can utilize the indication characteristics and the
textural details of source images to realize the all-weather detection. The deep learning (DL) based fusion
solutions can reduce the computational cost and complexity compared with traditional methods since there
is no need to design complex feature extraction methods and fusion rules. There are no standard reference
images and the publicly available infrared and visible image pairs are scarce. Most supervised DL-based
solutions have to take pre-training on other labeled large datasets which may not behave well when testing.
The few unsupervised fusion methods can hardly obtain ideal images with good visual impression. In this
paper, an infrared and visible image fusion method based on unsupervised convolutional neural network is
proposed. When designing the network structure, densely connected convolutional network (DenseNet) is
used as the sub-network for feature extraction and reconstruction to ensure that more information of source
images can be retained in the fusion images. As to loss function, the perceptual loss is creatively introduced
and combinedwith the structure similarity loss to constrain the updating ofweight parameters during the back
propagation. The perceptual loss designed helps to improve the visual information fidelity (VIF) of the fusion
image effectively. Experimental results show that this method can obtain fusion images with prominent
targets and obvious details. Compared with other 7 traditional and deep learning methods, the fusion results
of this method are better on objective evaluation and visual observation when taken together.

INDEX TERMS Infrared and visible images, deep learning, unsupervised image fusion, densely connected
convolutional network, perceptual loss.

I. INTRODUCTION
Image fusion technology can realize the information synthe-
sis of multi-source images, involving sensor imaging, image
preprocessing, image transformation, computer vision, artifi-
cial intelligence and other research fields. Image fusion has
been widely used in a variety of scenarios. For example,
in clinical diagnosis [1], the fusion of important information
from CT andMR images can reduce the difficulty of accurate
diagnosis. In digital photography, images with different expo-
sure degrees or different focal points can be fused to provide
clearer and more realistic digital images. In remote sens-
ing image processing [2]–[4], panchromatic (PAN) images
are fused with multi-spectral (MS) images to obtain fusion
images with high spatial resolution and rich spectral content.
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In the scenarios of target detection or monitoring [5], infrared
and visible images are always fused. The target intensity of
infrared image and the details of visible image preserved in
the fusion image make it possible to realize the all-weather
operation. For a long time, many researchers have devoted to
the research of infrared and visible image fusion and made
great progress. The fusion of these two kinds of images can
realize the integration and balance of image information, and
ensure that the target in the fusion image is prominent and
the texture is clear. It can enhance the ability to understand
different scenes, help to identify the target more accurately
and obtain the real-time states [6]. Infrared and visible image
fusion has great research value in military field [7], security
monitoring, object detection and so on.

After years of development, many traditional infrared
and visible image fusion methods have been proposed,
including multi-scale transform (MST) method [8]–[10],
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sparse representation (SR) method [11], [12], neural network
method [13]–[15], hybrid method [16]–[18] and so on. These
methods have long been researched and widely used in a
variety of scenarios. The steps of these methods usually
include image transformation, activity level measurement and
fusion rule design. All these steps need to be manually set and
operated, and the whole process is relatively complex and has
heavy computing burden. In recent years, the application of
deep learning in image processing has achieved remarkable
results. It has been gradually expanded to target recognition,
scene classification, image fusion and other fields. When it
is applied to the infrared and visible image fusion [19]–[22],
the fusion process is converted to train different deep neural
networks. After training, the network can model the complex
relationship between the data, and automatically extract the
feature information from the source images, and then fuse
them. There is no need to design the activity level measure-
ment and fusion rule manually. The fusion process becomes
simpler and has strong applicability. The fusion results have
obvious targets, rich details and good visual effects.

The publicly available infrared and visible image pairs are
insufficient and there are no standard images for reference
when training. Some scholars [20] adopt the method of net-
work pre-training to train the encoding/decoding ability of the
network on other labeled datasets, and then use the trained
network for infrared and visible image fusion. This method
increases the amount of calculation. Since the source infrared
and visible images are not involved in the training process,
it may cause inconformity when testing. These problems limit
the application and development of the supervised DL meth-
ods for infrared and visible image fusion. If the unsupervised
method can be adopted at the moment, the characteristics
of infrared and visible images can be directly used. What’s
more, combined with the corresponding network structure
and loss function, there is no need for pre-training and other
early network training process, which greatly improves the
fusion accuracy and efficiency.

In the scenes of multi-exposure image fusion (MEIF) [23]
and multi-focus image fusion (MFIF) [24], the fusion meth-
ods of unsupervised deep learning have effectively improved
the fusion results. As to unsupervised infrared and visible
image fusion, the source image pairs are insufficient and
always grayscale images. The designs of the fusion network
and the loss function are very important to preserve more
useful information and improve the visual effect. In this
paper, a kind of infrared and visible image fusion method
based on unsupervised convolutional neural network (CNN)
with perceptual loss is proposed and the main contributions
of our research can be shown as follows:
• An unsupervised CNN model is innovatively proposed
and constructed for infrared and visible image fusion.
The fusion model does not need any pre-training on
other datasets because of the implementation of dataset
augmentation. An end-to-end fusion model is realized
and there is no need to design complex activity level
measurements or fusion strategies.

