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Abstract
This paper presents the topology optimization of hierarchical microtextures for wetting behavior in the Cassie-Baxter mode,
considering a structural unit of the hierarchical microtexture composed of base and secondary structures. The geometrical
configuration of the considered structural unit can be described as a fiber bundle composed of an external surface of the base
structure and the pattern of the secondary structures. Thus, two design variables are defined, one for the external surface of
the base structure, and the other for the pattern of the secondary structures. The Young-Laplace equation, including a term
depending on the mean curvature of the external surface, is used to describe the liquid/vapor interface imposed with a surface
tension in the Cassie-Baxter mode. To overcome the difficulty of numerically computing the second-order derivative of the
external surface, two partial differential equation filters are sequentially applied to the design variable of the base structure
to ensure the numerical accuracy and feasibility of using an efficient linear-element-based finite element method to solve
the Young-Laplace equation. To improve the performance of the hierarchical microtextures, the volume of the liquid bulges
suspended at the liquid/vapor interface in the Cassie-Baxter mode, before the transition into the Wenzel mode, is minimized
to optimize the match between the external surface of the base structure and the pattern of the secondary structures. In
the topology optimization process, penalization of the material density of the surface tension is achieved by an artificial
Marangoni phenomenon. In numerical examples, solid surfaces are tiled into textures with axial symmetry, radial symmetry,
chirality, and quasiperiodicity; and structural units are derived consisting of base structures with peak shapes and dense
secondary structures surrounding the crests of the peaks. The optimized performance of the derived structural units has been
confirmed by comparisons.
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1 Introduction

Microtextures have numerous applications in the control
of wetting behaviors, because the texture morphology and
surface free energy together determine the wettability of
a substrate surface (Feng and Jiang 2006). Microtextures
on a substrate surface can effectively modify the surface
free energy and thus dominate the wetting behavior. Both
the Wenzel and Cassie-Baxter wetting modes can exist on
a textured solid surface (Wenzel 1936; Cassie and Baxter
1944). In the Wenzel mode, the liquid completely fills the
microtextures. In the Cassie-Baxter mode, vapor pockets
are trapped at the liquid/vapor interface supported by the
microtextures. The wetting mode can transition from the
Cassie-Baxter case to the Wenzel case when the liquid is
pressurized by an increasing static pressure, enlarging the
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volume of the liquid bulges suspended at the liquid/vapor
interface and finally leading to the elimination of the vapor
pockets. In this mode transition, the hydrophobicity of the
solid surface is decreased because the surface free energy
decreases with the filling of the microtextures by the liquid.
A critical value of the static pressure exists at the mode
transition of the wetting behaviors (Bico et al. 1999).
Therefore, for a fixed static pressure imposed on the liquid,
the performance of the microtextures and robustness of the
Cassie-Baxter mode can be measured by the volume of the
liquid bulges suspended at the liquid/vapor interface, where
a smaller volume of the liquid bulges corresponds to a more
robust Cassie-Baxter mode.

Several artificial microtextures have been reported to pro-
mote a robust Cassie-Baxter mode of wetting behavior on
a solid surface (Wang et al. 2015). More efficient topology
optimization has also been implemented for the design of
microtextures with single-/overlayered geometries (Cavalli
et al. 2013; Deng et al. 2018, 2019); these geometries can
be fabricated by means of conventional photo-lithography
processes, which are typical top-down processes at the
microscale. Compared with the single-/overlayered case,
hierarchical microtextures can support more metastable
states of the Cassie-Baxter mode. Bottom-up processes, e.g.,
two-photon polymerization, have been developed for their
fabrication (Kawata et al. 2001). This paper thus imple-
ments the topology optimization of hierarchical microtex-
tures for wetting behavior in the Cassie-Baxter mode.

