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Abstract: Sensor differential signals are widely used in many systems. The tracking differentiator
(TD) is an effective method to obtain signal differentials. Differential calculation is noise-sensitive.
There is the characteristics of low-pass filter (LPF) in the TD to suppress the noise, but phase lag is
introduced. For LPF, fixed filtering parameters cannot achieve both noise suppression and phase
compensation lag compensation. We propose a fuzzy self-tuning tracking differentiator (FSTD)
capable of adaptively adjusting parameters, which uses the frequency information of the signal to
achieve a trade-off between the phase lag and noise suppression capabilities. Based on the frequency
information, the parameters of TD are self-tuning by a fuzzy method, which makes self-tuning
designs more flexible. Simulations and experiments using motion measurement sensors show that
the proposed method has good filtering performance for low-frequency signals and improves tracking
ability for high-frequency signals compared to fixed-parameter differentiator.

Keywords: tracking differentiator; sensor signal processing; fuzzy Self-tuning; motion measurement
sensors

1. Introduction

Signal differential estimation is essential for wide-bandwidth high-accuracy servo controls [1].
High-precision measurement of position, velocity and acceleration signals is a necessary feedback
information for various control strategies, including classical PID control [2], sliding mode control [3],
and so on. However, due to the limitation of measurement mechanism, some motion measurement
sensors, such as velocity sensors and acceleration sensors, have certain measurement noise which
limits the accuracy of the measurement. Besides, additional motion measurement sensors are always
limited by system installation space and cost [4,5].

In practical engineering, differential signal is extracted from the given input to realize the
design of a high order controller. Since pure differential operation is physically impossible,
various approximation methods are applied. Classical difference methods obtain the differential
signal with the small sampling time. But the signal noise in the original signal will be greatly amplified.

Many researchers have proposed new designs of tracking differentiators to realize signal
differential estimations [6,7]. However, for complex signals, fixed parameters in linear tracking
differentiator will not only slow down the response speed of the control system, and may even cause
system oscillation [8,9].

In recent years, due to its robustness to signal noise and ease of implementation, nonlinear tracking
differentiators (NTD) have attracted extensive attention for related researchers. A nonlinear tracking
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differentiator based on time-optimal control is proposed in [10]. In [11], a finite impulse response filter
that discretizes the fractional-order differentiator over functions in Paley-Wiener space is constructed.
A high-gain nonlinear tracking differentiator is presented and its weak convergence based on finite-time
stable systems is proved [12], but the gains could not be infinite in practice. To cope with the
nonlinearities caused by the noise, an improved nonlinear tracking differentiator with hyperbolic
tangent function is presented [13]. Nevertheless, a chattering phenomenon occurs in the derivative
evaluation due to the existence of discontinuous functions. A high-order continuous nonlinear
differentiator with lead compensation is presented in [14]. The high-order nonlinear differentiator
obtains the high-order derivatives of a signal, but the chattering phenomenon is reduced. In [15], a new
quick-response sliding mode tracking differentiator (new TD) for feedback control of mechatronic
systems. It improves response speed and chatter suppression. In [16], a feedforward-constructing
NTD was first proposed. It introduces the idea of feedforward in the signal processing algorithm,
which provides a new degree of freedom to design. This method makes it possible to reduce the phase
lag without changing the filter characteristics. However, in this method, the gain is fixed, which means
it is still difficult to obtain optimal performance with wide frequency range of the input signal.

However, some control systems, such as high-speed moving robot systems with a faster dynamic
process or servo systems with higher requirements on accuracy and control bandwidth, are more
sensitive to the anti-noise ability of differential signals on different frequency and signal phase lag.
To further improve the system control performance, it is necessary to study a differential estimation
method with better signal adaptability.

Due to above issues, some tracking differentiators with adaptive properties were proposed.
A self-adaptive second-order tracking differentiator which can automatically adjust its tracking rate is
proposed by [17], where an approximate sigmoid function is designed as the rate switching function.
However, due to the change of switching function, the local signal quality cannot be guaranteed.
A fourth-order tracking differentiator is introduced to adaptively estimate system states in [18]. In [19],
a fuzzy variable parameter is proposed to adjust the parameter of tracking differentiator. In [20],
the impact of the algorithm parameter setting on filtering is analyzed in the frequency domain.
However, these design processes are too complicated for practical engineering implementations.

