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An improved magnetometer
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based on Levenberg–Marquardt
algorithm for multi-rotor unmanned
aerial vehicle
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Abstract
In order to improvethe yaw angle accuracy of multi-rotor unmanned aerial vehicle and meet the requirement of
autonomous flight, a new calibration and compensation method for magnetometer based on Levenberg–Marquardt
algorithm is proposed in this paper. A novel mathematical calibration model with clear physical meaning is estab-
lished. ‘‘Hard iron’’ error and ‘‘Soft iron’’ error of magnetometer which affect the yaw accuracy of unmanned aerial
vehicle are compensated. Initially, Levenberg–Marquardt algorithm is applied to the process of sphere fitting for the
original magnetometer data; the optimal estimation of sphere radius and initial ‘‘Hard iron’’ error are obtained. Then,
the ellipsoid fitting is performed, and the optimal estimation of ‘‘Hard iron’’ error and ‘‘Soft iron’’ error are obtained.
Finally, the calibration parameters are used to compensate for the magnetometer’s output during unmanned aerial
vehicle flight. Traditional ellipsoid fitting based on least squares algorithm is taken as reference to prove the effective-
ness of the proposed algorithm. Semi-physical simulation experiment proves that the proposed magnetometer cali-
bration method significantly enhances the accuracy of magnetometer. Static test shows that the yaw angle error is
reduced from 1.2� to 0.4� when using the proposed calibration model to calibrate magnetometers. In dynamic tests,
the sensor MTi’s output is used as reference. The data fusion of magnetometer compensated by the proposed new
calibration model based on Levenberg–Marquardt algorithm can accurately track the desired attitude angle.
Experimental results indicate that the accuracy of magnetometer in the yaw angle estimation has been greatly
enhanced. In the process of attitude estimated, the compensation magnetometer data given by this new method have
faster convergence speed, higher accuracy, and better performance than the compensation magnetometer data given
by traditional ellipsoid fitting based on least squares algorithm.
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Introduction

In recent years, with the development of unmanned aer-
ial vehicle (UAV) technology, UAV has been widely
used in various fields. In autonomous flight of UAV,
the accuracy and stability of yaw angle directly affect
the accuracy of navigation. The electronic magnetic
compass has the advantages of small size, low cost, fast
dynamic response, and no cumulative error, and is
widely used in the navigation system of UAV to provide
the yaw angle.1 However, its accuracy is easily affected
by surrounding magnetic field environment and electri-
cal layout of the UAV itself. To improve the accuracy
of the yaw angle estimation, the magnetometers should
be calibrated again before takeoff.2 Therefore,

magnetometer calibration and compensation have
become a research hotspot.3,4

Many research teams have made outstanding contri-
butions in the fields of magnetometer calibration. Sun
and Fang5 used multi-sensor information to compen-
sate and filter the output information of inertial
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instruments such as magnetic compass and global posi-
tioning system (GPS) to calibrate the measured value of
the magnetic sensor, which has online real-time com-
pensation capability. Yan et al.6 analyzed the singular-
ity of the coefficient matrix; the least squares method
was used to identify the error coefficients of the elliptic
model, overcoming the instability and suppressing the
sudden disturbance in the calibration process. Fang
et al.7 proposed a magnetic compass calibration method
based on the constrained least squares ellipsoid fitting,
while it can only be used in the absence of magnetic
interference. Pang et al. proposed an improvement of
magnetometer calibration using Levenberg–Marquardt
(L-M) algorithm. The L-M algorithm is applied to tra-
ditional ellipsoid fitting to estimate the calibration para-
meters and proved that the L-M algorithm is a good
method for magnetometer calibration.8

