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A B S T R A C T

Segmented primary mirror is very sensitive to co-phasing errors, especially the random segment pose errors
produced by positioning deviations. This paper proposes the linear sensitivity matrix of the pose-error-caused
wavefront deformation, derives the corrected-prediction formula of the deformation, and presents a method
of weighted tolerance allocation in order to control the pose-phasing platform cost. Results indicate that
random pose errors will generate uncertain wavefront deformation, which can be predicted by the formula with
prediction errors of the expectation less than ±1% and variance less than ±5%. And the technical difficulty of
the platform construction can be minimized using the allocation method.

1. Introduction

Scientists desire larger-aperture telescopes to obtain greater light-
gather power and spatial resolution, which are the prerequisite for
exploring and researching the earth-like planets [1,2]. Study from
National Aeronautics and Space Administration (NASA) shows that the
discovery speed of earth-like planets is directly proportional to the
1.8th power of the aperture D and the 0.4th power of the time t, thus a
telescope with aperture larger than 8 m is necessary to meet the basic
requirements of astronomy observation [3,4]. In order to achieve this
target, nearly a dozen 8 m to 10 m telescopes are currently in operation
on the ground, and telescopes with apertures 30, 50, and even 100
meters in diameter are under development [5]. However, because of the
effects of earth atmosphere and diurnal thermal cycling, ground-based
telescope cannot achieve diffraction-limited imaging. For addressing
this problem, the space-based telescope with ultra-large-aperture is
imperative.

Due to the limitation of the launch fairing, space-based telescope
with aperture larger than 4 m should adopt the segmented and de-
ployable primary mirror (PM) [6,7], which means the telescope must
be folded before launch and deployed or assembled on orbit. For
examples, the James Webb Space Telescope (JWST) with aperture 6.5
m in diameter [8], the Advanced Technology Large Aperture Space
Telescope (ATLAST) with aperture larger than 8 m [9] and the Thirty
Meter Space Telescope (TMST) [10] are all segmented telescopes.
One of the most critical techniques for deployable telescopes is the
segmented PM co-phasing, which include two aspects: one is to make
segments possess correct aspheric parameters (surface-shape phasing),
and the other is to accurately calibrate the segments’ position and

∗ Corresponding author at: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
E-mail address: yanghuisheng@126.com (H. Yang).

attitude (pose phasing). When properly phased relative to each other,
the segmented telescope can achieve the imaging capability equivalent
to design aperture, otherwise only equivalent to the aperture of one
segment [11].

Segment pose phasing is a challenging task, which requires the
phasing mechanism within sub-millimeter travel must be able to pos-
sess nanometer accuracy. This indicator is tremendously difficult to
achieve because of the numerous limitations from the space environ-
ment. To address this problem, the impact of segment pose errors
should be thoroughly studied, and the pose tolerances must be properly
allocated in order to reduce the demand for pose-phasing precision.
At present, the research on co-phasing errors mainly focuses on the
error detection [12–15] and the influences of piston and tip/tilt errors
with definite value and defined in PM coordinate system [16–22]. The
analysis of impacts of segment random pose errors originating from
co-phasing platform insufficient precision is rarely concerned. This is
because it involves many disciplines, and the randomness of pose error
can also bring significant research difficulties. However, this analysis is
necessary and significant especially in high-precision imaging systems,
which can resolve that whether the pose-phasing tolerance allocation
is reasonable, and how to reduce the development cost and difficulties
of the segmented PM co-phasing system.

This paper proposes a method of weighted tolerance allocation to
control the cost of segment pose-phasing platform. Firstly, it introduces
the basic composition of a segmented PM and analyzes the sources of
segments pose errors. The linear sensitivity matrix of the wavefront
deformation (WD) to segments pose errors defined in local coordi-
nate system (LCS) is then derived, the prediction formula of the WD
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Fig. 1. Segmented primary mirror.

stemming from segments random pose errors is deduced, and Monte
Carlo simulations are achieved to verify the validity of the prediction.
Finally, we present the method of weighted tolerance allocation, and
demonstrate the actual effect using numerical simulations.

2. Segmented primary mirror architecture and sources of seg-
ments pose errors

Fig. 1 illustrates a segmented PM composed of 10 mirror segments,
which is a PM configuration scheme for a deployable optical system
(described in Ref. [23]) in a funded project by the Ministry of Science
and Technology of China. This project comes from the ‘‘National Key
Research and Development Program of china’’ – Geostationary Orbit
High Resolution Light Imaging Camera System Technology (Grant No.
2016YFB0500100), and is aimed to study the implementation and
related basic technologies of ultra-large-aperture telescopes. Each seg-
ment has the same prescription: 1.9 m in diameter, paraxial radius of
curvature (ROC) 10 m and conic constant −1. When properly phased
relative to each other, these segments act as a single mirror which
can provide an 8 m aperture for the observatory. {𝑆0} is the global
coordinate system (GLS) and locates at the vertex of PM nominal
surface, the z-axis of which coincides with the principle axis, the x-axis
is along the ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆0𝑆𝑖 projection on the paper surface. There are m LCSs.
{𝑆𝑖} is the LCS corresponding to the segment 𝑆𝑖, its z-axis coincides
with the segment structural axis, origin coincides with the intersection
of the z-axis and segment surface, x-axis is in the plane 𝑆0𝑆𝑖𝑧𝑖 and
perpendicular to the z-axis, and y-axis is determined by right-hand rule.