Although the NTDs presents excellent tracking performance and anti-disturbance capability,
there is always a contradiction between noise resistance for low-frequency signal and tracking
performance for high-frequency signals, no matter how the nonlinear function is designed. Due to this
reason, it is difficult to guarantee the accuracy of differential estimates in a relatively wide-bandwidth,
which leads to the degradation of practical effect of the NTDs, especially in a high-accuracy servo
control system.

To solve above problems, it is necessary to design a simple, flexible, and practical method.
The method should be able to automatically adjust the parameters according to the input signal
frequency. At the same time, switching chattering caused by parameter changes should be suppressed.

In this paper, a fuzzy self-tuning tracking differentiator (FSTD) is proposed for motion
measurement sensors, which is able to self-tune the LPF bandwidth of tracking differentiator based
on fuzzy inference according to the frequency of the input signal. During differential estimation,
the proposed FSTD does not only improve the noise resistance of the low-frequency signal, but also
improves signal tracking performance of the high-frequency signal. In brief, the proposed FSTD can
effectively conduct differential estimation in a wider bandwidth, and a fuzzy self-tuning design is
given. Moreover, we experimentally investigate practical applications of a high-accuracy servo control
system, and the results verify the validity of the proposal.

This paper is organized as follows: we briefly discuss problem formulation in Section 2;
Detailed design of the proposed fuzzy self-tuning tracking differentiator is introduced in Section 3;
Numerical simulation results are given in Section 4; Practical experiments are performed to verify
the effectiveness of the proposed approach in a high-accuracy servo control system in Section 5;
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Results and future perspectives of our work are discussed in Section 6; Finally, the conclusions are
presented in Section 7.

2. Problem Formulation

Difference calculation is expressed as

y(t) =
1
h
(r0(t)− r0(t− h)) ≈ ṙ0(t), (1)

where r0(t) and y(t) refer to the original input signal and the output differential signal, respectively,
with h being the time constant. Ideally, the original input signal is noise-free, and hence the
estimation accuracy of the tracking differentiator depends on time constant h. The smaller h is,
the higher the accuracy of the tracking differentiator would be. However, due to the limitation of the
measurement mechanism, high-frequency noises are inevitably mixed into the original sensor signal
r0(t). The differentiator with random noise n(t) is expressed as Equation (2), with r(t) = r0(t) + n(t).

y(t) =
1
h
(r(t)− r(t− h)) ≈ ṙ0(t) +

1
h
(n(t)− n(t− h)). (2)

According to Equation (2), the smaller the time constant is, the more serious the signal noise is
amplified. When n(t) ≡ 0, Equation (2) is simplified as Equation (1). Let Y(s), R(s) be the frequency
representations of y(t), r(t) in the frequency domain, the differential process is rewritten as

Y(s) = sR(s). (3)

In order to improve the anti-noise ability of differential calculation, the differential signal is
obtained by using pseudo-differential as Equation (4). LPF is introduced to reduce the influence of
noise. For example, the difference module in Simulink uses this method.

Y(s) =
gs

s + g
R(s), (4)

where s is the Laplace operator, g
s+g is a typical first-order LPF, and g is the filter parameter and its

value is equal to the cutoff frequency.
Further, it is deduced from Equation (4) as Equation (5), where the differential process is viewed

as signal Y(s)
s tracks the input signal R(s) under a proportional control. Therefore, this type of

differentiator is called a tracking differentiator.

Y(s) =
gs

s + g
R(s)

= g(1− g
s + g

)
Y(s)

s

= g(R(s)− Y(s)
s

).

(5)

For the differential process, with the LPF, in the low-frequency band, the amplitude gain of the
LPF is approximately 1, and the anti-noise characteristic of the integral operation is used to obtain an
ideal differential value, and there is phase lag at this time.

Obviously, as g increases, the estimated value is closer to the true value of noiseless, but as the gain
of g increases, the gain of noise increases, and the noise reduction capability of the system decreases.
As a result, g value option needs to balance between noise reduction and true value approximation.