Most previous researchers have used two methods
to calibrate magnetometer separately: the classic inde-
pendent ellipsoid fitting method and the independent
sphere fitting method. Traditional methods mainly aim
at the calibration of pure magnetometer. To obtain
more accurate calibration parameters on UAV, a new
calibration model according to UAV’s magnetic field
environment and the calibration process of magnet-
ometer is completed on UAV. According to the mag-
netic field characteristics of UAV, this paper
innovatively combines the traditional sphere fitting and
ellipsoid fitting algorithm, and proposes a new magnet-
ometer calibration model, which can be used to com-
pensate the ‘‘Hard iron’’ error and ‘‘Soft iron’’ error of
magnetometer on multi-rotor UAV. In the first step,
the L-M algorithm is used to fit the original magnet-
ometer data into a sphere, and the optimal estimation
of sphere radius and initial ‘‘Hard iron’’ error are
obtained. In the second step, the L-M algorithm is
applied to the process of the ellipsoid fitting to calcu-
late the optimal estimation of ‘‘Hard iron’’ error and
‘‘Soft iron’’ error. The estimated parameters obtained
by the sphere fitting are used as the initial value of the
ellipsoid fitting. The proposed calibration method can
estimate the ‘‘Hard iron’’ error and the ‘‘Soft iron’’
error of UAV more accurately, and the residual errors
of compensated magnetometer data are smaller and the
fitting performance is better. It is insensitive to the ini-
tial value. The calibration process is simple, and no
external auxiliary equipment is needed. There are not
any requirements in the direction and angle during the
rotation. In the process of UAV attitude estimation,
the convergence speed is faster, the convergence accu-
racy is higher, and the stability is better.

The main contributions of this research can be sum-
marized as follows:

� An improved magnetometer calibration method
of the sphere fitting and the ellipsoid fitting is
proposed in this paper. A novel mathematical
calibration model with a clear physical meaning
is established.

� The L-M algorithm is applied to the process of
the sphere fitting and the ellipsoid fitting simulta-
neously, and a semi-physical experimental sys-
tem was designed for the simulation experiments.

� An UAV experimental platform based on
STM32F429 hardware platform is built.
Dynamic and static experiments are designed to
verify the validity of the calibration method, and
the least squares (L-S) algorithm is used as a
comparison.

Error source of magnetometer

The intention of a magnetometer in a compass app-
lication is to measure Earth’s magnetic field.
Measurements other than those of Earth’s magnetic
field are considered as errors.9,10 The purpose of the
magnetometer calibration is to calculate a set of correc-
tion parameters that compensate for various source
errors: sensor zero deviation, scale-factor error, hori-
zontal axis sensitivity, ‘‘hard iron’’ error, and ‘‘soft
iron’’ error.4,11 Sensor zero bias, scale-factor error, and
cross-axis sensitivity are the sensor’s self-error, and
they were calibrated before the sensors leave the
factory.

When the magnetometer is used in UAV, it will be
affected by the motor and the surrounding magnetic
field environment.12 The errors of disturbing magnetic
field mainly include ‘‘Hard iron’’ error and ‘‘Soft iron’’
error. The magnetometer needs to be calibrated again
before the UAV takes off.13,14 ‘‘Hard iron’’ error is
caused by materials fixed to the vehicle body that pro-
duces static magnetic fields. ‘‘Soft iron’’ error is caused
by materials fixed to the vehicle body that distorts mag-
netic fields.15,16 The proposed algorithm computes a set
of correction parameters that compensate for errors
from ‘‘Hard iron’’ error and ‘‘Soft iron’’ error.

The error model can be described as

H=K�1Hd � b ð1Þ

where H= ½Hx Hy Hz �T represents the output mea-
sured by the magnetometer, Hd = ½Hdx Hdy Hdz �T
indicates the ideal output of the magnetometer,
b= ½bx by bz �T represents the ‘‘Hard iron’’ error,
and K represents the ‘‘Soft iron’’ error.

‘‘Hard iron’’ error and ‘‘Soft iron’’ error can be
obtained by taking a set of samples that are assumed to
be the product of rotation in Earth’s magnetic field and
fitting an offset ellipsoid to them, determining the cor-
rection to be applied to adjust the samples into an
origin-centered sphere.17

The L-M algorithm for sphere and ellipsoid
fitting

The L-M algorithm combines the advantages of stee-
pest descent method and Newton method. It is often
used to solve the minimum value problem of the sum
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of squares of functions.18,19 This algorithm is applied
to the sphere and the ellipsoid fitting of magnetometer
measurement data to obtain ‘‘Hard iron’’ error and
‘‘Soft iron’’ error.