Most PM used in high precision optical systems have nominal conic-
section-of-revolution surface shape. A co-phasing platform with at least
five DOFs is the prerequisite for the phase alignment of segments with
this surface shape. Because of the advantages of compact structure,
little space occupation, high structural stiffness, large carrying capacity,
few error accumulation and high precision, parallel mechanism has
been the first choice for the co-phasing platform. Fig. 2 shows a typical
six DOF parallel platform, which mainly consists of fixed platform,
moving platform and six linear actuators. The segment is mounted to
the moving platform. Therefore, the segment pose errors are equivalent
to the platform positioning errors. Sources of platform positioning
errors mainly include fit clearance, creeping phenomenon and control
errors, which will result in that the moving platform stops at unde-
termined position and with undetermined attitude. This randomness
of positioning errors will lead to slight perturbations in the other five
DOF, even though the platform just moves along one DOF. According

Fig. 2. Diagram of a pose-phasing platform with six DOFs rigid body motions.

to practical experience, the positioning errors approximatively follow
multidimensional independent uniform distribution [24,25]:

𝛥𝑋𝑖 ∼ U[𝑎𝑖, 𝑏𝑖] (1)

where 𝛥𝐗 = [𝛥𝜃𝑥, 𝛥𝜃𝑦, 𝛥𝜃𝑧, 𝛥𝛿𝑥, 𝛥𝛿𝑦, 𝛥𝛿𝑧]𝑇 is a vector composed of
segment pose error 𝛥𝑋𝑖. 𝛥𝜃 is attitude error. 𝛥𝛿 is position error. 𝑎𝑖
and 𝑏𝑖 are the error bounds of 𝛥𝑋𝑖.

The expectation and variance of 𝛥𝑋𝑖 can be written as:

𝐸𝛥𝑋𝑖 =
𝑎𝑖 + 𝑏𝑖

2
= 0 ; 𝐷𝛥𝑋𝑖 =

(𝑏𝑖 − 𝑎𝑖)
2

12
= 𝜎2𝑖 (2)

3. Wavefront deformation originating from segment pose errors

3.1. Basic theory

According to geometric ray-trace optics, an incident-ray stemming
from the nominal wavefront and reflected by segment can be expressed
by the functions of the surface-shape, the segment position and attitude,
as well as the position and direction of the incident-ray:

𝐫̂ = 𝑓 (𝑅, 𝑘, 𝜹,𝜽, 𝒊̂,𝒑)
𝜸 = 𝑔(𝑅, 𝑘, 𝜹,𝜽, 𝒊̂,𝒑)
𝐿 = ℎ(𝑅, 𝑘, 𝜹,𝜽, 𝒊̂,𝒑)

(3)

where 𝑅 is the paraxial ROC. 𝑘 is the conic constant. 𝜹 is the segment
position vector. 𝜽 is the segment attitude vector. 𝒊̂ is the unit direction
vector of the incident-ray. 𝑝 is the position vector of the incident-ray.
𝒓̂ is the unit direction vector of the reflected-ray. 𝜸 is the reflected-ray
transverse aberration (beamwalk) from the nominal ray position. 𝐿 is
optical path-length. 𝑓 (𝑥), 𝑔(𝑥) and ℎ(𝑥) are beam transfer functions.

Performing the Taylor series expansion for Eq. (3) and ignoring
the higher order infinitesimal, the WD produced by the incident-ray
perturbations 𝛥𝒊̂ and 𝛥𝒂, as well as the segment pose perturbations 𝛥𝜹
and 𝛥𝜽 can be written as:

𝛥𝒓̂ = 𝜕𝒓̂
𝜕𝒊̂ ⋅ 𝛥𝒊̂ +

𝜕𝒓̂
𝜕𝒑 ⋅ 𝒂 𝜕𝒓̂

𝜕𝜽 ⋅ 𝛥𝜽 + 𝜕𝒓̂
𝜕𝜹 ⋅ 𝛥𝜹

𝛥𝜸 = 𝜕𝜸
𝜕𝒊̂ ⋅ 𝛥𝒊̂ +

𝜕𝜸
𝜕𝒑 ⋅ 𝒂 𝜕𝜸

𝜕𝜽 ⋅ 𝛥𝜽 + 𝜕𝜸
𝜕𝜹 ⋅ 𝛥𝜹

𝛥𝐿 = 𝜕𝐿
𝜕𝒊̂ ⋅ 𝛥𝒊̂ + 𝜕𝐿

𝜕𝒑 ⋅ 𝒂 𝜕𝐿
𝜕𝜽 ⋅ 𝛥𝜽 + 𝜕𝐿

𝜕𝜹 ⋅ 𝛥𝜹

(4)

where 𝑎 is incident-ray transverse perturbation measured at the inci-
dent ray reference point.