Most researchers focus on how to solve the noise problems, and many algorithms have been
proposed. Intuitively, the differentiator structure is split into a combination of differentiation and
filtering based on Equation (4). Alternative differentiators are seen as variants of this combination.
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Whether linear or nonlinear, there are parameters similar to g. Researchers have been trying to improve
filtering efficiency to reduce the error. Regardless of the filter structure, caused by which the phase lag
cannot be ignored. It is increasingly difficult to improve filtering performance based on fixed-parameter
design. It thus motivates new ideas on how to make full use of currently existing filters to effectively
reduce differentiator design difficulties.

According to above analysis, as the frequency of the input signal increases, the phase lag of the
output differential signal also increases. In order to realize the accurate measurement of the input
signal in a wide dynamic range, it needs to tune the value of g based on the frequency characteristics
of the input signal.

3. Design of Fuzzy Self-Tuning Tracking Differentiator

As the conclusions analyzed in Section 2, the smaller the value of g, the better the noise reduction
performance is, and the larger the phase lag is; The larger the value of g, the worse the noise reduction
performance is, and the smaller the phase lag is.

Therefore, the basic idea of adaptively adjusting the g value is obtained: Smaller g values are
preferable for low-frequency signals, whereas larger g values are preferable for high-frequency signals.
This relationship is simply described in the form of Equation (6). Value g is determined by the signal
frequency characteristics and noise. If we describe this relationship in an approximate way, then an
adaptation is achieved for g. This relationship is either linear or non-linear, depending on the need of
system design. In this paper, we describe it using a fuzzy logic system (FLS).

g = F (r, n). (6)

The flow chart of FSTD is shown in Figure 1. In this section, we will introduce the design of FSTD
step by step.

Figure 1. Flow chart of fuzzy self-tuning tracking differentiator.
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3.1. Frequency Barycenter based Signal Frequency Analysis

For general input signals, the information on signals and noise is unknown. As can be seen from
above, g is related to input signal frequency, so it is necessary to preprocess the input signal to obtain
its frequency. For the data obtained by the sensors, it is very difficult to describe all the characteristics
in real-time, so the signal information needs to be simplified.

In this paper, we use the frequency barycenter to quantify the frequency information of the
input signal. After removing the DC component of the signal, the barycenter of the frequency reflects
the center of the signal frequency distribution. For sinusoidal signals, the frequency position is
perfectly determined. The calculation of the barycenter is also simple. Experiments show that real-time
processing is achieved through a microprocessor, which is practical for experiments. The definition of
the frequency barycenter is shown in Equation (7), where p( fn) is the frequency spectrum amplitude,
fn is frequency, and Ψ is the frequency barycenter.

Ψ =

∫
p( fn) fnd fn∫
p( fn)d fn

. (7)

For practical discrete systems, data is processed using fast Fourier transform (FFT). Equation (7)
is transformed into Equation (8), where M is the number of FFT points, ∆ fn is the frequency resolution
of the FFT, and P(·) is the result of FFT.

Ψ =
∑M/2

i=1 P(∆ fn · i)∆ fn · i
∑M/2

i=1 P(∆ fn · i)
. (8)

Figure 2a shows the signal of Equation (9), where f1 = 10Hz, f2 = 20Hz, f3 = 50Hz, and n is a
gaussian noise with a mean of 0 and a standard deviation of 0.001. Figure 2b shows the frequency
barycenter analysis result.

rin(t) = sin(2π f1t) + 2sin(2π f2t) + 3sin(2π f3t) + n(t). (9)
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Figure 2. Frequency barycenter calculation: (a) Input signal; (b) Frequency barycenter analysis result.

By using the frequency barycenter for quantization, the signal characteristics can be described by
one variable, so Equation (6) becomes Equation (10).

g = F (Ψ). (10)
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3.2. Design of Tracking Differentiator Filter Gain Based on Fuzzy Self-Tuning Method

3.2.1. Defining Linguistic Variables and Membership Function

The proposed FSTD consists of a number of input linguistic variables: the frequency barycenter of
the input signal Ψ and one output linguistic variable: the cutoff frequency of the LPF, i.e., g. The input
linguistic variable, the frequency barycenter Ψ of the signal, contains very low (VL), low (L), medium
(M), high (H), and very high (VH). Assuming the signal’s bandwidth is bounded, the upper frequency
bound is Fsmax. The input fuzzy set is [0, Fsmax]Hz. The output language variable, the cutoff frequency
g of the LPF, contains very small (VS), small (S), medium (M), large (L), very large (VL). The output of
the cutoff frequency g distribution is [0, K · Fsmax]rad/s, K > 1.