The total intensity of Earth’s magnetic field that is
measured by an ideal magnetometer should be a con-
stant, which is mathematically described to be

Hdk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

dx +H2
dy +H2

dz

q
= constant ð2Þ

where Hdk k indicates the total intensity of Earth’s mag-
netic field. Therefore, according to the measurement
error model (1) of the magnetometer, the total intensity
of the Earth’s magnetic field can be calculated

Hdk k2 =HT
dHd = H+bð ÞTKTK H+bð Þ ð3Þ

According to equation (3), it is constrained by a pos-
itive sphere or ellipsoid, which can be written in the fol-
lowing form

HT KTK

Hdk k2
H� 2bTKTK

Hdk k2
H+

bTKTKb

Hdk k2
=1 ð4Þ

The shifted origin indicates the existence of ‘‘Hard
iron’’ error, and the changed shape indicates the exis-
tence of ‘‘Soft iron’’ error.

Repeated measurements show that the original data
of magnetometer are roughly distributed on a sphere,
indicating that the UAV is mainly affected by ‘‘Hard
iron,’’ while the ‘‘Soft iron’’ error is relatively small. In
fact, it is an ellipsoid, but it is very similar to a normal
sphere. According to the practical engineering prob-
lems, we adopt the sphere hypothesis to solve the prob-
lem of magnetometer calibration for UAV. First,
sphere fitting is performed and ‘‘Hard iron’’ error is
estimated, and the optimal estimation of sphere radius
R is performed using the L-M algorithm. In the second
step, we continue to collect the magnetometer data, do
an ellipsoid fitting, and use the radius R of the first
sphere fitting as the convergence criterion of ellipsoid
fitting, and estimate ‘‘Soft iron’’ error effectively based
on the sphere hypothesis. The R is applied to ensure
whether the conicoid is a sphere.

Step 1: the sphere fitting

The sphere fitting method based on the L-M algorithm
only takes ‘‘Hard iron’’ error into consideration. The
error model was summarized as follows

H=Hd � b ð5Þ

Assuming that the radius of the sphere is R.
According to equation (3)

H+bð ÞT H+bð Þ=Hd
THd =R2

R2 � HTH+2HTb+bTb
� �

=0

A function is introduced

f H,bð Þ= HTH+ 2HTb+bTb
�� ��1

2 ð6Þ

The primary application of the L-M algorithm is in
the least squares curve fitting problem: given a set of N
empirical datum pairs Hi = ½Hix Hyi Hzi � of inde-
pendent and dependent variables, find the parameters
(R ,b) of the model curve R� f(H,b) so that the sum
of the squares of the deviations S(R,b) is minimized

R̂, b̂ 2 argminR,bS R,bð Þ

= argminR,b

XN
i=1

R ið Þ � f H ið Þ,b ið Þð Þ½ �2
ð7Þ

The L-M algorithm is an iterative method that
requires an initial parameter (R0 ,b0), which is added
into the iterative formula of the L-M algorithm

R ,bð Þi+1 = R ,bð Þi � JTJ+ ldiag JTJ
� �� ��1

JT R� f H,bð Þð Þ
ð8Þ

t ið Þ=� JTJ+ ldiag JTJ
� �� ��1

JT R� f H,bð Þð Þ ð9Þ

where t(i) is the direction of exploration. l is a damp-
ing parameter, which is used in the iterative process to
control the direction of exploration and the step lengths
of exploration. J is the Jacobian matrix of function
R� f(H,b), and diag(JTJ) is a diagonal matrix where
diagonal elements in the unit matrix are replaced by
diagonal elements in matrix JTJ.

In order to complete the iterative process, the
Jacobian matrix J should be calculated first.
Introducing a function

F H, R ,bð Þð Þ=R� f H,bð Þ ð10Þ

J ið Þ= ∂F H ið Þ, R ,bð Þð Þ
∂ R,bð Þ ð11Þ

Suppose the total number of magnetometer samples
is N. According to equations (6) and (10), the error
equation of the sample i is

F H ið Þ, R ,bð Þð Þ=R�

H2
x+H2

y+H2
z +2Hxbx +2Hyby +2Hzbz +b2

x+b2
y +b2

z

��� ���1
2

a= H2
x +H2

y +H2
z +2Hxbx +2Hyby +2Hzbz +b2

x +b2
y+b2

z

��� ���1
2

∂F H, R ,bð Þð Þ
∂R

=1

∂F H, R ,bð Þð Þ
∂bx

=� Hx � bxð Þ=a

∂F H, R,bð Þð Þ
∂by

=� Hy � by

� �
=a

∂F H, R,bð Þð Þ
∂bz

=� Hz � bzð Þ=a

So the Jacobian matrix is

J ið Þ=
1 � Hx � bxð Þ=a � Hy � by

� �
=a � Hz � bzð Þ=a

� �
ð12Þ

So the Jacobian for N samples is
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J= N
PN
i=1

