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In the acquisition stage of many space applications, such as the Taiji program, the spot center of weak laser light
must be accurately determined. Under weak light conditions, the precision of most traditional positioning methods
is greatly affected. In this paper, we present a high-precision laser spot center positioning method based on the theo-
retical analysis of influence factors of precision. It is shown through experimental study that the method’s precision
can fulfill the requirement of the Taiji program. ©2020Optical Society of America

https://doi.org/10.1364/AO.381626

1. INTRODUCTION

The discovery of gravitational waves by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] promoted the
Chinese to propose a space-based gravitational wave detection
program called the Taiji program [2,3] to receive gravitational
wave signals from more sources. For the Taiji program, three
satellites will be used to form an equilateral triangle laser link
constellation, whose arm length is 3× 106 km. With such a
long distance, the transmitting laser beam can only be detected
by the receiving satellite with the help of the navigation data.
Therefore, a constellation acquisition process is necessary before
the science data detection. Like NASA’s Laser Interferometer
Space Antenna (LISA) [4–7], the Taiji program proposes to
use star trackers and CCD detectors as well as four-quadrant
photodetectors (QPD) to realize laser signal acquisition. Even
after star trackers are used, the position uncertainty cone of
the remote satellite is still larger than the size of the laser beam.
Therefore, a scanning maneuver [8] must be performed to
cover the whole uncertainty cone. While the sending satellite is
actively scanning, the receiving satellite remains in its reference
attitude and stares into the corresponding reference direction
based on the navigation data. As the field of view (FOV) of
the CCD is far larger than the QPD, capturing the signal on
the CCD first rather than directly on the QPD will greatly
reduce the operating time. At a certain time, the receiving satel-
lite detects the laser spot on its CCD with an offset from the
expected reference position due to the ground-provided refer-
ence attitude errors. The offset must be computed by accurately
determining the center of the receiving laser spot on the CCD

surface and corrected by the attitude actuators. Because the resi-
dence time of one scanning spot is short, the laser spot centering
process should be a real-time process. To make the beam enter
the FOV of the QPD, the angular uncertainty induced by the
positioning error should not exceed 0.06 µrad [6]. For a CCD
with 640× 512 pixel, the requirement of the laser spot center
positioning precision should be no less than 0.1 pixel. On the
other hand, the receiving laser intensity is nearly 100 pW at the
CCD surface due to the long propagation distance. Therefore,
a high-precision, real-time method applicable to the weak light
center positioning method is essential for the Taiji program.

Many algorithms of laser spot center location have been
proposed for various areas. The traditional centroid method is
used in many areas, such as Hartmann–Shack wavefront sensor
[9–11] and laser range sensor [12]. The traditional centroid
method is simple and practical for real-time applications, but
it usually has low accuracy. For the large 3D surface profile
measuring system of laser scanning, Yaoquan Yang proposed
the Hough transfer spot centering method [13]. It is effective
for applications with laser spot intensity unevenly distributed.
However, it can hardly be used in real-time applications because
of the large amount of calculation. Rather than traditional
differential power sensing method, an alternative position-
ing formula with the laser intensity of each phase of quadrant
detectors is proposed by Song Cui to improve the measurement
accuracy [14,15]. However, the photocurrent intensity is only
10 pA magnitude in the Taiji/LISA program. Equivalent current
noise of a low noise detector is usually 1 nA magnitude [16].
Therefore, methods with quadrant detectors can hardly be used
for weak light conditions. For the Large Sky Area Multi-Object
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Fiber Spectroscope Telescope (LAMSOT), Lili Wang [17] used
the Gaussian fitting centering method, which can reach the
precision of 0.01 pixel for a Gaussian spot with little distortion.
It is a good choice for applications with a perfect Gaussian beam
[18,19]. However, in the Taiji program, because of the long
transmitting distance, the receiving beam is a flat-top beam
clipped by a telescope rather than a Gaussian beam. With a lens
system in front of the CCD, the intensity distribution of the
laser spot on the detector subjects to Fraunhofer diffraction
distribution. As a result, the Gaussian fitting method can not
work well. By contrast, the traditional centroid method is more
applicable to the Taiji program if the precision can be improved.
Therefore, in this paper, we introduce what we believe is an
improved centroid method, which can not only adapt to the
real-time requirement but also achieve high accuracy under
weak light conditions.

The paper has four sections. In Section 2, we focus on the rea-
sons that limit the precision of the traditional centroid method
under weak light conditions. Based on the theoretical analysis,
our improved centroid method is presented. In Section 3, we
carry out an experiment with a 100 pW receiving laser. We first
verify the validity of the theoretical results. Then the perform-
ance of the improved centroid method is presented. Finally, we
summarize the conclusion in Section 4.