Eq. (4) shows that segments pose errors can change reflected-rays
direction, produce reflected-rays beamwalk and lead to the optical path
difference (OPD). According to Ref. [26], the OPD originating from the
incident-ray perturbations is zero. For an ultra-large aperture optical
system, the PM is the first optical element through which incident-rays
pass, so the incident wavefront is ideal and the incident-rays does not
have perturbations. Therefore, the impact of segments pose errors can
be expressed as:

𝛥𝑂𝑃𝑇𝑗𝑘 =
𝜕𝐿𝑘
𝜕𝜽

𝛥𝜽𝑗 +
𝜕𝐿𝑘
𝜕𝜹

𝛥𝜹𝑗
1 ≤ 𝑘 ≤ 𝑛
1 ≤ 𝑗 ≤ 𝑚

(5)
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Fig. 3. An incident-ray is reflected by the segment with pose errors.

where 𝛥𝑂𝑃𝑇𝑗𝑘 is the OPD of incident-ray k reflected by segment 𝑆𝑗 .
m is the quantity of all segments. n is the quantity of all incident-
rays passing through segment 𝑆𝑗 . 𝛥𝜽𝑗 and 𝛥𝐬𝑗 are attitude errors and
position errors of segment 𝑆𝑗 respectively.

Redding developed a series of coordinate-free ray-trace formula-
tions, which can be used to produce the sensitivity matrix of the
individual exit-pupil-ray OPD to the mirror pose errors defined in PM
coordinate system [26]. The segment pose alignment is implemented
in segment coordinate system, and the segment pose errors are also
defined in LCS. Therefore, the sensitivity matrix of WD originating from
the segment pose errors defined in LCS should be derived.

According to small-angle approximation, an incident-ray reflected
by the segment with pose perturbations can be described by Fig. 3. The
segment is firstly translated 𝛥𝜹 from the nominal position to transition
position, and then rotated 𝛥𝜽 around point 𝑃𝑟𝑜𝑡 to actual position. The
deflections of the reflection point 𝑃ℎ𝑖𝑡 due to the segment pose errors
can be written as:

𝛥0𝜹 =0
𝑖 𝑻𝛥

𝑖𝜹 (6)
0𝒔 = −0

𝑖 𝑻 (
𝑖𝒑 −𝑖 𝒒)×𝛥𝑖𝜽 (7)

The incident-ray OPD produced by segments pose errors defined in
LCS is

𝛥𝑂𝑃𝑇 = −
(

1 −0 𝒊̂ ⋅0 𝒓̂
0 𝒊̂ ⋅0 𝑵̂

)

0𝑵̂0
𝑖 𝑻

[

𝛥𝑖𝜹 −
( 𝑖𝒑 −𝑖 𝒒

)× 𝛥𝑖𝜽
]

(8)

where 0◦ is a vector defined in GCS {𝑆0}. 𝑖◦ is a vector defined in LCS
{𝑆𝑖}. 𝑵̂ is unit normal vector out of the nominal surface opposite to the
incident-ray. 𝑞 is the vector from PM vertex to the segment rotation
point 𝑃𝑟𝑜𝑡. 𝑝 is the vector from PM vertex to the nominal reflection
point 𝑃ℎ𝑖𝑡. 0

𝑖 𝑻 is the transfer matrix from the GCS to the LCS. 𝑣× is the
cross-product matrix operator of the vector 𝑣. And

𝑣× = ([𝑣𝑥, 𝑣𝑦, 𝑣𝑧]𝑇 )× =
⎡

⎢

⎢

⎣

0 −𝑣𝑧 𝑣𝑦
𝑣𝑧 0 −𝑣𝑥
−𝑣𝑦 𝑣𝑥 0

⎤

⎥

⎥

⎦

The WD can be obtained by tracing all incident-rays using Eq. (8):

𝛥𝒘 = 𝐀𝛥𝐗 (9)

where 𝛥𝒘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑂𝑃𝑇1
𝛥𝑂𝑃𝑇2

⋮
𝛥𝑂𝑃𝑇𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. 𝛥𝐗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛥1𝜽1
𝛥1𝜹1
⋮

𝛥𝑚𝜽𝑚
𝛥𝑚𝜹𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝐿1∕𝜕𝑥1 𝜕𝐿1∕𝜕𝑥2 ⋯ 𝜕𝐿1∕𝜕𝑥6𝑚
𝜕𝐿2∕𝜕𝑥1 𝜕𝐿2∕𝜕𝑥2 ⋯ 𝜕𝐿2∕𝜕𝑥6𝑚

⋮ ⋮ ⋱ ⋮
𝜕𝐿𝑚𝑛∕𝜕𝑥1 𝜕𝐿𝑚𝑛∕𝜕𝑥2 ⋯ 𝜕𝐿𝑚𝑛∕𝜕𝑥6𝑚

⎤

⎥

⎥

⎥

⎥

⎦

.