� Hx ið Þ � bxð Þ=a
PN
i=1

� Hy ið Þ � by

� �
=a

PN
i=1

� Hz ið Þ � bzð Þ=a
� 	

ð13Þ

The initial value (R0 ,b0) and Jacobian matrix J are
substituted into equation (8) for iteration. The initial
value of b is equal to the negative of the sample mean.

After each iteration, the squared residual sum of all
samples was calculated

S R,bð Þ=

PN
i=1

R ið Þ � f H ið Þ,b ið Þð Þ½ �
2

N
ð14Þ

The direction of each exploration is the direction of
decreasing the value of S(R,b). After the convergence
accuracy is satisfied, the optimal radius R̂ of magnetic
field intensity and the ‘‘Hard iron’’ error b̂ of magnet-
ometer can be estimated.

Step 2: ellipsoid fitting

The ellipsoid fitting method based on the L-M algo-
rithm takes ‘‘Hard iron’’ error and ‘‘Soft iron’’ error
into consideration and obtains their optimal estima-
tion. The optimal radius R̂ has been calculated by the
process of the sphere fitting.

Find the optimal estimation of the parameters g of
the model curve R̂� f(H,g) so that the sum of the
squares of the deviations S(R̂,g) is minimized

ĝ 2 argminĝS gð Þ=argming

XN
i=1

R̂� f H ið Þ,g ið Þð Þ
� �2

where f(H,g) is the expression of the ellipsoid

f H,gð Þ= HT
dHd

�� ��1
2 = K � H+bð Þð ÞT K � H+bð Þð Þ

��� ���1
2

= HTKTKH+2HTKTKb+bTKTKb
�� ��1

2

ð15Þ

where K is ‘‘Soft iron’’ error which is assumed to be a
symmetric matrix

K=
k11 k12 k13
k12 k21 k23
k13 k23 k33

2
4

3
5

g has nine unknown parameters

g = k11 k12 k13 k22 k23 k33 bx by bz

� �
ð16Þ

According to the process of the L-M algorithm, cal-
culate Jacobian matrix J of f(H,g). Introduce inter-
mediate variables

A= k11 Hx +bxð Þ+ k12 Hy +by

� �
+ k11 Hz +bzð Þ

B= k12 Hx +bxð Þ+ k22 Hy +by

� �
+ k23 Hz +bzð Þ

C= k13 Hx +bxð Þ+ k23 Hy +by

� �
+ k33 Hz +bzð Þ

b= K � H+bð Þk k

Similar to the sphere fitting, the Jacobian matrix of
the ellipsoid fitting is given directly

J1 =
∂f H,gð Þ
∂k11

=� Hx +bxð Þ � A=b

J2 =
∂f H,gð Þ
∂k22

=� Hy +by

� �
� B=b

J3 =
∂f H,gð Þ
∂k33

=� Hz +bzð Þ � C=b

J4 =
∂f H,gð Þ
∂k12

=� Hy +by

� �
� A+ Hx +bxð Þ � B

� �
=b

J5 =
∂f H,gð Þ
∂k13

=� Hz +bzð Þ � A+ Hx +bxð Þ � Cð Þ=b

J6 =
∂f H,gð Þ
∂k23

=� Hz +bzð Þ � B+ Hy +by

� �
� C

� �
=b

J7 =
∂f H,gð Þ
∂bx

=� k11 � Hx +bxð Þð

+ k12 � Hy +by

� �
+ k13 � Hz +bzð ÞÞ=b

J8 =
∂f H,gð Þ
∂by

=� k12 � Hx +bxð Þ+ k22 � Hy +by

� �
+ k23 � Hz +bzð Þ

� �
=b

J9 =
∂f H,gð Þ

∂bz

=� k13 � Hx +bxð Þð

+ k23 � Hy +by

� �
+ k33 � Hz +bzð ÞÞ=b

So the Jacobian for N samples is

J=
PN
i=1

J1 ið Þ
PN
i=1

J2 ið Þ
PN
i=1

J3 ið Þ
PN
i=1

J4 ið Þ
PN
i=1

J5 ið Þ
PN
i=1

J6 ið Þ
PN
i=1

J7 ið Þ
PN
i=1

J8 ið Þ
PN
i=1

J9 ið Þ
� 	

ð17Þ

Jacobian matrix J is substituted into the iterative for-
mula of the L-M algorithm