2. THEORETICAL ANALYSIS

The traditional centroid method is one of the most efficient
methods in the calculation of a laser spot center position.
Because the algorithm is computationally simple, it can cope
with the real-time requirement of the Taiji program. However,
it is sensitive to noises and usually has low precision especially
under weak light conditions. In this section, we first reveal how
the noises influence the precision.

The centroid position in the horizontal direction (the same
form in the vertical direction) on a CCD detector is defined as

x =

∑n
i=1 xi Ni∑n

i=1 Ni
, (1)

where xi denotes the position of the i th pixel, Ni stands for the
detected photo events, and n is the total pixel number involved
in calculation. For the traditional centroid method, n is the total
pixel number of the CCD detector. As Ni contains not only
photoelectrons inspired by the incident light (Nsi ) but also noise
electrons (Noi ), the centroid position can be rewritten as

x = x0 ·

∑n
i=1 Nsi∑n

i=1 (Nsi + Noi )
+

∑n
i=1 xi Noi∑n

i=1 (Nsi + Noi )
= Ax0 + B,

(2)
where x0 =

∑n
i=1 xi Nsi/

∑n
i=1 Nsi denotes the real center

position without noise. Usually, the receiving laser intensity is
strong enough and the number of photoelectrons is far greater
than the number of noise electrons. We can obtain A≈ 1 and
B ≈ 0. As a result, the offset between x and x0 is small enough.
However, for the Taiji program, the receiving laser intensity is as
weak as 100 pW magnitude and the number of photoelectrons
is even less than that of noise electrons. In such situation, the
offset between the real center and the measured center cannot
be ignored. We define the expectation of the measured center

position as E (x ), and we call the offset between x0 and E (x ) as
the fixed measurement offset. On the other hand, because of the
randomness of the noises, the position fluctuation around E (x )
also exists. Therefore, the precision of the centroid method
is influenced by the fixed measurement offset as well as the
position fluctuation. Next, we analyze the two factors.

One of the greatest contributors to Noi is the background
noise of the CCD, including the dark current noise, the charge
transfer noise, and the readout noise. To guarantee a stable tem-
perature environment, no cooling mechanism will be used for
the CCD in the Taiji program. As a result, the dark current noise
will dominate the noise budget. The number of dark current
noise electrons approximately obeys Gaussian distribution. We
suppose that Noi ∼ N(µ, σ 2), where µ and σ 2 stand for the
expectation and the variance of the noise electrons, respectively.

Because Noi is independent of each other for i = 1, 2, . . . , n,
E (x ) can be written as

E (x )=
Ns

nµ+ Ns
x0 +

µ

nµ+ Ns
·

n∑
i=1

xi , (3)

where Ns denotes the total number of photoelectrons. Then, the
fixed measurement offset is

1= x0 − E (x )=
µ

nµ+ Ns

(
nx0 −

n∑
i=1

xi

)
. (4)

To simplify the last term in Eq. (4), we define the image area
involved in calculation as the computational domain (for the
traditional centroid method, it is the whole image). We also
suppose that the column number of the computational domain
is n1 (n1 is an odd number for simplification), the row number is
n2, and the center of the area is x ′0 (x ′0 is an integer). Then,

n∑
i

xi = n2 · n1x ′0 = nx ′0, (5)

1=
nµ

nµ+ Ns
(x0 − x ′0)=

nµ
nµ+ Ns

1x0, (6)

where 1x0 denotes the offset between the area center and the
real laser spot center. We can draw the conclusion that the fixed
measurement error increases with the pixel number n and the
center offset 1x0. If you take the SH640 camera of TEKWIN
as an example, the pixel number is 640× 512, and the number
of dark current noise electrons is 1.5× 105e−/pixel@25◦. If
the receiving laser intensity is 100 pW, the quantum efficiency
is 0.7, so we can get1= 0.991x0 with the traditional centroid
method. Corresponding to a different spot center position, the
value of1x0 varies from −320 pixels to 320 pixels. Therefore,
the traditional centroid method is no longer feasible for weak
light conditions because of the fixed measurement offset. To
deal with the problem, we can divide a small computational
domain, which contains nearly all the photoelectrons and has as
few pixels as possible around the center position.

