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When a partially filled glass is gently tilted, the liquid can go over its brim without
spilling. This happens because of the surface tension and has a direct indication when
studying the emptying of a partially filled capillary by modifying the present mathematical
criteria of critical emptying. Here, we present an experimental study of the edge effect
on emptying a finite-lengthed horizontal capillary, a condition that has never been studied
before. We observed that due to the edge meniscus from the finite length of the capillary,
critical emptying conditions are significantly altered. Furthermore, by optimizing the edge
parameters and the brim wetting effect, water can hold onto much wider capillary brims.
We performed numerical simulations using realistic geometries and found excellent agree-
ments with our experimental results. Our results generalize the capillary emptying criterion
so that they can be used in realistic geometries and provide guidance in understanding a
wide range of phenomena in microfluidics and optofluidics.
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Introduction. It is a common experience that slowly tilting a partially filled glass to the horizontal
makes the water spill out, and the glass inevitably empties. If we observe it carefully before spilling,
the water forms a meniscus at the brim of the glass which prevents water from draining to some
extent. In contrast, if the container or tube is narrow enough, such as a drinking straw, the liquid
will remain in the container even in the horizontal or inverted position. In his pioneering work
[1–3], Finn proposed existence/nonexistence theory for capillary surfaces and obtained specific
occlusion criteria for a conducting fluid tube of a given cross section [2]. In Ref. [4], the authors
presented an experimental validation of the mathematical criterion for the emptying of a wide
rectangular capillary (slit). Recently, this criterion has been extended [5] for capillaries having
circular, elliptical, and triangular cross sections.

However, all the cases of capillary emptying presented previously [1–6] consider the length of the
capillary (H) to be infinitely long. Hence, the crucial effects of contact line pinning that appeared at
the edge of the capillary were disregarded. The wetting [7–10] and spreading [8] processes possess
tremendous engineering applications [11–13] and, in spite of it playing a significant role in emptying
criteria, the edge effect has received very little attention. The domain of the effect of contact line
pinning at the edge of the capillary (edge meniscus) in emptying criteria or (critical width of the
capillary, Lc) remains predominantly unexplored. This leads us to investigate the edge effect in the
emptying criteria.
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FIG. 1. (a) The schematic illustration of the liquid meniscus at the edge of the rectangular capillary. [(b),
(c)] Picture of the rectangular capillaries placed on a rotation stage; [(c), (d)] closer picture of the capillary near
the edge, while the capillary approaches empty (α = 0◦); and [(e), (f)] Surface Evolver (SE) simulated images
for triangular and circular capillaries.

The main focus in this Rapid Communication is to determine an emptying criterion by including
the geometrical edge effect in a finite-lengthed capillary, (H ). We showed that due to the edge
meniscus in the finite length of the horizontal capillary, the critical emptying criterion is significantly
altered, making the water to hold on the edge even in a wider capillary. We also investigated
rectangular and triangular capillaries with sharp side edges and observed that due to the edge
meniscus, the capillaries can remain filled, which is contrary to the prior predictions that state
a capillary will empty at critical value of the opening angle, irrespective of their cross sections.
Furthermore, we also investigated the effect of varying in Lc by asymmetrical wetting of the
capillary surface through surface texturing or polishing. Interestingly, we observed that structuring
modified the contact angle and led to the capillary emptying in a wider range of Lc. Our simulation
supports experimental results, and its findings can provide guidance in understanding a wide range
of phenomena in microfluidics [13–15] and optofluidics.