• For the first time, the perceptual loss is modified and
applied for the training of infrared and visible image
fusion. By constraining the high-level features of the
source images and fusion image extracted by the loss
network, the distinguishing features of source images
are gradually added to the fusion image. With the join
of the perceptual loss, both the performance of the pro-
posed fusion network and the quality of the fusion image
get effectively improved.

• In the design of the network architecture, we adopt
the multi-layer convolution structure. With a view to
the insufficient information of the grayscale source
images, a specific form of DenseNet [25] is used as
a sub-network for feature extraction and transmission,
which can make full use of features of each layer.
All these ensure that the decoded fusion image con-
tains multi-scale and multi-level features of the source
images.

• The proposed network trained with particular losses can
obtain superior fusion images which perform noticeably
well on subjective and objective evaluations. Especially,
the visual information fidelity gets improved signif-
icantly. The correlation between source images and
fusion image gets strengthened.

The rest of this paper is organized as follows. In Section 2,
some related work about unsupervised learning applied in
image fusion, DenseNet, and the perceptual loss are intro-
duced. Section 3 presents the fusion network structure and
loss function of our method in detail. Experimental settings,
results, fusion evaluations and discussions are provided in
Section 4. Finally, Section 5 concludes the paper.

II. RELATED WORK
A. IMAGE FUSION BASED ON UNSUPERVISED DL
In the field of image fusion, method based on unsupervised
DL was first proposed by Prabhakar [23] et al. when real-
izing the MEIF in 2017. The input multi-exposure images
were converted into YCbCr channel data and the CNN was
used to fuse the luminance channel to preserve structural
details and brightness variations. The no-reference image
quality metric structural similarity (SSIM) was designed as
the loss function. The network was trained on cropped small
image patches without any ground-truth images for super-
vision. The whole fusion process could be seen as an end-
to-end model and there was no need to make pre-training
on other datasets. This unsupervised method achieved inspir-
ing fusion results and it could be generalized to MFIF and
other fusion tasks. After that, Mustafa [24] et al. came up
with a deep unsupervised convolutional network for MFIF
in which DenseNet was introduced as the feature extrac-
tion network. The method could overcome the limitation of
unavailability of labeled images for MFIF. In addition, SSIM
loss and pixel loss were used as the loss function to train
the end-to-end model. Extensive experiments validated the
efficiency of the method. Also, the quantitative and qualita-
tive evaluation results were commendable. In [26], another
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TABLE 1. The comparison of different methods.

unsupervised deep model for MFIF was proposed. The train-
ing dataset and the loss function were similar to [27]. The
authors constructed the encoder net through SEDense block
which was combined with DenseNet and SeNet [28]. The
promising fusion performance demonstrated the advantages
of the proposed method. Furthermore, Yan [29] also pro-
posed an unsupervised deepMFIFmethod trained on cropped
source image pairs without any pre-training. This end-to-end
model had a stronger ability of extracting features, which was
important for image reconstruction. As to infrared and visible
image fusion, Ma et al. [30] constructed an unsupervised
model through GAN which trained on source images and
achieved preferable results. Currently, the stumbling blocks
in using deep learning for image fusion are lack of suffi-
cient training data and ground-truth images for supervision.
Above-mentioned unsupervised image fusion methods can
overcome the difficulties to a certain extent by constructing
unique DL frameworks and utilizing the no-reference quality
metric as loss function. The two issues need to be carefully
designed when realizing, especially for infrared and visible
image fusion in consideration of the source images in low
pixel resolution. Nowadays, the problems still exist and these
unsupervised fusion methods have practical significances.
The pros and cons of traditional, supervised and unsupervised
DL-based infrared and visible image fusion solutions are
listed in Table 1.

B. INTRODUCTION OF DENSENET
In 2017, Huang et al[25] proposed the DenseNet for the first
time after the research of the properties of multi-channel
features. The design draw lessons from ResNet [31] and
Inception [32] network. The DenseNet focuses on feature
propagation and feature reuse, and all the middle layer fea-
tures in the network are applied to reconstruct the output
features. They can help to avoid the problem of overfitting
caused by the increase of the depth and width of the network.
Fig.1 shows the structure of DenseNet.

In the picture above, xl indicates the feature maps of every
layer (x0 is the input), Hl represents a set of continuous

FIGURE 1. The network structure of DenseNet [25].

operations that are BN (Batch Normalization), ReLU (Acti-
vation Function) and Conv (Convolution). In the lth output
layer, xl can be defined as follows:

xl = Hl([x0, x1, · · · , xl−1]) (1)

[x0, x1, · · · , xl−1] represents the concatenation of feature
maps of all former layers in channel dimension. It can be seen
that the densely connected network is able to maximize the
flow of information. For infrared and visible image fusion,
we want to make the best use of the information of the few
and low-pixel source images for training. Through DenseNet,
the feature information of the front layers is fully utilized and
all the information of the middle layers is retained. More-
over, Multi-scale and multi-channel features can be got by
DenseNet which are very important for image fusion.