On the other hand, the noises will also affect the positioning
precision by causing a fluctuation of center position around
E (x ). After dividing the small computational domain, the
number of photoelectrons is far larger than the number of noise
electrons. The formula from Eq. (2) can be rewritten as
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x ≈ x0 +

∑n
i=1 xi Noi

Ns
= x0 +1x . (7)

We can estimate the fluctuation intensity by the root mean
square value of1x . Because the number of the noise electrons of
each pixel is independent of each other and obeys the Gaussian
distribution, there are many similarities between Noi and the
Brown motion process [20]. With Ns �µ, we rewrite the
expression of1x as

1x ≈
n∑

i=1

xi
σ
√

n
Ns

N′oi , (8)

where

N′oi =
Noi −µ

σ
√

n
. (9)

With τ = 1/n, we know that N′oi ∼ N(0, τ ), which has the
same form with the increment of the standard Brown motion
process1B(iτ). Then, we define X (kτ) as

X (kτ)=
k∑

i=1

xi
σ
√

n
Ns

(
Noi −µ

σ
√

n

)
(k = 1, 2, · · · , n).

(10)
We also introduce1X (iτ) as the increment term, so

1X (iτ)= X (iτ)− X [(i − 1)τ ] = xi
σ
√

n
Ns

1B(iτ). (11)

Even in the small domain, the pixel number involved in the
calculation is still large enough to approximately regard the
differential value of B(iτ) and X (iτ) as its difference value.
Therefore, we can rewrite Eq. (8) as (u = iτ), so

1x = X (nτ)=
∫ nτ

0
dX (u)=

∫ nτ

0
xi (u)

σ
√

n
Ns

dB(u).

(12)
It can be seen that 1x is a Brown motion process with an

interference term that is an Ito process [21,22]. With the sta-
tistical properties of the Ito process, we can easily obtain the
expectation and the variance of1x , so

E (1x )= 0 D(1x )=
∫ t

0

[
xi (u)

σ
√

n
Ns

]2

du. (13)

Based on the relationship in the vertical direction
(x1 = x√n+1 = x2

√
n+1 = · · · ), the expression of xi can be

given by

xi = x1 + i − 1−
√

nb
i − 0.1
√

n
c (i = 1, 2, · · ·, n), (14)

where b i−0.1
√

n c is the rounded down number of i−0.1
√

n . Here we

suppose that
√

n is an integer. Because of the rounding function,
we still can hardly get an analytical result. Therefore, we intro-
duce X i as the sum of the i th line of1x . Then, D(X 1) can be
given by

D(X 1)=

∫ √nτ

0

[
(x1 − 1+ u

τ
)σ
√

n

Ns

]2

du

=
σ 2

N2
s

[
1

3
n

3
2 + (x1 − 1)n + (x1 − 1)2n

1
2

]
. (15)

If we consider only the highest order term, the approximate
expression of D(X 1) is written as

D(X 1)≈
σ 2

3N2
s

n
3
2 . (16)

Similarly, when the other lines are considered separately, we
can also obtain

D(X 1)= D(X 2)= · · · = D(X√n)≈
σ 2

3N2
s

n
3
2 . (17)

Because X 1, X 2, · · · X√n are independent of each other, we
can get

D(1x )= D(X 1)+ D(X 2)+ · · · + D(X√n)≈
σ 2

3N2
s

n2.

(18)
As a result, the root mean square value of 1x can be

denoted as√
1x 2 =

√
D(1x )+ E 2(1x )≈

σ
√

3Ns
n. (19)

We can conclude that the fluctuation intensity is approx-
imately proportional to the pixel number n involved in
calculation. Therefore, dividing a small computational domain
around the real centroid position will also reduce the position
fluctuation. Based on the following analysis and the actual work-
ing condition of the Taiji program, here is an improved centroid
method with three steps:

1. Divide a rough computational domain.
As concluded above, a smaller computational domain
will greatly reduce the pixel number involved and increase
the positioning precision. First, we can obtain the rough
domain center by searching for the pixel (x1, y1) with
the maximum gray value m. Then, we search for the pixel
(x2, y2) which has a number of electrons nearest to m/2.
The distance between (x1, y1) and (x2, y2) is r . To cover
nearly all the photoelectrons, the computational domain is
defined as a square area whose center is (x1, y1) with side
length of d = 4r .

2. Find the rough spot center location.
In the computational domain defined above, we use
the centroid method and get the rough spot center
(xmeasure, ymeasure).

3. Obtain the precision spot center.
Because the domain center should be an integer, we
define (x3, y3), which is the nearest integer point of
(xmeasure, ymeasure), as the new domain center. Then, we
use the centroid method again and achieve a more accurate
center position.