Experiments and numerical simulation results. A schematic diagram of our setup is shown
in Fig. 1. First, we took a rectangular capillary with a dimension of L × H × W , having aspect
ratio Ap = W/L. The capillary was placed on a vibration-free platform in a laboratory-controlled
temperature of T = 20◦ ± 1◦. The capillary was initially held vertically before being turned
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horizontally. Rotation of the capillary was performed by a rotation stage having ± 0.1◦ precision.
It is clear that for rotation angle (α) > 0, the meniscus adopts a certain shape which minimizes
free energy (1). However, for the horizontal capillary α = 0, the existence of a meniscus is only
guaranteed for sufficiently narrow capillaries. A fast video camera, operating at the speed of 25 to
200 frames/s, was used to record the development of edge meniscus. From the recorded video, we
extracted the (i) θ0, the equilibrium advancing contact angle before liquid touches the edges, and
(ii) θc, the value of θ at the instant the tongue crosses the edge. In this experiment, monitoring
the rate of tongue growth with a radial contact line velocity (0.05 cm/min) was necessary to
avoid complications from viscous effects. This was confirmed by stopping the rotation of capillary,
whereupon θ0 remained almost unchanged. The measurements of θc, the mean values, were obtained
from a tongue profile, photographed approximately at the moment when the tongue was about to
cross the edge. The measurements were repeated for several other tongues with the same system.

To validate our experimental data, we first revised the previous [4] emptying line model by
including the edge effect. Using a large aspect ratio [Ap � 1, Figs. 1(b) and 1(c)] capillary or
making a round corner in a rectangular capillary, one can reduce the sidewall and side-edge effect
[3]. The shape of the meniscus for the tilted capillary can be found by solving the macroscopic
free energy per length W [4]: F [�] = σA + g

�
ρG + �

pV + σS. Here, σ is the liquid-gas surface
tension, g

�
ρ is the liquid-gas weight density difference, and

�
p is a Lagrange multiplier. The

functional dependence enters through the liquid-gas inter-facial area A, volume V , gravitational
contribution G, and S = −[cosθ0 �(0) + cosθL �(L)], where θ0 and θL are the equilibrium contact
angle at the upper and lower surfaces of the capillary. For a horizontal capillary (α = 0), the
minimization of free energy equation leads to

1 + �′(z)

1 + �′(z)2
= z2

2a2
+

�
p

σ
z + (1 − cosθ0), (1)

where
�

p = σ (cosθ0 + cosθL )/L − (g
�

ρL)/2. The critical emptying condition can be given by
Eq. (2) [4]:

Lc

a
=

√
2(2 − cos θ0 + cos θL ) + 4

√
(1 − cos θ0)(1 + cos θL ), (2)

where a(= √
σ/ρg) is the capillary length. For symmetric capillary θ0 = θL = θ , Lc =

2a
√

1 + sinθ . It has symmetry and a maximum value of 2
√

2a at π/2. The maximum value of Lc(θ )
decides the emptying line that separates the filled region (where a meniscus exists) from the empty
region (where no meniscus exists). The emptying can be quantified by determining the equilibrium
separation between the front and rear parts of the meniscus

�
� = �(z) − �(0); at L = Lc, the tongue

height is zLc = √
2(1 − cosθ0) and

�
� = ∞. The growth of the tongue in symmetric capillary varies

as
�

� � a ln(1/ε), where ε = (Lc − L)/Lc. All the previous theoretical and experimental results
considered the H infinitely large to avoid the edge effect [1–6].

If we consider the length of the capillary to be sufficiently small, the continuous tilting of the
capillary makes the three-phase contact line meet a sharp edge. Equilibrium condition or pinning
regime at a sharp edge is governed by the Gibbs inequality [16–20] condition, θ0 � θ � (180◦ −
φ) + θ0, where θ is contact angle at the edge of the capillary and φ is the angle subtended by
the two surfaces forming the capillary edge [Fig. 2(a)]. One of the objectives of this study is to
use this inequality in advancing the contact line. By tilting the capillary gently, the liquid layer is
forced quasistatically to slowly glide until the triple line touches the edge. We defined θc as the
critical (upper) value of θ to the moment when the contact line just cross the edge and it becomes
θc = (180◦ − φ) + θ0 [16–23]. In terms of the Lc (or the Bond number), Eq. (2) can be rewritten as

Lc

a
= √

Bo =
√

2[
√

(1 − cosθc) +
√

(1 + cosθL )]. (3)

As the gravity effect becomes dominant, the equilibrium shape of the lower meniscus satisfying the
Young-Laplace equation may cease to exist and the liquid falls off before θc reaches 180◦ [17,21].
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FIG. 2. (a) Schematic of equilibrium of a liquid meniscus at the sharp edge of the capillary. (b) Emptying
line for rectangular capillary as a function of contact angle with (red line) and without (blue line) considering
the edge effect. Triangles show the experimental data points and size represents an error bar. Blue and red lines
are theoretical plots of Eq. (3). SE-1 and SE-2 are simulated meniscus shapes from SE.