C. APPLICATION OF PERCEPTUAL LOSS
The perceptual loss was first proposed by Johnson et al. [33]
for image real-time style transfer and super-resolution. The
specific loss is calculated by comparing the high-level fea-
ture maps of the ground-truth image extracted through a
deep convolutional neural network called loss network with
the feature maps of the generated image extracted through
the same loss network. The differences of the maps can be
converted to loss function to constrain the training process.
At last, the high-level feature maps of the ground-truth image
and the generated image become similar which means the
perceptual features are close to each other. Under normal con-
ditions, if the high-level feature maps of the two images are
close, that means the generated image and ground-truth image
themselves become similar. The perceptual loss provides new
ideas when designing the loss function for image generation
or fusion networks. Fig.2 shows the computational process of
perceptual loss.

Infrared and visible images respectively stand for different
image characteristics. We want to keep all these unique char-
acteristics in the fusion image as much as possible. The per-
ceptual loss can help to guarantee the similarity of high-level
features between source images and the fusion image. Com-
bined with other common losses, the performance of the
fusion network gets improved obviously.
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FIGURE 2. The computational process of perceptual loss.

D. COMMON FUSION MODEL
Nowadays, the existing network models for image fusion
based on DL mainly consist of six parts, including source
inputs, encoder, fusion strategy, decoder, image output and
the loss function. Fig.3 shows the process of image fusion.
First, the encoder is designed to extract the feature maps of
source inputs. Then some fusion strategies are adopted to
get the features for reconstruction. Finally, the fusion image
is obtained through decoder by feature dimension reduction.
The SSIM and the pixel differences between source images
and the fused image are always used to optimize the loss.

FIGURE 3. The network structure of commonly used fusion models.

However, there are mainly two issues that need to be
considered when the model is used for infrared and visible
image fusion. One is that the structural form of encoders is
always the Siamese network [34], which has two branches
with the same architectures and weights. It cannot extract
and preserve the unique information of the source images
obtained by different imaging sensors. Another issue is that
pre-training on other large dataset is generally necessary to
learn the parameters of encoder and decoder. The features of
the multi-modality source images cannot be simulated well.

III. METHOD
In the following content, the design details of infrared and
visible image fusion method based on unsupervised convolu-
tional neural network will be introduced. First, the designed
structure of the proposed network is introduced and discussed
in detail. Then, we analyze the loss functions which guide

the back propagation of the networks. Among the losses,
the perceptual loss used for infrared and visible image fusion
is originally proposed and calculated. However, as to the
SSIM loss, we adopt the commonly used form in the training
of image fusion tasks.

A. PROPOSED FUSION NETWORK
Aiming at the characteristics of infrared and visible images,
the fusion network model proposed in this paper has the
following improvements compared with the common fusion
model.

First, in terms of network input, the source images are no
longer separately fed into the siamese-encoder for feature
extraction. Instead, the 2-channel network is adopted which
has one trunk without branches. By jointly handling the two
inputs at the starting point, the 2-channel network owned the
highest flexibility [34]. The source images are concatenated
as a 2-channel image. The infrared and visible images are
in different modalities. The single encoder can synthetically
preserve the unique features on the single new input and avoid
the problem that the extracted features tend to a certain source
image.

Second, the network structure of encoder is promoted from
normal convolutional network to DenseNet. This change will
help to multi-scale feature transformation and representation,
and make it easy for feature transmission and reconstruction.
All the features concatenated at the end of the dense block are
efficient for reconstructing the fusion image.

Then, there are no specific fusion strategies in the network
and the training can be regarded as an end-to-end mapping
from input to output. The training and testing process can stay
the same without extra design of fusion modules.

Finally, in order to constrain the similarity of high-level
features and the low-level features between the source images
and the fusion image at the same time, the loss function
consisted of SSIM loss and perceptual loss has been designed
and optimized to ensure the richness of information preserved
in the final fusion image. The SSIM loss can constrain the
similarities of the brightness, contrast and structural char-
acteristics. Most basic features can be well preserved in
the fusion image. Meanwhile, the perceptual loss can help
to guarantee the similarity of high-level features between
images. Fig.4 shows the particular network structure.

In the picture above, Concat indicates channel concatena-
tion. k , n, s respectively indicates the kernel size, channel
number and the stride.Conv andBN represent the convolution
and batch normalization. ReLu, LReLU and tanh represent
three kinds of activation functions. The dense block in the
middle consists of five layers with Conv, BN and ReLu. This
unsupervised network can output high quality fusion image
under the constraint of L (Loss function). The L consists
of perceptual loss and SSIM loss. The perceptual loss is
calculated through a specific loss network and the SSIM loss
is calculated by related algorithms without any network. The
L in Fig.4 is simplified to show the whole training process.
The concrete contents are introduced in Part C of this Section.
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FIGURE 4. The network structure of the proposed method.

The settings of the convolution parameters and the functions
of DenseNet are explained below.