Because we can hardly know the real spot center position,
the fixed measurement offset can only be estimated by the
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Fig. 1. Condition with the maximum value of1x0. The maximum
offset between xmeasure and x3 is 0.5 pixel. The maximum offset between
xmeasure and xreal is 0.17 pixel, where xmeasure denotes the real center
position.

maximum possible value of 1x0. The reason why we use
the centroid method twice is that 1x0 has the potential to
become smaller at the second time. Then we theoretically
verify the feasibility of the method with the real parameters
in the Taiji program. The diameter of the laser spot is set to
about 7 pixels with the help of the lens system. As a result, the
pixel number of the computational domain is approximately
n = 15× 15 pixels. The property of noise electrons of the
SH640 camera is µ= 1.5× 105e−, σ = 4.5× 103e−@25◦C.
In part 1, because of the quantization error, the fluctuation of
noise electrons, and the influence of diffraction, (x1, y1) may
be near but deviate from the real spot center. As the intensity
distribution subjects to Fraunhofer diffraction distribution,
the intensity changes a lot around (x1, y1). On the other hand,
within the pixels around the center, the number of photoelec-
trons is far larger than the number of noise electrons. Therefore,
the real center position can only exist between the two pixels
adjacent to the pixel with the maximum gray value. The maxi-
mum possible value of1x0 is two pixels. For a 100 pW receiving

laser, we can get 1≤ 0.164 pixel,
√
1x 2 ≈ 0.0016 pixel. The

precision of center positioning can be estimated by the sum of

1 and
√
1x 2. Then, the offset between xmeasure and the real

position is smaller than 0.17 pixel. Because the redivided area
center x3 is an integer, as shown in Fig. 1, the maximum value
of1x0 reduces to 0.67 pixel in part 3. As a result, the maximum
value of 1 reduces to 0.055 pixel. Therefore, the theoretical
precision of the improved centroid method can be estimated

as 1+
√
1x ′2 ≈ 0.057 pixel. As the Taiji program calls for

0.1 pixel positioning precision, we believe our method has the
potential to fulfill the requirement. Although we can repeat
step 3 and finally make 1x0 approximately equal to 0.5 pixel,
it will not have a great influence on the precision. In the next
section, we will present an experiment to prove the rationality
and feasibility of the method.

3. EXPERIMENTAL RESULTS

The experimental system is shown in Fig. 2. It includes a
1064 nm Nd:YAG laser with an output of about 8 mW, an
attenuation system, lenses, and a TEKWIN SH640 camera.

Fig. 2. Schematic of the experimental system.

Fig. 3. (a) Laser spot image without lens group. (b) Laser spot image
with lens group.

The lens group can greatly reduce the spot size and the influ-
ence of the laser jitter. The attenuation system consists of three
neutral density attenuators whose maximum attenuation rate is
1000 times. Therefore, we can obtain a laser spot of 100 pW on
the CCD surface. Figures 3(a) and 3(b) are the collected images
without and with the lens group, respectively, for a 100 pW
input laser. The diameter of the laser spot in the Fig. 2(b) is
about seven pixels.

To verify the feasibility of our improved centroid method, we

have to estimate the value of1 and
√
1x ′2, respectively.

A. Verify the Validity of the Expression of the Fixed
Measurement Offset

Because the real spot center can hardly be known, we cannot
obtain the accurate value of1 directly. However, we can meas-
ure the variation of1 from experiments. Then we can verify the
validity of the formula in Eq. (6) by the relationship between
1 and1x0, n with the experimental results.

1. The relationship between1 and1x0

From Eq. (6) we know that the value of 1 is directly pro-
portional to 1x0. The theoretical relationship between
them is shown in Fig. 4(a). As a result, the variation of 1
is also proportional to the variation of 1x0. In Fig. 2(b),
we suppose that the pixel with the maximum gray value
(xmax, ymax) is the reference position and define it as the
center of the computational domain. To include nearly
all the pixels with photoelectrons, the side length of the
domain should be large enough. Here, it is set to 200 pixels.
We use the centroid method and get the reference spot
center (xref, y ref). To simplify the analysis, only the center
in the x-direction is changed because changes in the y direc-
tion will achieve the same conclusion. Then we just change
the center of the domain to (xi0, y ref) and recalculate the
spot center as (X i , Yi ). The change of1 can be denoted as
d1(i)= X i − xref, and the change of1x0 can be denoted
as d1x0(i)= xi0 − xmax. The relationship between d1x0

and d1 is shown in Fig. 4(b). The results verify that the
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Fig. 4. (a) Theoretical relationship between 1x0 and 1.
(b) Experimental relationship between d1x0 and d1, where d1
and d1x0 denotes the variation of1 and1x0, respectively.

Fig. 5. (a) Theoretical relationship between n and 1.
(b) Experimental relationship between n and1n .

fixed measurement error is directly proportional to the
offset of the domain center.