Two cases arise depending on the angle between φ and θ0. (i) When, θ0 � φ(= 90◦) such that θc �
180◦, one can see that, when contact angle (θ0) varies from 0 to 90◦, the critical angle (θc) varies
from 90 to 180◦. We examined whether a small tilt of the capillary θc induced a contact line beyond
the edge. Figure 2(b) shows an emptying line Lc(θ0) versus θ0 from Eq. (3) and experimental data
points. We performed an experiment with water in three different capillaries, having widths (L) of
4.5, 6, and 9 mm of two different materials and the contact angles were θ0 = θL = (50◦, 120◦) ± 2◦
respectively.

(ii) When, θ0 � φ(= 90◦) and the gravity effect is appreciable, at θ = 180◦ and at finite V ,
the meniscus will eventually tumble over the edge. This is similar to the stability of axisymmetric
sessile drops [17], where it has been shown that when the contact line is held at a fixed position,
the meniscus will be stable providing θ � 180◦. It means that for θ0 � 90◦, critical angle (θc)
for depinning is fixed at 180◦. Figure 2(b) shows the plot of Eq. (3) with the experimental data
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point. The maximum value of Lc = 2
√

2 + √
2 a is larger as compared to the previous value

of Lc.
We also modeled the capillary emptying with the use of the SE to solve for critical contact angles

as well as the shape and horizontal extent of interface (
�

�) for a given capillary dimension. SE
is a geometric minimization code where surfaces and curves are automatically adjusted to locate a
minimum of a prescribed functional [6]. We also confirmed the dynamics of meniscus using COMSOL

MULTIPHYSICS. The laminar two-phase flow phase-field method was used to solve the Navier-Stokes
equation for incompressible flow.

Emptying criteria in circular and triangular capillaries. We also investigated a sharp edge
effect in a circular tube and triangular capillary. In Refs. [1–4], authors presented an occlusion
and emptying criterion for a capillary with different cross sections. They assumed the H and V
were effectively infinite to prevent the unwanted influence of finite-size effects in their results. In
general, the presence of gravity prevents any analytical solution, and hence numerical methods and
SE modeling were adopted [2,5,6].

Considering the edge effect, we performed SE simulation to find the emptying line for a circular
tube. To do so, for a given R, we tried to get contact angle θc by varying the θ0 until the contact line
depinned. After getting the SE data for Rc and θ0, we fitted these data points with the expression, as
in the case of rectangular capillary, Rc

a =
√

A(A − cos θc + cos θR) + B
√

(1 − cos θ0)(1 + cos θR),
and the fitting parameters are A = 1 and B = 2. Hence, the expression of Rc becomes

Rc

a
=

√
[
√

1 − cos θc +
√

cos(θR) + 1]2 − 1 (4)

where θc and θR are the contact angles at the edge and remaining contact line attached to the capillary
tube.

One can see that critical empty line is modified and has the maximum value (
√

3 + 2
√

2)a,
which is larger than without the sharp edge effect [see Fig. 3(a)]. Furthermore, for infinitely long
tube, θ0 = θR = θ , Eq. (4) gives the critical radius (Rc) values of a and

√
3 a for θ = 0 and π/2

respectively, which is also consistent with previous result [5]. We performed an experiment to find
the (Rc) for three different capillary tubes of R = 3, 5, and 6.5 mm and the respective contact
angle. These experimental results [Fig. 3(a)] are also consistent with the analytic Eq. (3) and SE
simulation.