1) THE BASIC SETTINGS
In the proposed network, the kernel sizes are all 3× 3 except
the last layer which is 1 × 1. In practice, the 3 × 3 is the
smallest size which can obtain the octagonal information of
a pixel. In fact, the number of parameters and computational
complexity are greatly reduced by using multiple small con-
volution kernels. The infrared and visible images are small.
The 3 × 3 kernels can finely extract and utilize the features.
The last convolutional layer adopts single-channel 1 × 1
convolution, which can complete the transformation process
of linear combination of information between different chan-
nels and realize the feature normalization. At the same time,
it can complete the dimensionality reduction of multi-channel
feature maps, and finally output single-channel fusion image.

The strides are set as 1 for all layers. In convolution
operation, the stride of convolution kernel determines the
extraction accuracy to some extent. The smaller the stride is,
the more comprehensive the extracted features will be and
the less the missing information will be. All these are very
important for generating the fusion image. If the strides are
greater than 1, they may work like pooling operations which
are not suitable for image fusion tasks due to the missing of
information.

In order to ensure that the size of the fusion image after
convolution calculation is consistent with that of the source
images, the SAME mode is used for padding in each layer.
In addition, since the DenseNet is included in this network,
the sizes of the feature maps of each channel are required to
remain unchanged to realize the feature superposition at the
end of the dense block.

2) THE FUNCTIONS OF DENSE BLOCK
The commonly used dense block usually takes the form of
‘‘N+N+N+. . . ’’. Each layer of the block outputs the same
number of feature maps and contributes equally to the output
of dense block. This may be not applicable to the fusion

of infrared and visible images. Because the source images
themselves are single-channel grayscale images and the sizes
are small. Also, the spatial details are limited and the shallow
layers contain more basic information. We want to utilize
the information as much as possible through DenseNet. The
number of the dense block layers and the output dimension of
each layer are adjusted to get desirable experimental results.
Finally, the number of dense block layers is adjusted to 5 and
performs in the form of ‘‘32+8+8+8+8’’. On the basis of
keeping a large number of shallow features, the output of
the first layer accounts for half of the channel number of the
block. Then the deep features are added. This kind of combi-
nation of different channel numbers can effectively improve
the quality of the decoded fusion image. The specific func-
tions of dense block for infrared and visible image fusion
can be summarized as follows. First, in conventional convo-
lutional neural network, the fusion strategy of feature maps is
always the add operation. However, in the densely connected
network, feature maps are concatenated through channels,
so that features can be used more effectively when integrating
the output, and the information preserved becomes richer.
Second, through the dense connections, all the features of
the middle layers can be retained, the correlation between
features is stronger, and the correlation between the fusion
image and the source image is guaranteed. Third, this kind
of connection and feature transfer in dense block has a cer-
tain regularization effect. At the same time, there are fewer
channels and fewer parameters in each layer, which can sup-
press the over-fitting phenomenon to a certain extent. The
generalization ability of the network is stronger, which makes
the fusion effect better when testing. In addition, the flow
of information is increased by multiple skip connections in
dense block. Different from the process of forward propa-
gation and back propagation of conventional networks, each
layer is directly connected to the input during forward propa-
gation, and losses can be transmitted to the front layer earlier
during back propagation. It is conducive to the realization of
deep network training. The design of the loss function will be
technically introduced in next section.
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TABLE 2. The structure and parameter information of the image fusion network.

3) THE DESCRIPTION OF THE NETWORK STRUCTURE
To clearly describe the structure and parameter information
of the image fusion network, the details are listed in Table.2.
Conv represents the convolution operation, Net represents
input or output layer of the network, Concat represents the
channel concatenation.

B. LOSS FUNCTION
The design of the loss function is of great significance to
the performance of the unsupervised convolutional network
model. In order to improve the quality of the fusion image
objectively and ensure the high similarity between the fusion
image and the source images, the perceptual loss is originally
introduced to infrared and visible image fusion and combined
with frequently-used SSIM loss to achieve optimal constraint
between the inputs and the output. The equation (2) gives the
definition of the loss function.

L = g1LPer + g2LSSIM , (2)

The LPer represents the perceptual loss and the LSSIM rep-
resents the SSIM loss. g1 and g2 are ratios which are revised
step by step during training.

1) THE PERCEPTUAL LOSS
As described in the related work, perceptual loss performs
well in image real-time style transfer and super-resolution.
However, it has not been used in infrared and visible image
fusion. In order to achieve the training with perceptual loss to

improve the effects of the fusion results, the following three
main problems need to be solved.