2. The relationship between1 and n

Then, we try to find the relationship between 1 and n.
Theoretically, the relationship curve is shown in Fig. 5(a) with
µ= 1.5× 10(5) and 1x0 = 2 pixel. When n is small, 1 is
approximately proportional to n. And when n is big enough,1
approaches a constant. Similarly, we can verify this conclusion
with the variation of 1. To include as many photoelectrons
as possible, we also suppose that the pixel with the maximum
gray value (xmax, ymax) is the center of the computational
domain in the Fig. 2(b). First, we use the centroid method with
n = 15× 15 pixel and get the reference spot center (x ′ref, y ′ref).
We gradually increase the side length of the domain

√
n(i) and

calculate the center position (X ′i , Y ′i ). 1n(i) is defined as the
difference between X ′i and x ′ref. The difference between 1n(i)
and the real fixed measurement value 1(i) is a constant value.
Then the relationship between1n and n is shown in Fig. 5(b).
The difference between Figs. 5(a) and 5(b) is mainly due to
different value of µ and 1x0 in the simulation and the experi-
ment as well as the above constant value. As the accurate value
of µ and1x0 is unknown in experiment, only the trend of the
relationship curve is important. The two curves in Fig. 5 have
the same trend. Therefore, the relationship curve is consistent
with the theoretical conclusion.

Therefore, the validity of the formula in Eq. (6) is verified by
the experiments. The results in the last section can be directly
used. For a 100 pW laser, the maximum value of the fixed mea-
surement offset can be estimated as 1100 pW,max = 0.055 pixel
with the help of our improved centroid method.

Fig. 6. Calculation area of the improved centroid method.

Fig. 7. Calculation area of the improved centroid method.

B. Verify the Precision of the Improved Centroid
Method

As concluded above, the positioning precision is influenced
not only by the fixed measurement offset but also the location
fluctuation. Therefore, we also need to estimate the fluc-
tuation intensity. We capture 500 frames of sequential images
with the laser intensity of 500 pW, 200 pW, and 100 pW,
respectively. Because they will come to the same conclusion,
only the experiment with the 100 pW receiving light is pre-
sented. Figure 2(b) is one of the images. The laser spot center
location (ximage,i , y image,i ) can be obtained for the image
i(i = 1, 2, · · · , 500) with the help of the traditional method
and our improved centroid method, respectively. Similarly,
only the center in the x direction is considered. The results are
shown in Figs. 6 and 7. The average value of the center position
is expressed as

x =
ximage,1 + ximage,2 + · · · + ximage,500

500
. (20)

Therefore, the average values of the center position calculated
by the two positioning methods are x traditional = 326.939 pixel
and x improved = 121.825 pixel, respectively. The two values are
quite different from each other due to the influence of the fixed
measurement offset.

Then, the fluctuation intensity can be estimated by the root
mean square value of the 500 experiment results and expressed as

1xr ms =

√
1

500
[(ximage,1 − x )2 + · · · + (ximage,500 − x )2].

(21)
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In addition to the experiment results above, the location
fluctuation of the two methods is1xr ms ,traditional = 0.0437 pixel
and 1xr ms ,improved = 0.0032 pixel, respectively. It can
be seen that the improved centroid method also can
reduce the location fluctuation, which coincides with the
theoretical analysis. Finally, the positioning precision is
1100 pW,max +1xr ms ,improved = 0.0582 pixel. The precision
is less than 0.1 pixel. The small offset between the experimental
result and the theoretical result is mainly generated from stray
light and an approximation error. Therefore, the feasibility of
the improved centroid method under weak light conditions is
verified by the experiment.

4. CONCLUSION

Because the acquisition phase of the Taiji program requires high
positioning precision under weak light conditions in a short
time, traditional positioning methods cannot be directly used.
In this paper, we present an improved centroid method and
verify its feasibility under the practical work conditions of the
Taiji. We first analyze the factors that influence the precision
of the traditional centroid method. Based on the theoretical
analysis, we conclude that the positioning precision is affected
not only by the fixed measurement offset but also the position
fluctuation. Both increase with the pixel number involved in the
calculation. Therefore, the core concept of our improved cen-
troid method is dividing a small computational domain around
the real center position. Then, we do an experiment to verify
the feasibility of the method. For a 100 pW receiving laser, the
positioning precision reaches 0.0582 pixel with the help of the
improved centroid method. The results fulfill the requirement
of the Taiji and verify the feasibility of the method. This method
also has the potential to be used in other programs, which call for
high positioning precision under weak light conditions.
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