where 𝑥6𝑖−5 = 𝛥𝑖𝜽𝑥; 𝑥6𝑖−4 = 𝛥𝑖𝜽𝑦; 𝑥6𝑖−3 = 𝛥𝑖𝜽𝑧; 𝑥6𝑖−2 = 𝛥𝑖𝜹𝑥; 𝑥6𝑖−1 =
𝛥𝑖𝜹𝑦; 𝑥6𝑖 = 𝛥𝑖𝜹𝑧; 𝑖 = 1 ∼ 𝑚

3.2. Wavefront deformation prediction

For definite segment pose errors, the accurate WD can be derived
from Eq. (9). For the random segment pose errors, the accurate WD
cannot be obtained, but their effects on the optical system can be eval-
uated by statistics. According to the discussion in Section 2, segments
pose errors approximatively follow the multi-dimensional independent
uniform distribution, and the expectation and variance of which can be
obtained by Eq. (2). Set new random variables 𝛥𝐗′, and

𝛥𝐗′ = (diag(𝝈))−1𝛥𝐗 (10)

where 𝝈 is the vector composed of the standard deviations of all
segments pose errors.

Therefore 𝛥𝐗′ is a vector consisting of independent random vari-
ables with the same distribution. And Eq. (9) can be expressed as:

𝛥𝒘 = 𝐁𝛥𝐗′ (11)

where 𝐁 = 𝐀diag(𝝈).
The root mean square (RMS) is the most common and effective indi-

cator for evaluating the WD. From Eqs. (2) and (9), the WD expectation
is zero, so the mean square wavefront deformation (MSWD) can be
written as:

𝑅𝑀𝑆2 = 1
𝑚𝑛

𝛥𝒘𝑇 𝛥𝒘 = 1
𝑚𝑛

𝛥𝐗′𝑇𝐐𝛥𝐗′ (12)

where 𝐐 = 𝐁𝑇𝐁 is a symmetric matrix and can be decomposed as:

𝐐 = 𝐔𝑇Σ𝐔 (13)

where 𝛴 is a diagonal matrix composed of the eigenvalue 𝜆𝑙 of Q, and
U is an orthogonal matrix consisting of the eigenvectors 𝑣𝑙 of Q.

Set 𝛥𝐘 = 𝐔𝛥𝐗′, and the MSWD can be written as:

𝑅𝑀𝑆2 = 1
𝑚𝑛

𝛥𝐘𝑇Σ𝛥𝐘 = 1
𝑚𝑛

6𝑚
∑

𝑙=1
𝜆𝑙𝛥𝐘2

𝑙 (14)

where 𝛥𝐘 is a vector composed of 𝛥𝑌𝑙, and 𝛥𝑌𝑙 = 𝑣𝑙𝛥𝐗′.
Since the variables 𝛥𝐗′ are independent of each other, accord-

ing to the central limit theorem (CLT), 𝛥𝑌𝑙 follow multidimensional
independent normal distribution with a unit variance:

𝛥𝑌𝑙 ∼ N(0, 1) (15)

𝛥𝑌 2
𝑙 follows a chi-square distribution with one degree of freedom.

The expectation and variance of MSWD are:

𝐸(𝑅𝑀𝑆2) = 1
𝑚𝑛

∑𝑟
𝑙=1 𝜆𝑙

𝐷(𝑅𝑀𝑆2) = 2
(𝑚𝑛)2

∑𝑟
𝑙=1 𝜆

2
𝑙

(16)

where r is the rank of 𝐐.

3.3. Numerical simulation

For the segmented PM described in Section 2, We trace 1037
uniformly distributed incident-rays on each segment surface, calculate
the OPDs of all 1037 × m incident-rays reflected by the segmented PM,
and obtain the total WD stemming from segments pose errors.

3.3.1. Simulations of segment pose error with definite value
For segments pose errors with definite value, the accurate WD can

be obtained using Eq. (9). Taking the special cases (all segments pose
errors are the same) for examples, the WDs are shown in Fig. 4. Fig. 4a
to c are respectively the WDs with three DOFs (𝛥𝜃𝑥, 𝛥𝜃𝑦, 𝛥𝜃𝑧) attitude
error 1′′ and Fig. 4d to f are respectively the WDs with three DOFs
(𝛥𝛿𝑥, 𝛥𝛿𝑦, 𝛥𝛿𝑧) position error 1𝜆. It can be seen from Fig. 4 that each
segment has the same WD in its own LCS, and the segmented PM
has rotational symmetry wavefront aberration in GCS. This shows that
Eq. (9) is effective, and it can calculate the WD produced by segments
pose errors defined in LCS.

3
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Fig. 4. The WD originating from single pose error with definite value.

Fig. 5. The random WD originating from single random pose error.