The range selection is usually based on known parameters of the system. For example, in control
systems, the bandwidth is used as the input range. To ensure that LPF is effective, K · Fsmax does
not exceed the sampling frequency of the discrete system. For more complex requirements, it is
recommended to flexibly configure based on the prior knowledge of the system.

The membership function (MF) is a triangle function. The input membership function (IMF)
is shown in Equation (11), and The output membership function (OMF) is shown in Equation (12).
The graphical representations of membership functions are shown in Figure 3.
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Figure 3. Input and output membership functions: (a) Function of the barycenter membership;
(b) Function of the cutoff frequency membership.

µ fi
(x) =


1

B fi
−A fi

(x− A fi
) x ∈ [A fi

, B fi
]

1− 1
C fi
−B fi

(x− B fi
) x ∈ [B fi

, C fi
)

0 otherwise

(11)

where µ fi
(x) is the output of the i-th IMF, x is the input of the IMF, and A fi

, B fi
, C fi

are the vertex
coordinates of the IMF, and 0 ≤ A fi

≤ B fi
≤ C fi

≤ Fsmax. Note that when A fi
= B fi

or B fi
= C fi

,
µ fi

(x) = 1.

µcj(y) =


1

Bcj−Acj
(y− Acj) y ∈ [Acj , Bcj ]

1− 1
Ccj−Bcj

(y− Bcj) y ∈ [Bcj , Ccj)

0 otherwise

(12)

where µci (y) is the output of the i-th OMF, y is the input of the OMF, and Acj , Bcj , Ccj are the vertex
coordinates of the OMF, and 0 ≤ Acj ≤ Bcj ≤ Ccj ≤ K · Fsmax. Note that when Acj = Bcj or Bcj = Ccj ,
µcj(y) = 1.
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3.2.2. Defining Fuzzy Rule Base

From the discussion above, we know the relationship between inputs and outputs of the FLS.
The knowledge base for the FLS is composed of a series of fuzzy IF-THEN inference rules of the form:

Ri: if x is fi, then y is ci, i = 1, 2, . . . , N.

where fi is the i-th input fuzzy set and ci is the i-th output fuzzy set, N is the number of fuzzy sets.
If N = 5, the IF-THEN inference rules are expressed as in Table 1.

Table 1. The fuzzy rule base.

Fuzzy Rules 1 2 3 4 5

(IF) The signal Barycenter Ψ VL L M H VH
(THEN) The cutoff frequency g VS S M L VL

3.2.3. Defining Inference and Defuzzification

The process of the fuzzy logic system is shown in Figure 4. (a) Inference: From the IMF, a truth
value µ fi

(x) is obtained. For each truth value, the OMF µci is scaled by multiplication, and µc′i
is

obtained. It is shown as Equation (13). (b) Aggregation: Combine the resulting curves using the SUM
operator. The curve sum operation is expressed as +̂. It is shown as Equation (14). Where µc′ is the
combined curve. (c) Defuzzification: find the center-of-weight of the area under the curve µc′ . It is
shown as Equation (15). The y0 position of this center is then the final output, where µc′(y) is the
functional expression of curve µc′ .

Figure 4. Process of the fuzzy logic system.

µc′i
= µ fi

(x) · µci (13)

µc′ = µc′1
+̂µc′2

+̂ . . . +̂µc′N
(14)

y0 =

∫ K·Fsmax
0 µc′(y) · ydy∫ K·Fsmax

0 µc′(y)dy
(15)

In the calculation process, the above curve calculation is simplified according to geometric
knowledge. The centroid of the combined shape is directly calculated. The centroid of the combined
shape is related to the centroid coordinates and area of sub-shapes. The centroid coordinates Gj and



Sensors 2020, 20, 948 8 of 14

area Sj(x) is obtained from Equations (16) and (17). The centroid of the combined shape is obtained
from Equation (18).