The first problem is the choice of the loss network. Loss
network usually refers to a mature and deep neural network
trained and verified on a large dataset. They need to have
strong capability to extract multi-scale features [35] and adapt
to the size of the dataset. Second, there are no standard fusion
images for reference. The application of perceptual loss needs
to compare the high-level features of standard reference
images with the same level features of the fused images gen-
erated by the training network. But, in the fusion of infrared
and visible images, we cannot obtain the standard images for
comparison. Third, the problem of channel correspondence
is also need to be considered. In image style transfer or
super-resolution reconstruction, the reference image and the
output of the network are all single modality images, and it
is easy to compare the extracted features. However, in this
fusion task, the infrared images and the visible images are
obtained by two different sensors, and the output is a single
type of fusion image. So it is impossible to extract features
directly through the loss network for comparison. In addition,
existing loss networks are usually trained based on colorful
three-channel (R, G, B) images. Infrared and visible source
images and fusion images are all single-channel grayscale
images. How to adapt the inputs to loss network also needs to
be considered.

In Fig.5, the specific inputs and the computational process
of the perceptual loss designed are showed clearly.
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FIGURE 5. The perceptual loss used for infrared and visible image fusion.

For the three problems mentioned above, the following
solutions are given one by one.

At present, the ready-mademodels that are saved as param-
eters and used as feature extraction sub-networks are mainly
VGG network [36] (VGG-16, VGG-19) models and residual
network (ResNet50, ResNet101, ResNet152) models. They
are often used in image classification, target detection, image
fusion and other tasks. Considering that the dataset of the
source images in this project is small, and the information of
infrared and visible gray images is insufficient, the VGG-16
network with fewer layers is more suitable. It can avoid the
distortion of high-level features caused by depth extraction,
and can improve the training efficiency of the network with
fewer parameters.

Although the standard fusion image for reference does not
exist, the information of the fusion image must have strong
correlations with the input source images. Therefore, in this
method, we try to find a way to simulate the standard fusion
image. With a view to matching the channels and preserving
the information, the idea of the adjusted image is proposed.
The two source images and the adjusted image are concate-
nated to simulate the input. The adjusted image is essentially
the weighted average of two source images. The calculation
equation is illustrated in (3):

F(x, y) = α · I (x, y)+ (1− α) · V (x, y), (3)

where F represents the fusion image, I and V represent the
infrared image and visible image respectively, α represents
the weight, and (x,y) represents the corresponding pixel point.

Finally, we need to solve the problem of channel corre-
spondence. Commonly used loss networks are trained on
the datasets of colored visible images. The input of the net-
work is in the form of three channels, namely R, G and B
channels of the color image. The first convolutional layer
in the network contains 64 convolution kernels of three-
channels, and 64 feature maps are calculated as the output.
In this method, the specific implementation is showed as
follows. Since the infrared, visible and fusion image are all
single-channel images, channel concatenation is also adopted
when calculating the perceptual loss. When the loss network
is used to extract the deep features of the input source images,

the single channel infrared image, visible image and adjusted
image are cascaded into three channels in the channel dimen-
sion to simulate the standard reference image. When the loss
network is used to extract the deep features of the fusion
image, the same three single channel fusion image obtained
during training are cascaded directly into three channels as
the input of the loss network. Fig.5 gives the details. The
designed calculation method is illustrated in (4):

LPer (YI ,YF ) =
1

CjHjWj

∥∥ϕj(YI )− ϕj(YF )∥∥22 , (4)

Among the equation, ϕ indicates the loss network of
VGG-16, YI represents the combination of source images and
adjusted image, YF represents the combination of three same
fusion images, j represents the jth layer of the loss network.
CjHjWj represents the Cj feature maps of the jth layer with
the size of HjWj and the total size of the parameters in
the layer. ϕj(YI ) and ϕj(YF ) separately represent the output
featuremaps obtained by the jth layer of the loss network. The
final loss is calculated with the L2 norm. As we can see from
the Fig.5, in the proposed method, the outputs of the third
convolutional layer of the third convolutional group called
conv-3 are used as the perceptual loss terms for comparison.
The number of feature maps outputted by convolutional cal-
culation of this layer is 256, and the size of feature map is
determined by the size of the actual input source images.With
the join of LPer , visually pleasing fusion images are always
obtained.

2) THE SSIM LOSS
The SSIM loss is the most commonly used loss in unsuper-
vised image fusion tasks as the brightness, contrast and struc-
tural characteristics of the images can be comprehensively
considered and the spatial structure correlation between
images is also considered in the calculation. All these are
consistent with the way that the human vision system obtains
the structure information in the visual area, and the distortion
state of images can be perceived.

In the LSSIM , the SSIM between each source image and
fusion image is calculated respectively and the weight can be
adjusted to adapt different conditions. The LSSIM is calculated
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as (5):

LSSIM =1−(w · SSIM (I ,F)+(1−w) · SSIM (V ,F)), (5)

where ω represents the weight and SSIM (∼) just implement
the structural similarity operation in [37]. I and V are infrared
and visible images, and F is the fusion image.