It can also be seen from Fig. 4. The attitude error around the x-axis
defined in the segment LCS produces a tip aberration in its own LCS,
but all these segments aberrations manifest a high-order astigmatism
on the system exit pupil. The attitude error around the y-axis defined
in the segment LCS produces a tilt aberration in its own LCS, but all

these segments aberrations manifest a high-order spherical aberration
on the system exit pupil. The attitude error around the z-axis defined
in the segment LCS produces an astigmatism aberration in its own LCS,
but all these segments aberrations manifest a high frequency aberration
on the system exit pupil. The position error along the x-axis defined in
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the segment LCS produces a tilt aberration in its own LCS, but all these
segments aberrations manifest a high-order spherical aberration on the
system exit pupil. The position error along the y-axis defined in the
segment LCS produces a tip aberration in its own LCS, but all these
segments aberrations manifest a high-order astigmatism aberration on
the system exit pupil. The position error along the z-axis defined in
the segment LCS produces a defocus aberration in its own LCS, but all
these segments aberrations manifest a high-order spherical aberration
on the system exit pupil. Because of the randomness of the co-phasing
errors, the probability of the system wavefront deformation manifesting
a regular distribution is almost zero. The aberration produced by the
random co-phasing errors presents approximate the influence of air
turbulence, which contains few low-order aberrations.

3.3.2. Simulations of segment pose error with random value
Monte Carlo analysis which is referred as ‘‘the last method [27]’’

can address the uncertainty problem using statistics, hence it is very
suitable for evaluating the WD originating from segment pose errors.
According to Eq. (9), there are 6×𝑚 random variables, which are the
attitude errors 𝛥𝑖𝜽 and position errors 𝛥𝑖𝜹 of the segments from 𝑆1 to 𝑆𝑚
respectively. All of the variables follow the uniform distributions with
the same expectation zero and different variances. By using software to
generate the variable with the same distribution as the segment pose
error, and simulating random sampling, the MSWD are:

𝑅𝑀𝑆2[ 𝑅𝑀𝑆2(𝛥𝒘1) ⋯ 𝑅𝑀𝑆2(𝛥𝒘𝑚𝑜𝑛𝑡𝑒_𝑛) ] (17)

where 𝛥𝒘𝑚𝑜𝑛𝑡𝑒_𝑛 = 𝐀𝛥𝐗diag(𝝇𝑚𝑜𝑛𝑡𝑒_𝑛). 𝐀 is linear transfer matrix. 𝝇𝑚𝑜𝑛𝑡𝑒_𝑛
is the vector composed of the monte_nth random sampling variables.
The larger the sampling quantity monte_n, the closer the MSWD ob-
tained by Eq. (17) is to the best expectation.

The WD stemming from the single DOF pose error is firstly pre-
sented to intuitively compare the effect of each segment pose error.
The segmented PM model used in this simulations is the same as
that described in Section 2. The expectation and variance of segment
position errors are 0 and (1𝜆)2 respectively and of segment attitude
errors are 0 and (1′′)2 respectively. The mean of absolute value of all
deformation maps is defined as the random WD map to avoid that
positive OPD counteracts negative OPD, which can embody statistical
law. The average WD maps are shown in Fig. 5, which indicate that
in the LCS, segments random WD are approximately the same, while
in the GCS, are still rotational symmetry. Comparing Figs. 4 and 5,
it can be seen that the WD described in Fig. 4 is only a special case
of the innumerable PM random WD. The effect of segments random
pose errors is complex and cannot be described by an accurate WD, but
its expectation and variance can be predicted through statistics, which
can be used to evaluate its impact on the optical system. Moreover,
the sensitivity of the WD to each DOF pose error is different, and the
WD has the highest sensitivity to the x-axis, the y-axis rotation and the
z-axis translation defined in LCS.

As discussion in Section 2, the segment positioning errors are ac-
companied in the whole phasing process, and the actual performance
is the coupling of multiple pose errors (even if only one DOF phasing
is performed), which is defined as mixed random pose errors. The
analysis of the mixed random pose error is very complicated and not
intuitive. But, the hybrid pose error can be decomposed into six random
pose error components, the functions of which are equivalent. Using
the same segmented PM model and the pose errors distributions, the
random WD originating from the most complex pose error, including
all six DOF pose perturbations, is shown in Fig. 6, which is an average
deformation map accumulated by the absolute values of 10,000 random
numerical simulation test results. Each numerical simulation result
corresponds to a random set of six-degree-of-freedom co-phasing errors.
Each set of co-phasing errors are randomly selected within the accuracy
range according to the uniform distribution. For example, the position
accuracy is ±

√

3𝜆 and the attitude accuracy is ±
√

3
′′

, so the position

Fig. 6. The random WD originating from mixed random pose error (𝐸(𝑅𝑀𝑆2) =
(10.14𝜆)2).

errors take values within [−
√

3𝜆,+
√

3𝜆], and the attitude errors take
values within [−

√

3
′′

,+
√

3
′′

] randomly.
Because the 10,000 sets of co-phasing errors follow uniform dis-

tribution, the probability of segment co-phasing error along/round six
degrees of freedom (DOF) is the same, and they are symmetric about
the origin of the coordinate defined in the segment. The average WD
map (Fig. 6) show a shape that is symmetric about the segment’s origin,
that is, an approximate defocusing effect. However, it is not defocus,
because Fig. 6 is a superimposed map of statistics that does not really
exist.