gi+1 =gi � JTJ+ ldiag JTJ
� �� ��1

JT R̂� f H,gð Þ
� �

ð18Þ

The initial value of b is equal to b̂ which is given by
the steps of the sphere fitting. The initial value of K is a
33 3 identity matrix. After each iteration, the squared
residual sum of all samples was calculated

S gð Þ=

PN
i=1

R̂� f H ið Þ,g ið Þð Þ
� �2

N
ð19Þ

After the convergence accuracy is satisfied, the opti-
mal ĝ, which contains the ‘‘Hard iron’’ error b̂ and the
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parameters of ‘‘Soft iron’’ error K̂ of magnetometer,
can be estimated.

The iteration process of the L-M algorithm and
choice of l parameter

Taking the sphere fitting as an example, the iteration
steps are explained; l is a parameter, and it is used in

the iterative process to control both the direction of
exploration and the step lengths. Select the initial para-
meters b=b0 and l= l0, and a coefficient m (m . 1).
Calculate the sum of squares of the initial residuals
S(b0), set b0 and l0 into formula (8) for one step to get
b1, and compute S(b1). If S(b0)\S(b1), set l= l0=m

and continue to the next iteration step, else l= l0m,
and recalculate the direction of exploration and start a
new iteration step.

The iteration steps of the L-M algorithm for sphere
fitting are shown in Figure 1.

At the beginning of the iteration, take l as a large
number, and the direction of exploration is close to the
gradient direction, which has the characteristics of the
steepest descent method. When l is reduced to zero in
the iterative process, the exploration direction is close
to the Newton direction, which has the characteristics
of Newton method. So the L-M algorithm combines
the advantages of steepest descent method and Newton
method.20,21

Magnetometer calibration process

Magnetometer calibration includes the sphere fitting
and the ellipsoid fitting. Rotate the magnetometer in
Earth’s magnetic field. Once the sample buffer is full, a
sphere fitting algorithm is run, which computes a new
sphere radius and ‘‘Hard iron’’ error until the accep-
tance criteria are met. Samples were collected until the
buffer is full again, and the ellipsoid fitting algorithm is
run. The sphere radius and ‘‘Hard iron’’ error obtained
by the sphere fitting process are taken as the initial val-
ues to enter the ellipsoid fitting process. The ellipsoid
fitting computes ‘‘Soft iron’’ error, and the corrected
‘‘Hard iron’’ error is carried out. The fitting process is
shown in Figure 2.

Figure 1. The iteration steps of the L-M algorithm for sphere fitting.

Figure 2. Flowchart for the calibration and compensation.
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Experiments and results

Real measured data are used in this paper to verify the
performance of the L-M algorithm for magnetometer
calibration. The UAV was rotated to collect original
magnetometer data, and then the original data of the
magnetometer were imported into the pre-written mag-
netometer calibration MATLAB program to calculate
the ‘‘Hard iron’’ error and ‘‘Soft iron’’ error.

Magnetometer calibration

The magnetometer LSM303D is fixed on the multi-
rotor UAV, as shown in Figure 3. The navigation coor-
dinate system is the north-east coordinate system. The
body coordinate system is defined at the origin of
UAV: X-axis points to the front, Y-axis points to the
right, and Z-axis points to the bottom. The UAV is
rotated for several times along its X, Y, and Z axes at a
constant speed. The collected magnetometer original
data are returned to the computer through the serial
port. The original data are added into the standard L-S
algorithm and the L-M algorithm for MATLAB file.
The initial iteration parameters of the L-M algorithm
are shown in Table 1. About 2000 pieces of original
data were collected. The three-dimensional (3D) data
figure of the original value of the magnetometer and
the magnetometer compensated by the L-M algorithm
are shown in Figure 4, and those by the L-S algorithm
are shown in Figure 5.