Gi =
Aci + Bci + Cci

3
, (16)

Si(x) =
µ fi

(x)(Cci − Aci )

2
, (17)

y0 =
∑N

i=1 Si(x) · Gi

∑N
i=1 Si(x)

. (18)

The form using frequency barycenter Ψ and output parameters of FLS g f can be expressed as

g f =
∑N

i=1 Si(Ψ) · Gi

∑N
i=1 Si(Ψ)

. (19)

3.3. Smooth Processing of Tracking Differentiator Filter Gain

Based on the proposed design method for tracking differentiator parameters in Section 3.2, the
g f in FSTD varies with the input signal frequency. Since the FFT requires piecewise calculations, the
numerical change of g f is discontinuous with time, leading to the chattering of a differential signal
at its switching point. We apply a Sigmoid function as Equation (20) to transform the discontinuous
switching into a continuous one.

g f c(t) =
A

1 + e−α(g f (t)−β)
, (20)

where g f c(t) refers to smoothed g f (t), A = g f (t)− g f (t− 1) is the output amplitude of the function, α

affects the width of the smooth zone, and β affects smooth zone center. In Figure 5, both smoothed
and unsmoothed tracking differentiator outputs in the simulation are given. We shortly conclude that
adding a smoothing link effectively avoid chattering caused by parameter switching.
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Figure 5. Smooth processing result.

The construction of the proposed fuzzy self-tuning tracking differentiator is demonstrated
in Equation (21), where yFATD is the differential output of rin after FATD and g f c is an adaptive
time-varying parameter.

yFATD =
g f c

s + g f c
rin ≈ ṙin. (21)



Sensors 2020, 20, 948 9 of 14

4. Numerical Simulation

To demonstrate the tracking performance of the proposed FSTD, a set of numerical simulations
are carried in MATLAB simulation, compared with the traditional tracking differentiator (TTD) as
Equation (4) with g = 300 rad/s. The simulation parameter settings are given in Table 2.

Table 2. Parameters in simulation.

Parameters Symbols Values

Sampling time st 0.001 s
FFT length M 512

g f c update time t f c 0.512 s
Smooth parameter α 100
Smooth parameter β t + 0.02

Signal frequency range Fsmax 20 Hz
LPF bandwidth K · Fsmax 800 rad/s

In order to verify the self-tuning characteristics of FSTD, we conduct a simulation to use a signal
in Equation (22) with changing frequency regarding time, as input to the tracking differentiator.
The signal waveform is shown in Figure 6a, and

rin(t) = cos(2π f (t) · t)− 1 + n(t); (22)

where f (t) = 4t, n(t) is white noise with mean of 0 and variance of 0.001. Differential results of TTD
and FSTD are shown in Figure 6b.

According to the simulation results, in the low-frequency region, the FSTD has better filtering
performance and the noise amplitude is significantly reduced; in the high-frequency region, the phase
lag of the FSTD is smaller. And due to the smoothing process, there is no significant chattering at the
switching point. Frequency of input signal was increased from 0 to 20 Hz in 5 s. Figure 7a shows
the frequency barycenter change curve calculated by FSTD. This result shows that in the case of a
large signal-to-noise ratio, the frequency barycenter is able to describe the frequency characteristics.
Figure 7b shows the smoothed g value of the FSTD. It demonstrates the expected adaptive effect
of FSTD.
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Figure 6. Numerical simulation results: (a) Input signal: x(t); (b)Output signal: y(t).
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Figure 7. Numerical simulation results: (a) Frequency barycenter identification result; (b) The g value
obtained by the proposed method.

5. Experiments and Application

Practical experiments were implemented on a wide-bandwidth high-accuracy servo control
system. We differentiated the signal output by the motion sensor and applied the differential result
to the control system. This experiment verifies the performance difference between TTD and FSTD.
Figure 8 shows a photograph of the experimental device. The experimental servo control system
was composed of a microprocessor system, a DC motor, an incremental optical-electrical encoder,
motor drivers, and etc. In the experiment, algorithms were realized by programming an ARM-based
(STM32F405) embedded system. All programs were scheduled in C language.

Figure 8. Experimental System.