For triangular capillary, it was predicted [5] that the capillary with an opening angle β will
empty for θ < (180◦ − β )/2 and for θ > (180◦ + β )/2, no matter how small the cross section is.
We performed experiments with triangular capillaries having θ = 45, 65, and 85◦ and β = 60◦ ±
2◦ [see Fig. 3(b)]. Remarkably, we found that due to the edge meniscus and rounded corner, the
capillary does not empty even though θ < (180◦ − β )/2 is satisfied for 45◦. So, in practice it is
more realistic to consider an edge as a continuous surface without sharp edge; i.e., it is rounded with
radius r0 [3]. We measured r0 = 4.2 mm for our triangular capillary. Using same procedure as for
the circular capillary, we performed SE simulation but we were unable to find out any closed-form
analytic equation that can fit with our SE data, as Eq. (4) for circular capillary. The emptying line
of a circular and triangular capillaries are included for comparison in Fig. 4 with a dotted line.

Emptying criterion in asymmetrical capillary surface. We showed that the edge effect modified
the emptying criteria even in a capillary with the same initial contact angle, θ0 = θL, owing to the
sharp edge induced asymmetry in these contact angles at the edge of the capillary. Several strategies
have been used to make hydrophilic and superhydrophobic surfaces [15,23–29]. We consider the
hydrophilic and superhydrophobic surfaces to see the effect of contact angle on the critical length Lc.
From Fig. 4(c), we can see that the plot of Eq. (3) predicts the following for two different emptying
criteria: (a) With θL � 0 hydrophilic upper surface and θ0 � 180◦ hydrophobic lower surface, we
can achieve maximum value of Lc = 4 a. (b) The microscopic value of Łc = √

2a can be achieved
at θL = 180◦ for superhydrophobic upper surface and θ0 = 0◦ hydrophilic lower surface. Figure 4
shows the experimental data with numerical and analytical fit [Eq. (3)]. We made the capillary
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FIG. 3. (a) Equilibrium of a liquid meniscus at the sharp edge of the capillary. (b) Emptying line for
capillary tube as a function of θ0 with (blue line) and without (red line) considering the edge effect. Triangles
represent the experimental data points, and their sizes represent error bars. Blue and red lines plot Eq. (4). SE
1–4 are simulated meniscus shapes from SE.

surfaces superhydrophobic by coating wax and micro- and nanostructures using chemical etching.
The effect of the asymmetrical wetting provides a wide range of critical widths for emptying criteria,
i.e.,

√
2a � Lc � 4a.

Discussion. The three basic characteristics of the edge meniscus offer potential for diverse
applications, First, enhancing the value of the emptying line is useful to sustain liquid in a wider
tube. It can also be beneficial in understanding the emptying criteria in other complex-shaped
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FIG. 4. [(a), (b)] The schematic of hydrophilic and hydrophobic surfaces in asymmetric capillaries. (c) Ex-
perimental data with SE simulation; lines represent the Eq. (3) fit. SE-1 and SE-2 are simulated meniscus
shapes from SE. Blue line represents the plot of tEq. (3), red line serves as reference for symmetrical capillary,
and brown line triangles represent the experimental data points, where their sizes represent error bars.

geometries and localized pinning of contact line by hydrophobic defects etc. Second, in microfluidic
[13–15,30,31] devices, the dimension is small and therefore in this case the edge effect is quite
vital. In these devices, rapid and efficient handling of a relatively small amount of liquids is possible
which is a substantial requirement for molecular biology [12]. Since the critical width (Lc) is directly
dependent upon the critical angle, it can be controlled in a reversible manner by altering the critical
angle or its wettability [23,24,29,30,32]. Grooved surface topograhy (micro- and nanolithography)
can be used for this purpose and various applications [15,33–35]. Electrowetting has also been
demonstrated explicitly for the manipulation of contact angle [13]. Last, we showed the effect
of rounding the capillary corner on the value of the critical contact angle (emptying line) for the
rectangular and triangular capillaries. It is of great significance to know this effect in practice,
because it is not easy to fabricate a capillary with a perfectly sharp corner [3]. Hence, one can
find the desired Lc by choosing the roundness of the capillary r0.

In summary, by considering the edge effect, we found emptying criteria that are useful in
microfluidic devices [14]. We have demonstrated that we just need to modify the surface properties
of the capillary near the edge and the depinning can be triggered by the local behavior at specific
features [33–37]. This approach could help the understanding of open problems related to wetting-
dewetting transitions, and more broadly the dynamics of free interfaces gliding over solid surfaces,
e.g., occlusion [1–3,6], and emptying criteria in other complex geometries.
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