Both algorithms can estimate the ‘‘Hard iron’’ error
and ‘‘Soft iron’’ error. The optimal estimation para-
meters are shown in Table 2. As for ‘‘Hard iron’’ error
compensation, the results of the two algorithms are sim-
ilar. Figures 6 and 7 show that all of the magnetometer
sample data have a perfect circle centered at the origin
in the projection plane of X–Y, Y–Z, and Z–X. The cor-
rection was applied to adjust the samples into an origin-
centered sphere. The main difference between the two
algorithms is the parameter of the ‘‘Soft iron’’ error K.
As can be seen in Table 2, traditional calibration model
based on the L-S algorithm rotates the sample points
more than the calibration algorithm proposed in this
paper. It shows that traditional ellipsoid fitting based
on the L-S algorithm assumes that the magnetic mate-
rial fixed on the UAV distorts the magnetic field
greatly, while the algorithm proposed in this paper does

Table 1. The initial iteration parameters of the L-M algorithm.

Initialization variable Initial value

b ½ 0 0 0 �
K 1

1
1

2
4

3
5

R 200
l 1
m 10

L-M: Levenberg–Marquardt.

Figure 3. The hardware platform of UAV.

Figure 4. The 3D graph of original data and compensation data
by proposed L-M algorithm

Figure 5. The 3D graph of original data and compensation data
by traditional L-S algorithm.
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not. The difference between the two methods is mainly
caused by the hypothesis of calibration model. The cali-
bration model algorithms are different, so the perfor-
mance of estimated parameters is different. The
calibration performance is evaluated by residual error.
The formula for calculating residual error is as follows

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HT

dHd

q
�

PN
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HT

d ið ÞHd ið Þ
q

N
ð20Þ

The residual error with the proposed calibration based
on the L-M algorithm and traditional ellipsoid fitting
based on the L-S algorithm are shown in Figure 8. The
residual error before calibration is shown in Figure 9. It
can be seen that both the algorithms have good perfor-
mance in calibration. The residual error is reduced from
200 to 20mG, and the residual error with the L-M algo-
rithm is smaller than that with the L-S algorithm.

In total, 10 repetitive experiments were conducted to
prove the effectiveness of the proposed algorithm. The

performance of these two calibration methods is evalu-
ated by the mean of the residual error for all data

�e=

PN
i=1

eij j

N
ð21Þ

The list of the �e from proposed L-M algorithm and
traditional L-S algorithm is shown in Table 3; the value
of �e with the L-M algorithm is smaller than that with
the L-S algorithm, so the performance of proposed L-
M algorithm is better.

A semi-physical experimental system was designed
for the simulation experiments. The measure system
was testified by triaxial theodolite as shown in Figure
10, which is supported by Changchun Institute of
Optics, Fine Mechanics and Physics, Chinese Academy
of Sciences. Theodolite is an optical aiming and track-
ing device, which can be used to observe and record the
flight trajectory and attitude of various aircrafts. The
system can achieve 2$ high-precision tracking. The
whole system consists of precision tracking system,
rough tracking system, and infrared capture system.
The optical parameters of each part of the system are
shown in Table 4.

The theodolite with three degrees of freedom was
used to provide a resolution of 0.01� for the yaw angle.
Figure 11 shows the yaw angle errors after calibration
by the proposed calibration based on the L-M algo-
rithm and traditional ellipsoid fitting based on the L-S
algorithm. It was apparent that the proposed improved
magnetometer calibration and compensation method
based on the L-M algorithm significantly enhanced the
accuracy of the magnetometer.

Figure 6. The projection plane of X–Y, Y–Z, and Z–X of original data and compensation data by the L-M algorithm.

Table 2. The ‘‘Hard iron’’ error and ‘‘Soft iron’’ error estimated
by the L-M and the L-S algorithms.