Moreover, it needs to be further explained that the average defor-
mation map shown in Fig. 6 has an elliptical distribution (the fringes
in the 𝑥-axis direction defined in the segment coordinate are slightly
denser than that in y-axis) instead of a circular distribution, which is
also correct. It can be seen from Fig. 4, the sensitivities of the WD to
𝛥𝑖𝜃𝑥, 𝛥𝑖𝜃𝑦 and 𝛥𝑖𝛿𝑧 are much greater than other co-phasing errors, the
WDs produced by 𝛥𝑖𝜃𝑦 and 𝛥𝑖𝛿𝑧 are very similar, showing a tilt around
the 𝑦-axis defined in the segment coordinate. Because the sum of the
sensitivities of 𝛥𝑖𝜃𝑦 and 𝛥𝑖𝛿𝑧 is slightly greater than that of 𝛥𝑖𝜃𝑥, the
fringes in the 𝑥-axis direction defined in the segment coordinate are
slightly denser than that in 𝑦-axis. Fig. 6 also indicates that the more
the pose error terms, the more complex the WD is, but the impact can
still be evaluated by statistical laws.

3.3.3. Wavefront deformation prediction and its correction
In Section 3.2, the Eq. (16) for predicting the impact of segments

random pose errors is derived. This section verifies its validity using
Monte Carlo method. Using segmented PM models with different pa-
rameters, calculates the MSWD caused by pose errors with different
bounds, and compares the results of Monte Carlo simulations with
predictions. The PM aperture is 8 m with the paraxial ROC 𝑅 ∈
[8 m, 15 m], the conic constant 𝐶𝑘 ∈ [−2, 2], the segment quantity
𝑚 ∈ [2, 10], the segment diameter 𝑟𝑠𝑒𝑔 ∈ [0.5 m, 0.95 m], the variance
of segment position errors 𝐷(𝛥𝑖𝛿) ∈ [ 0 (100𝜆)2 ] and attitude errors
𝐷(𝛥𝑖𝜃) ∈ [ 0 (10′′)2 ]. Fig. 7 plots the verification results of 100 random
sampling (the Monte Carlo sampling times of each sample is 10,000).
The plots show that the formula has high prediction accuracy for
MSWD expectation, but large deviation for variance. This is because
the quantity of pose errors is so few that the WD produced by the
errors only approximately follow normal distribution instead of strictly
obey standard normal distribution, hence the conclusion of Eq. (14) is
approximately instead of strictly established. In order to address this
problem, the prediction formulas should be amended by the correction
coefficients, and the revised formulas can be expressed as:

𝐸(𝑅𝑀𝑆2) = 𝜁𝐸
𝑚𝑛

𝑟
∑

𝑙=1
𝜆𝑙

𝐷(𝑅𝑀𝑆2) = 2𝜁𝐷
(𝑚𝑛)2

𝑟
∑

𝑙=1
𝜆2𝑙

(18)
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where 𝜁𝐸 is the expectation correction coefficient and 𝜁𝐷 is the variance
correction coefficient.

The expectations of correction coefficients are obtained by 1000
random samplings: 𝜁𝐸 = 0.9997 and 𝜁𝐷 = 1∕2.4710. The prediction
results after correction are shown in Fig. 8.

In order to comprehensively verify the prediction formulas, the
numerical simulation conditions in Fig. 8 (including the paraxial ROC
R, the conic constant 𝐶𝑘, the segment quantity m, the segment diameter
𝑟𝑠𝑒𝑔 , the co-phasing errors 𝛥𝑖𝛿 and 𝛥𝑖𝜃) are all randomly generated,
and the ranges of conditions are the same as Fig. 7. That is why the
distributions of the prediction E(RMS2) and simulation E(RMS2) in
Figs. 7.a and 8.a are not the same. What is more, the maxD(RMS2) in
Fig. 7.b is 3.0e7 and that in Fig. 8.b is 1.2e7. They are on the same order
of magnitude, which shows that the random validation method can
approximately verify the prediction formula under extreme conditions,
instead of simple data correction under the same conditions.

Because the E(RMS2) correction coefficient in Eq. (18) is approx-
imately equal to 1 (0.9997), the max E(RMS2)s in Figs. 7.a and 8.a
are close. And the D(RMS2) correction coefficient is smaller than 1
(1/2.4710), so the D(RMS2) in Fig. 8.b is smaller than that in Fig. 7.b.

At last, it can be seen from Fig. 8 that using the revised formula,
the expectation prediction accuracy is difficult to be improved, remain-
ing ±1%. However, the variance prediction accuracy is significantly
improved to less than ±5%.