IV. EXPERIMENTS
A. TRAINING AND TESTING OF THE NETWORK
1) DATASET AUGMENTATION
In the field of image fusion, the source images after regis-
tration are used as the input and then the final image fusion
is realized through feature extraction and transformation.
However, limited to imaging equipment and the military use
of such images, publicly available infrared and visible image
pairs are very scarce. In this experiment, 41 pairs of infrared
and visible source images after registration were collected
from the TNO [38] dataset. In these images, infrared images
generally had obvious intensity contrast, and at the same time,
visible images were rich in detail information. The pairs were
divided into two parts: 31 for training and 10 for testing. The
test images did not participate in the training process. How-
ever, if only a few dozen pairs of source images were used
for training, it was difficult to get a stable and robust model.
Therefore, we decided to amplify the dataset and use the
amplified dataset as the basis for network training. Because
the original dataset was too small, rotation, stretching and
other methods contribute little to the amount of data. The
most direct method was to cut the source image into small
images of a certain size to expand the number of datasets.
Considering the actual fusion effect and the computing capa-
bility of GPU, the cropping size was set as 128 × 128, and
the stride was set as 11. The cropping was done one by
one from left to right and from top to bottom on 31 pairs
of source images respectively. Finally, 46,209 pairs of small
source images were obtained to form a training set. Another
10 pairs of source images were directly used as network
input when testing, and 10 fused images were obtained for
the comprehensive evaluation of the results. Fig.6 shows the
process of image cropping.

FIGURE 6. The process of image cropping.

2) DETAILED SETTINGS OF TRAINING
In addition to the above image cropping settings, the other
parameters were set as follows. For training, cropped image

pairs were put into the network whose batch size was set as
32 and the learning rate was initialized as 10−5. The ADAM
optimizer was chosen to train the network whose default
parameters were set as follows: β1 = 0.9, β2 = 0.999,
ε = 10−8. The GPU platform was Intel E5-2680 V3 proces-
sor with TITANVGPU and 64Gmemory. Except these fixed
settings of training, there were some variable parameters in
Eq.1, Eq.2 and Eq.3 when calculating the loss functions.
g1 and g2 of the total loss L in Eq.1 were both set as 1 at first.
With the join of perceptual loss, the visual effects of the fusion
images were improved obviously. But when we increased the
ratio of g1, image distortion appeared and less texture details
were reserved. Then we began to increase the ratio of g2 to
constrain the basic structural similarity between the source
images and the fusion image. By this time, the quality of the
fusion image got better results on subjective and objective
evaluation. The final g1 and g2 were set as 1 and 160, and it
has been verified by many experiments. The adjusted image
was designed to balance the input of the source images and
the initial value of α in Eq.2 was set as 0.5. At this time,
the hidden objects of infrared images were less prominent
in the fusion image. So we began to adjust α to reserve
more high-level features of infrared image. Finally, the α was
adjusted to 0.6 when calculating the perceptual loss. In order
to keep the structural characteristics and the spatial structure
correlations between each source image and the fusion image
equably, we just followed the original design of the SSIM loss
and theω in Eq.3was just set as 0.5. Of course, it workedwell.

3) THE CROPPING OF FUSION IMAGE
In order to ensure better stability and robustness of the net-
work, the amplified dataset was used during training, and
10 pairs of source image pairs were directly put into the
trained network when testing. Since dense block was intro-
duced in this method, in order to realize the feature concate-
nation, it was required that the feature sizes of each layer
should be consistent. Therefore, padding was introduced in
the convolution calculation. However, the filling operation
would result in gray pixel blocks at the edges of the fused
image, which affected the image quality. In order to eliminate
the effect of the gray block, we pre-filled the source image
pairs before testing (adding 0 to the periphery). As the size
of the input images increased, the size of output fusion image
also increased. The gray block only affected the pixels around
the image. Therefore, the obtained large fusion image could
be cropped to a normal output size effectively by removing
the gray block, and the size of the final output image remained
the same as the original input. The schematic diagram of
testing process is showed as Fig. 7.

B. COMPREHENSIVE EVALUATION OF FUSION IMAGE
In actual application scenarios, due to different requirements
or application purposes, the emphases on features of the
fusion image are different. In most cases, there are no stan-
dard fusion images for reference and no standard evaluation
metrics to measure the absolute quality of fusion results.
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FIGURE 7. The process of image fusion and cropping.

At present, researchers generally believe that it is a reasonable
way to evaluate the results by using a variety of evaluation
metrics [39]. Liu et al. [40] established an evaluation system
based on information theory-based metrics, image feature-
based metrics, image structural similarity-based metrics and
human perception inspired fusion metrics through investi-
gation, which is often used by researchers. In recent years,
many researchers have studied how to quantify the ‘‘good’’
or ‘‘bad’’ of each evaluation metric through the score value
or accuracy, and analyzed which metrics are more reliable in
evaluation. Petrovic [41] built a dataset specifically designed
to evaluate the quality of the fused images. By matching
the evaluation results of each metric to the known subjective
results of the two fused images in each group, the evaluation
accuracy of each metric to the images in the dataset can be
calculated, which is called correct ranking (CR). Based on
the objective evaluation system proposed by Liu [40], the CR
values of the verified metrics and the improved algorithms of
the related metrics, this paper starts from the following two
aspects to establish an system for comprehensive evaluation
to evaluate the results.