L-M L-S

b ½ 19:7374 �165:7441 59:3751 � ½ 22:0618 �167:0174 59:3247 �

K
0:9809 0:0087 0:0012
0:0087 0:9961 0:0074
0:0012 0:0074 1:0129

2
4

3
5 0:8570 0:4973 0:1351

�0:5060 0:7620 0:4042
0:0980 �0:4147 0:9047

2
4

3
5

L-M: Levenberg–Marquardt; L-S: least squares.
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To further evaluate the performance of the calibra-
tion algorithm, a double-sensor hardware platform is
built. One group of sensors is based on STM32F429,
which includes accelerometer and gyroscope MPU6000,
and magnetometer LSM303D. The standard extended

Kalman filter (EKF) attitude estimation method is inte-
grated into this hardware platform, and the attitude
angle is outputted in real time. Another group of sen-
sors adopts the MTi inertial measurement unit (IMU)
produced by Xsens in the Netherlands, which has its
own EKF algorithm and can directly output high-
precision attitude angle. The precision of the roll angle
and the pitch angle in the algorithm is 60.3�, and the
precision of the yaw angle is 60.5�. The product pro-
vides high-quality orientation and position, which
belongs to the high-performance IMU.

The attitude angle of MTi is used for control of the
UAV. The EKF algorithm integrated in STM32F429 is

Figure 7. The projection plane of X–Y, Y–Z, and Z–X of original data and compensation data by the L-S algorithm.

Figure 8. Residual error with the proposed L-M algorithm and
traditional L-S algorithm.

Figure 9. Residual error before calibration.

Table 3. The list of the �e from the L-M algorithm and the L-S
algorithm.

L-M L-S

4.5768 6.0249
5.2645 6.3521
3.0069 4.2280
5.6852 7.0031
4.6045 5.3249
6.4758 7.2059
3.4865 4.7086
5.7064 7.6058
6.4618 7.3064
3.6042 5.0658

L-M: Levenberg-Marquardt; L-S: least squares.

Table 4. The optical parameters of the theodolite.

Optical system Focal length Spectral band

Precision tracking system 2800 mm 500–850 nm
Rough tracking system 1000 mm 500–850 nm
Infrared capture system 200 mm 3.7–4.8 mm
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only used to estimate attitude angle but the estimated
states are not used for control of the UAV. All the
flight data, including the measured sensor data and
attitude angle, are stored in the flight control unit.

Static test

Place the UAV on the horizontal ground with the nose
facing due north, theoretically maintaining a zero-
degree angle. The compensation parameters of pro-
posed L-M algorithm and traditional L-S algorithm
are written into magnetometer original data. The cali-
brated data are added to the EKF algorithm of mag-
netometer data fusion to calculate the attitude angle in
real time. EKF used for the estimation of the yaw angle
by fusing magnetometer data does meet the situation:
the better the calibration, the better the final result.
The test time is about 280 s. The comparison between
the L-M’s output and the L-S’s output is shown in
Figures 12 and 13.

The static test results show that the performance of
the pitch angle and the roll angle of the magnetometer
data compensated by the L-M algorithm and fused by
the EKF algorithm is better. Because the ground

cannot maintain strict horizontal, there are different
degrees of small angle values for the roll angle and the
pitch angle. Initial alignment is given by the acceler-
ometer value, so the roll angle and the pitch angle start
from the same initial value. Magnetometer data fusion
will correct them; after a period of time, they stabilize
around the initial value with accuracy within 0.5�.
However, the angle with the L-S algorithm is gradually
far away from the initial value and has a large error
compared to the real value.

Static test results of the yaw angle are shown in
Figure 13, and the initial value compensated by the
L-M algorithm is 0.45� and by the L-S algorithm is
1.4�. The initial value of the L-M algorithm is closer to

Figure 11. The yaw angle error after calibration.

Figure 10. Triaxial theodolite.

Figure 12. The comparison of roll angle and pitch angle.

Figure 13. The comparison of the yaw angle.

/y

x/

Figure 14. The 2D trajectory during the flight test.
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the true value, which converges to 0.18� over time,
while the L-S algorithm converges to 0.6�. The L-M
algorithm has a shorter convergence time than the L-S
algorithm. The static accuracy of yaw angle of the L-M
algorithm is within 0.2� and that of the L-S algorithm
is within 0.6�. It indicates that the L-M algorithm has
short convergence time and high convergence accuracy.
The dynamic accuracy usually depends on the initial
accuracy of the yaw angle, so it can be judged that the
L-M algorithm has higher dynamic accuracy of the
yaw angle.