4. Weighted tolerance allocation of the pose errors

4.1. Diffraction-limited imaging conditions for optical system

According to the Marechal Criterion, the diffraction-limited imaging
can be approximately obtained when the Strehl ratio of optical system
is greater than 0.8. From the relationship between Strehl ratio and
wavefront aberration:

𝑆𝑡𝑟𝑒ℎ𝑙 𝑟𝑎𝑡𝑖𝑜 = 1
𝜋2

|

|

|

∫ 2𝜋
0 ∫ 1

0 𝑒𝑖2𝜋𝛥𝑊 (𝜌,𝜽)𝜌𝑑𝜌𝑑𝜽||
|

2

= 1 − (2𝜋𝜎)2
(19)

Therefore, an optical system is regarded as diffraction-limited imag-
ing when its WD 𝝈 is better than 𝜆∕14, which is the basis for system
tolerance allocation. Because of the largest volume, complicated struc-
ture and numerous error sources, the segmented PM gets relatively
relaxed tolerance 𝜆∕23, which needs to be further decomposed into
PM polishing residual error, segments aspheric parameter errors and
segments pose errors. According to the principle of identical tolerance,
the pose-phasing error should be less than 𝜆∕40.

4.2. Weight coefficients construction for weighted tolerance allocation

The co-phasing platform is the most important device in the de-
ployable optical system, and it is also the most expensive (mainly the
technical difficulty of construction) device to be developed. Because
the large-scale (centimeter-scale) nano-precision co-phasing platforms
that meet the needs of space environments are difficult to achieve,
even without regard to the construction cost and time. Take the most
successful project, JWST, for example, the accuracy of its phasing
platform can only meet the need of infrared imaging system, and for
visible light imaging, the accuracy need to be increased by four times.
So we need to use all possible methods to reduce the technical difficulty
of construction. In other words, to develop reasonable indicators to
make the phasing platform achievable using current technology.

The traditional co-phasing error allocation mostly bases on the
principle of identical tolerance:

𝛥𝑥𝑡𝑜𝑙_𝑖 =

√

√

√

√

𝑅𝑀𝑆2
𝑡𝑜𝑡𝑎𝑙

𝑛𝑝𝐸(𝑅𝑀𝑆2
𝑡𝑜𝑙_𝑖)

(20)

where 𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙 is total tolerance. 𝑅𝑀𝑆𝑡𝑜𝑙_𝑖 is the prediction of the WD
RMS originating from each DOF segment pose error. 𝑛𝑝 is the pose
errors quantity of each segment.

The outstanding advantage of this allocation method is simple, but
the disadvantages are obvious. It does not consider the sensitivity of
the WD to different pose errors as well as the construction difficulties
of disparate DOFs phasing precision, which result in some accuracy is
difficult to achieve, but some is too easy. Taking the segmented PM
introduced in Section 2 as an example, the allocation when the total
tolerance is 𝜆∕40(𝑆𝑅 = 0.8) are 𝜽𝑥𝑡𝑜𝑙 = 1.47′′ × 10−3(𝑆𝑅 = 0.9959),
𝜽𝑥𝑡𝑜𝑙 = 1.47′′ × 10−3(𝑆𝑅 = 0.9959), 𝜽𝑧𝑡𝑜𝑙 = 0.51′′(𝑆𝑅 = 0.9959),
𝑇𝑥𝑡𝑜𝑙 = 0.13𝜆(𝑆𝑅 = 0.9959), 𝑇 𝑦𝑡𝑜𝑙 = 0.11𝜆(𝑆𝑅 = 0.9959), 𝑇 𝑧𝑡𝑜𝑙 =
5.37 × 10−3𝜆(𝑆𝑅 = 0.9959). The results of the allocation indicate that
the difference between the highest precision and the lowest accuracy is
three orders of magnitude, which is obviously unreasonable.

4.2.1. Constructing weight coefficients
In order to comprehensively evaluate the construction cost of the

pose-phasing platform, the weight function 𝑊𝑡𝑜𝑙_𝑖 = 𝑓 (𝐶𝑑 , 𝐶𝑠) composed
of the cost coefficient 𝐶𝑑 and the sensitivity coefficient 𝐶𝑠 is presented.
The cost coefficient reflects the contribution of the linear actuators
to segment pose errors, and the sensitivity coefficient represents the
contribution of segment pose errors to the WD.

The coefficient 𝐶𝑠 can be obtained from Eq. (18). The coefficient
𝐶𝑑 is related to the structure of the pose-phasing mechanism. For the
six DOFs parallel platform shown in Fig. 2, the transfer relationship
between the actuator micro-displacement and the motion of the moving
platform can be derived:

𝛥𝐋 = 𝐏𝛥𝐗 (21)

where 𝛥𝐋 is the vector composed of the actuators positioning errors
and 𝐏 is the error transfer matrix.