The quality evaluation metrics measuring the fusion image
itself are introduced as follow. The spatial frequency (SF) [42]
indicates the frequency information of the image. The bigger
the SF is, the clearer the image is. The standard deviation
(SD) [43] evaluates the contrast of the image. The bigger the
SD is, the more attractive the image is.

Evaluation metrics measuring the correlation between
fusion image and source images are showed below. In the
correlation metrics, the correlation coefficient (CC) [44] is
selected to evaluate the degree of relevance between images.
Structural similarity (MSSIM) [37] is selected to calculate
the structural similarity between the source images and the
fusion image. The bigger the CC andMSSIM are, the stronger
correlations are built between images. Feature mutual infor-
mation (FMI) [45] is added to evaluate the degree of feature
correlation between fusion image and source images from the
perspective of information theory. The bigger the FMI is, the
more basic information is preserved in the fusion image.
The visual information fidelity for fusion (VIFF) [46] is
selected to evaluate the fidelity of the fusion image to the
information of source images from the perspective of human
visual system. The bigger the VIFF is, the better visual effects
can be achieved.

Furthermore, subjective evaluation is also used as an aux-
iliary mean to supplement the objective evaluation result to
ensure the comprehensiveness and accuracy of the evaluation.

C. FUSION RESULTS
In this section, the proposed unsupervised fusion method is
compared with 4 traditional fusion methods (DTCWT [47],
LP [48], NSCT [49], GFF [50]) and 3 fusion methods
based on deep learning (CNN [19], Dense-add/L1 [20], add
and L1 represent different fusion strategies, Deepfuse [23]).
We used the codes provided by the authors or well-known
toolbox to generate the fused images from source image pairs.
Notably, as to the Deepfuse, we took the codes provided
by [20]. The effectiveness and significance of this method are
analyzed by combining subjective evaluation with objective
evaluation.

1) SUBJECTIVE EVALUATION
Fig.8, Fig.9 and Fig.10 show the fusion results of each
method on the image pairs of ‘‘Bunker’’, ‘‘Nato_camp’’ and
‘‘Marne_04’’ in the test set. (a) and (b) on the left are the
source images. (c) to (j) are the fusion results obtained by the
comparison methods and the proposed method. As for Dense
method, we just give out the better results from the different
fusion strategies.

It can be seen from the comparison of the three fusion
results above that although the fusion images obtained by the
traditional methods of DTCWT, LP and NSCT can reflect
the basic information of the two source images, the fusion
images are not clear enough and the images always have low
contrast, which are not conducive to visual observation. The
fusion results obtained by GFF and Dense-L1 methods are
convenient for visual observation, but the fusion images tend
to retain the information of a certain source image, while the
information of another source image is less preserved. The
fusion images obtained by CNN method are generally high
in contrast and easy to attract people’s attention. However,
there are always some unsatisfactory areas, such as the edge
of eaves and the front window of the car in Fig.10. Dense-add
and Deepfuse methods retain more details of the source
image, and the fusion image is better, but the contrast of the
fusion image is slightly lower.

As for the fusion method proposed in this paper, the fusion
image can retain the important features and details of the
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FIGURE 8. The comparison of image fusion results of Bunker.

FIGURE 9. The comparison of image fusion results of Nato_camp.

FIGURE 10. The comparison of image fusion results of Marne_04.

two source images at the same time, and less noise is
mixed into the image, which also ensures the correlation
between the fusion image and the source images. More
importantly, the fusion images have higher visual fidelity.
The images look natural and comfortable, and are easier to
observe by the human visual system. By zooming in on the
three pairs of images above, the advantages of the images

fused by the proposed method are prominent. It can be
seen that in Fig.8, the outer walls of the bunker are clear
and the forest looks exuberant. In Fig.9, the traces of the
road are legible and the objects around the chimney are
trenchant. In Fig.10, the gap between branches on the left
can be seen, and the camouflage on the car can also be
distinguished.
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TABLE 3. The average values of the SIX metrics for 10 fusion images.

2) OBJECTIVE EVALUATION
In this section, the objective and quantitative evaluation of
the fusion images are carried out through the comprehen-
sive evaluation system. There are a total of 10 groups of
images in the test set, and 6 metrics are used to evaluate the
fusion results of each method. The average values of each
metric on the fusion images obtained by each method are
shown in Table.3 and the larger the values of all metrics, the
better.

First of all, a general comparison is made between tradi-
tional methods and DL-based methods. It can be seen that
among the six evaluation metrics, the values obtained by the
DL-based methods are more outstanding, which prove the
effectiveness of theDL-basedmethods in image fusion. There
are no complex transformations in DL-based methods and we
can improve the fusion results by adjusting the network struc-
ture and loss function. They are flexible, easy to implement,
and the fusion images are of high quality.