Figure 9 shows the block diagram of the control system. The control system employs a
combination of PD controller, Disturbance observer (DOB), and a feedforward controller. The system
is a typical angular position control system. The motion measurement sensor obtains the angle value
response, and the control command is the angle value. There are many differentiating operations
existing in the system: PD controller needs angle value response and speed value for feedback
control; the DOB needs speed value to estimate disturbance [21]; the feedforward controller needs the
commanded speed and acceleration to compensate for the phase.
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Figure 9. Block diagram of control system.

Table 3 lists the experimental parameters. In addition to the tracking differentiator, the structure
and parameters of the system remain unchanged. The experiments compare the effects of tracking
differentiator changes on performance. Given input signals of sinusoid command of frequency 1 Hz
and 20 Hz to the system, we obtained experimental results as shown in Figure 10–13.

Table 3. Parameters in experiments.

Parameters Symbols Values

Inertias Jm 0.00173 kgm2

Damping Factor B 0.00000126 kg/s
Nominal inertias Jn 0.0017 kgm2

Motor thrust coefficient Kτ 5.76 Nm/A
Position control gain Kp 50 s−2

Velocity control gain Kv 0.12 s−1

DOB cutoff frequency gdob 400 rad/s
TTD bandwidth gTTD 400 rad/s

Signal frequency range Fsmax 20 Hz
LPF bandwidth range K · Fsmax 800 rad/s

Sampling time st 0.001 s
FFT length M 512

g f c update time t f c 0.512 s
Smooth parameter α 100
Smooth parameter β t + 0.02
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Figure 10. Response Comparison at 1 Hz: (a) Comparison of position response at 1 Hz; (b) Comparison
of velocity estimation at 1 Hz.
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Figure 11. Angular velocity error of TTD and fuzzy self-tuning tracking differentiator (FSTD) at 1 Hz.

Figure 10 shows the encoder output and a differential speed at 1 Hz. The adaptive bandwidth
of FSTD is 79.47 rad/s. Obviously, the tracking differentiator shows excellent filtering performance,
and the phase lag of the differential is also acceptable due to the presence of feedforward controller.
Figure 11 shows that in terms of the angular velocity error, FSTD better than TTD.
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Figure 12. Response Comparison at 20 Hz: (a) Comparison of position response at 20 Hz; (b)
Comparison of velocity estimation at 20 Hz.
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Figure 13. Angular velocity error of TTD and FSTD at 20 Hz.

Figure 12 shows the encoder output and velocity at 20 Hz. the adaptive bandwidth of FSTD is
748.21 rad/s. The phase lag of FSTD is smaller. From the error curve shown in Figure 13, the phase lag
component is greater than the noise component in the 20 Hz signal error. Therefore, compensating for
phase lag can more effectively reduce errors. FSTD is better than the traditional method.
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6. Discussion

From the simulation and experimental results, the self-tuning characteristics of FSTD can
effectively solve the shortcomings of tracking differentiator in terms of performance. In particular,
it shows excellent adaptability for wide-bandwidth high-accuracy sensor signals. Further, the
proposed method is not only for the tracking differentiator in Equation (4), but for all linear or
non-linear tracking differentiator systems. In such systems, parameters like g would affect the filtering
characteristics [22]. These parameter designs need to find a balance between phase lag and noise
suppression. The frequency barycenter and the FLS method in FSTD is extended to solve this type of
problems.

In addition, for some systems, the tolerance for phase lag is much larger than noise. This paper
has also this tendency when designing fuzzy logic systems. But for other special requirements, the
design flexibility provided by fuzzy logic systems is sufficient.

7. Conclusions

In this paper, a self-tuning differentiator is proposed based on a fuzzy logic system. Currently,
there is no low-pass filters capable of both tracking and noise reduction. The self-tuning method
effectively expand the range of use of existing filters. By quantifying the characteristics of the signal
using the frequency barycenter method, the proposed method achieves adaptive filter bandwidth,
widening the range of the usage of tracking differentiators. Simulation and experimental results show
that compared with the traditional tracking differentiator, FSTD shows a better filtering ability for
low-frequency signals and a better tracking ability for high-frequency signals. The effect of parameter
changes on performance is reduced by a smoothing method. By differentiating the angle signal of the
photoelectric encoder, the control accuracy of the closed-loop control system is effectively improved
under the same parameters, which proves the practicalness of FSTD.
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