When A is a full rank matrix, Eq. (20) is equivalent to

𝛥𝐗 = 𝐏−1𝛥𝐋 (22)

The six DOFs rigid body motions of the parallel platform are com-
pleted by all linear actuators. The actuators have the highest utilization
when the precision is the same, while the platform has the lowest
construction cost. In this case, 𝛥𝐋 is a vector consisting of random
variables with the same distribution. The Monte Carlo method is used
to predict the error transfer coefficient, which is the coefficient 𝐶𝑑
representing the platform construction cost. The larger the 𝐶𝑑 , the
higher the platform construction cost, and, vice versa. Therefore, the
pose error weight coefficient can be written as:

𝑊𝑡𝑜𝑙_𝑖 =
1

𝐶𝑑𝐶𝑠
(23)

4.2.2. Pose tolerance weighted allocation
The pose tolerance weighted allocation can be expressed as:

𝑅𝑀𝑆𝑡𝑜𝑙_𝑖 =
𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙

𝑊𝑡𝑜𝑙_𝑖

√

∑𝑛𝑝
𝑡𝑜𝑙_𝑖=1

1
𝑊 2

𝑡𝑜𝑙_𝑖

(24)

where 𝑅𝑀𝑆𝑡𝑜𝑙_𝑖 is the ith DOF segment pose tolerance and 𝑊𝑡𝑜𝑙_𝑖 is the
weight of 𝑅𝑀𝑆𝑡𝑜𝑙_𝑖.

Therefore, the tolerance allocation for the segmented PM described
in Section 2 is 𝑅𝑀𝑆𝜽𝑥 = 1.47 × 10−2𝜆(𝑆𝑅 = 0.9915), 𝑅𝑀𝑆𝜽𝑦 = 1.52 ×
10−2𝜆(𝑆𝑅 = 0.9909), 𝑅𝑀𝑆𝜽𝑧 = 4.01 × 10−5𝜆(𝑆𝑅 = 1.0000), 𝑅𝑀𝑆𝑇𝑥 =
1.08 × 10−3𝜆(𝑆𝑅 = 1.0000), 𝑅𝑀𝑆𝑇 𝑦 = 1.21 × 10−3𝜆(𝑆𝑅 = 0.9999),
𝑅𝑀𝑆𝑇 𝑧 = 1.31 × 10−2𝜆(𝑆𝑅 = 0.9932). It can be seen from the results
that this allocation sufficiently balances the effects of the sensitive and
insensitive errors. For the sensitive errors such as 𝑅𝑀𝑆𝜽𝑥, 𝑅𝑀𝑆𝜽𝑦 and
𝑅𝑀𝑆𝑇 𝑧, relatively larger tolerances are assigned, and for the insensi-
tive errors such as 𝑅𝑀𝑆𝜽𝑧, 𝑅𝑀𝑆𝑇𝑥 and 𝑅𝑀𝑆𝑇 𝑦, smaller tolerances are
assigned. The linear actuators precision tolerances 𝛥𝐿𝑡𝑜𝑙 corresponding
to the tolerance allocation can be obtained using Eq. (21), and are all
equal to 20.38 nm, which indicates that the construction cost of each
actuator is the same.
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Fig. 7. Verification results of 100 random sampling for WD originating from different pose errors of segmented PMs with disparate parameter (before correction).

Fig. 8. Verification results of 100 random sampling for WD originating from different pose errors of segmented PMs with disparate parameter (after correction).

Table 1
The pose-phasing platform positioning precision.
𝑇𝑥 𝑇𝑦 𝑇𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧
nm nm nm nrad nrad nrad

11.79 11.80 6.07 14.30 14.30 13.48

4.2.3. Numerical simulation
The numerical simulation is achieved to calculate the positioning

errors of the pose-phasing platform as the linear actuator precision is
20.38 nm (Table 1).

Fig. 9 is the probability distribution of the WD stemming from the
positioning errors shown in Table 1. where its ordinate is the probabil-
ity density. As can be seen from the plot, the WD RMS approximately
follows the normal distribution, and the expectation and standard
deviation are 0.020𝜆 and 0.0017𝜆 respectively. This indicates that the
WD RMS is less than 0.0251𝜆 at the 99.87% confidence probability,
which is perfectly consistent with the input 0.025𝜆, and verifies that
the weighted tolerance allocation method can reasonable assign the
pose tolerance under the condition of the lowest technical difficulty of
construction.

5. Conclusion

This paper deduces the linear sensitivity matrix of the wavefront
deformation to segments pose errors defined in local coordinate system,
derives the prediction formula of the wavefront deformation stem-
ming from segments random pose errors, and proposes the method
of weighted tolerance allocation to control the pose-phasing platform
construction cost. The numerical simulations indicate that random pose
errors will generate uncertain wavefront deformation, which can be
effectively predicted by the formula presented in this paper. The pre-
diction errors of the expectation are less than ±1% and the prediction
errors of the variance are less than ±5%. It is significant to allo-
cate tolerances reasonably, which can effectively control the platform
construction cost, and the technical difficulty of construction can be
minimized using the allocation method introduced in this paper.

Fig. 9. The probability distribution of the WD stemming from the positioning errors
shown in Table 1.
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