Dynamic test

In order to verify the dynamic accuracy of the algo-
rithm, UAV flies along a high-maneuvered trajectory
with a flight time of approximately 1000 s. The UAV
conducts autonomous flight along a circular trajectory.
Take the take-off position of the UAV as the origin and
record the location of every moment during the flight.
The attitude angle output of the MTi IMU guides the
flight and serves as a reference. The 2D (two-dimen-
sional) trajectory and the 3D trajectory of the flight test
are shown in Figures 14 and 15.

The performance of roll angle and pitch angle com-
pared with MTi’s output is shown in Figure 16. As seen
from the figure, for both the L-M algorithm and the
L-S algorithm, the roll angle and pitch angle can accu-
rately track the attitude angle output by the MTi sen-
sor. High-precision solution can be maintained under
frequent large-angle movement, and attitude tracking
has good real-time performance.

The performance of the yaw angle is shown in Figure
17. The L-M algorithm could track the desired angle
with high precision, and has high reliability and stabi-
lity. However, the L-S algorithm performed better at
the beginning. At the flight time of 320 s, the yaw angle
began to show the hysteresis phenomenon, which
became more and more serious. Divergence occurred at
700 s, and the yaw angle could not accurately track the
desired angle. The reason for this phenomenon is that
the L-S magnetometer calibration algorithm fails to per-
form a good calibration of the original value of the
magnetometer. As a result, the magnetometer data

added to the EKF attitude estimation algorithm are
mixed with a lot of noise, which leads to errors between
the estimated attitude angle and the real value. EKF is
an iterative algorithm, and the error of attitude angle
will accumulate with the increase of iteration number,
so the divergence phenomenon of the yaw angle is
caused.

Conclusion

This paper proposes an improved magnetometer cali-
bration method based on the L-M algorithm. The
‘‘Hard iron’’ error and the ‘‘Soft iron’’ error, which
affect the yaw accuracy, are calibrated by the sphere fit-
ting and the ellipsoid fitting, and then the optimal para-
meters of ‘‘Hard iron’’ error and ‘‘Soft iron’’ error are
obtained. Semi-physical simulation experiment proves
that the proposed magnetometer calibration method
significantly enhances the accuracy of the magnet-
ometer. To further evaluate the performance of the
calibration algorithm, the performance of the L-M
algorithm is verified by the measured magnetometer
data from UAV. Traditional L-S ellipsoid fitting algo-
rithm is taken as reference. The tests include static test
and dynamic test, and the dynamic test uses MTi

x/y/

/
z

Figure 15. The 3D trajectory during the flight test.

Figure 16. Comparison of roll angle and pitch angle to MTi’s
output..

Figure 17. Comparison of the yaw angle to MTi’s output.
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sensor’s output as reference. Static test shows that the
accuracy of the yaw angle is within 0.4� when using the
L-M algorithm to calibrate magnetometer. The accu-
racy of attitude angle estimated by EKF algorithm is
quite comparable with that of MTi attitude angle out-
put. At the same time, the traditional ellipsoid fitting
method based on the L-S algorithm is also comparable
with the L-M algorithm. The L-M algorithm is better
than the L-S algorithm when applied to the ellipsoid
fitting to compensate magnetometer data. In this
paper, a precise, stable, and efficient field calibration
method of UAV magnetometer is provided. The
method proposed in this paper not only solve the prob-
lem that magnetometer calibration accuracy is not high
but also obviously improve the convergence rate of
attitude angle of magnetometer data fusion.
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17. Söken HE. An attitude filtering and magnetometer cali-

bration approach for nanosatellites. Int J Aeronaut Space

2018; 19(1): 164–171.
18. Marquardt DW. An algorithm for least-squares estima-

tion of nonlinear parameters. J Soc Ind Appl Math 1963;

11(2): 431–441.
19. Drane BW. An algorithm for least squares estimation of

nonlinear parameters when some of the parameters are

linear. Technometrics 1972; 14(3): 757–766.
20. Marquardt DW. Generalized inverses, ridge regression,

biased linear estimation, and nonlinear estimation. Tech-

nometrics 1970; 12(3): 591–612.
21. Marquardt DW. [Collinearity and least squares regres-

sion]: comment. Stat Sci 1987; 2(1): 84–85.

286 Measurement and Control 53(3-4)

https://orcid.org/0000-0003-4977-0869