Then, the evaluation results of each method are analyzed.
Compared with other methods, the proposed fusion method
achieves the best values in three metrics of SF, CC and VIFF,
which indicates that the fusion images obtained are rich in
spatial details and highly correlated with the source images.
The result about VIFF is more outstanding, which indicates
that the fusion images have high fidelity of visual informa-
tion and good visual effect. On the SD metric, the proposed
method is only smaller than the CNN method. The reason is
that the CNN method not only trains the siamese network to
extract features, but also introduces the multi-scale transfor-
mation in the traditional method to assist the image decompo-
sition and reconstruction, which greatly improves the image
characteristics. In terms of MSSIM metric, the proposed
method is smaller than the Dense and Deepfuse method.
In the Dense method, a dataset composed of a large number
of visible images is used for pre-training. At the same time,
densely connected structure is used internally, so the features
of structure are well preserved. Also, that method once again
achieved themaximumvalue in FMImetric. For theDeepfuse
method, the better performance of MEF SSIM is attributed
to its objective function. The proposed method is slightly

deficient in FMI metric, partly because it restricts high-level
features through perceptual loss, which leads to the neglect of
some features of source images and the reduction of mutual
information. We can see that the objective evaluation and
subjective evaluation are consistent.

D. MODEL ANALYSES
The fusion method proposed in this paper mainly con-
tains two outstanding points. When designing the net-
work structure, dense block is added to extract and utilize
multi-dimensional features. As to the loss function, the per-
ceptual loss is applied to the fusion of infrared and visible
images. The following experiments are carried out to analyze
the functions of the two designs based on the actual fusion
images.

1) THE FUNCTION OF DENSE BLOCK
In the fusion model of this experiment, dense block is
replaced by conventional convolutional layers for train-
ing. Fig.11 shows the comparison before and after partial
changes of the dense block. For the convenience of compar-
ison, although the form of this molecular network changes,
the number of input channels (32) and output channels (64)
remains unchanged.

After the dense block is changed into the conventional
convolution form, although the sizes of the feature maps
between layers are unchanged, a lot of parameters are sub-
stantially increased in the axial direction. In addition to the
addition operation of skip connections, when using dense
block network, the calculation of this molecular network
involves 12,672 parameters ((32+40+48+56)∗(3∗3)∗8).
After modification into conventional convolution, a total
of 46,080 parameters (32∗(3∗3)∗(32∗3+64) are involved in
sub-network calculation. As can be seen from the comparison
between (c) and (d) in Fig.12, the densely connected network
can obtain and combine deep image features with fewer
parameters through feature propagation and feature reuse,
which is conducive to the output of fusion images. Generally,
images with rich details can be achieved.
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FIGURE 11. The change diagram of dense block.

FIGURE 12. The comparison of fused images.

FIGURE 13. The comparison of fused images.

We also compare the results obtained by different number
of dense block layers. Since the images are similar, we list the
values calculated by the objective metrics in Table 4. We can
see that the proposed method with 5 layers dense block can
get correspondingly better results.

2) THE FUNCTION OF PERCEPTUAL LOSS
In this experiment, the structure of the proposed network
model remains unchanged during network training, while the
perceptual loss is removed, and only the SSIM loss is retained
to constrain the image fusion process. The comparison of

fusion results with and without perceptual loss is shown
in Fig.13.

The perceptual loss mainly constrains the high-level fea-
ture similarity between the source images and the fusion
image, and then realizes the fusion process. It can be seen
from the results above that the pictures acquired by the
method in this paper are vivid and have a good visual effect.
With the introduction of perceptual loss, the contrast of the
fusion image is increased. In the fused images, the visible
textures and the infrared targets are comparatively clear. The
information preserved in the fusion images is helpful.
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TABLE 4. The objective evaluation values of different layers.

TABLE 5. The objective evaluation values of different perceptual loss.

Moreover, other deeper networks for perceptual loss like
VGG-19 and ResNet50 have been realized for compari-
son. We list the values calculated by the objective metrics
in Table 5. We can see that the VGG-16 loss is more suitable
for the proposed infrared and visible image fusion method.

V. CONCLUSION
In this paper, an infrared and visible image fusion model
based on unsupervised convolutional neural network is pro-
posed and implemented. When designing the network struc-
ture, DenseNet is introduced as the feature extraction and
transmission sub-network to make full use of the features of
each layer. The feature maps concatenated by the block are
advantageous for feature reconstruction to obtain the fusion
image. The decoded output image contains multi-scale and
multi-level features of the source images. The distinct target
and detail information in the source images are effectively
preserved. The image quality gets evidently improved. For
the first time, the training process of infrared and visible
image fusion is constrained by the use of perceptual loss.
By reducing the difference of high-level features extracted by
the loss network between the simulative standard image and
the generated image, the perceptual loss can make the fusion
image continuously optimized and close to the target image.
Applying the perceptual loss to constrain the difference of
perceptual features between the source images and the fusion
image can guarantee the fusion image contain more infor-
mation of the source images. The visual effect of the fusion

image gets better and it is easier for human visual system to
observe. The objective evaluation and subjective evaluation
both demonstrate the effectiveness of the proposed method.

We believe that the basic framework of our fusion method
can be applied to other image fusion tasks, such as medical
image fusion, multi-exposure image fusion and multi-focus
image fusion with some changes in the input and loss
function.
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