This topology optimization is an implementation by
using the material distribution method, which was pio-
neered by Bendsøe and Kikuchi for elasticity (Bendsøe and
Kikuchi 1988) and has been extended to several other scien-
tific fields (Bendsøe and Sigmund 2003). Wettability con-
trol of solid surfaces using hierarchical microtextures is an
aspect of fluid mechanics at material interfaces. With regard
to fluid mechanics, topology optimization has been imple-
mented by Borrvall and Petersson for Stokes flows (Borrvall
and Petersson 2003), steady Navier-Stokes flows (Gersborg-
Hansen et al. 2006), creeping fluid flows (Guest and Prévost

2006), unsteady Navier-Stokes flows (Kreissl et al. 2011;
Deng et al. 2011), turbulent flows (Dilgen et al. 2018; Yoon
2016), and two-phase flows of immiscible fluids (Deng et al.
2017). With regard to hierarchical structures, several reports
exist for elasticity and material design (Andreasen and Sig-
mund 2012; Wu et al. 2019; Xu et al. 2019; Rodrigues et al.
2002; Zhang and Sun 2006; Cadman et al. 2013; Huang
et al. 2013; Yan et al. 2014; Guo et al. 2015; Xia and Bre-
itkopf 2015; Sivapuram et al. 2016). With regard to material
interfaces, related investigations have been implemented for
stiffness and multi-material structures (Allaire et al. 2014;
Vermaak et al. 2014; Sigmund and Torquato 1997; Gibian-
sky and Sigmund 2000; Gao and Zhang 2011; Luo et al.
2012; Yin and Ananthasuresh 2011; Wang and Wang 2004;
Zhou and Wang 2007), layouts of shell structures (Krog
and Olhoff 1996; Ansola et al. 2002; Hassani et al. 2013;
Lochner-Aldinger and Schumacher 2014; Clausen et al.
2017; Dienemann et al. 2017), fluid-structure and fluid-
particle interaction (Yoon 2010; Lundgaard et al. 2018;
Andreasen 2020), energy absorption (Aulig and Lepenies
2012), cohesion (Behrou et al. 2017), and actuation (Raulli
and Maute 2005).

The general design of hierarchical microtextures for wetting
behavior in the Cassie-Baxter mode is sketched in Fig. 1a,
where the structural unit is composed of base and secondary
structures, as sketched in Fig. 1b. The sketched hierarchical
microtexture can support metastable states of the Cassie-
Baxter mode, which evolves as illustrated by cross-sectional
views in Fig. 2a. When the liquid is pressurized by increasing
the static pressure to which it is subjected, the Cassie-Baxter
mode can evolve into a metastable state with increased
curvature of the liquid/vapor interface. Once the static pres-
sure has been sufficiently increased, the wetting behavior
will transition into a state in which the liquid/vapor inter-
face is completely supported by the secondary structures, as
sketched in Fig. 2b. The Cassie-Baxter mode will begin to
transition into the Wenzel mode if the liquid is pressurized
further. In this paper, this state before the mode transition is
referred to as the terminal state of the Cassie-Baxter mode
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Fig. 1 (a) Sketch for the hierarchical microtextures with the structural unit composed of base and secondary structures, where L is the lattice size
of the tiling on a solid surface. (b) Sketch for a structural unit composed of base and secondary structures
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Fig. 2 (a) Cross-section demonstration for the evolution process of
metastable states of the Cassie-Baxter mode, and the mode transi-
tion from a Cassie-Baxter case to a Wenzel case. (b) Sketch for the
liquid/vapor interface completely supported by the secondary struc-
tures in the terminal state of the Cassie-Baxter mode, where θ is

the contact angle at the sidewalls of the secondary structures. (c)
Sketch for liquid bulges enclosed by the liquid/vapor interface and
the external surface of the base structure. (d) Sketch for the exter-
nal surface of the base structure and the pattern of the secondary
structures

(Fig. 2a). The performance of hierarchical microtextures
supporting wetting behaviors in the Cassie-Baxter mode can
be measured by evaluating the volume of the liquid bulges
suspended at the liquid/vapor interface in this terminal state.
These liquid bulges are sketched in Fig. 2c, and the vol-
ume of interest is the one enclosed by the external surface
of the base structure (Fig. 2d) and the liquid/vapor interface
(Fig. 2b). Because a smaller volume of the liquid bulges cor-
responds to higher robustness of the Cassie-Baxter mode,
topology optimization of the hierarchical microtextures is
implemented in this paper by minimizing the volume of the
liquid bulges in the terminal state of the Cassie-Baxter mode.

For the structural unit composed of base and secondary
structures, the external surface (Fig. 2d) corresponding to
the outer shape of the base structure can be described
as a two-dimensional manifold (2-manifold). The pattern
of the secondary structures (Fig. 2d) can then be defined
on this 2-manifold. Here, the concept of a 2-manifold is
used to exclude the possibility of a nonsmooth surface
for the outer shape of the base structure, and to ensure
that global differential operators can be well defined on
this manifold (Chern et al. 1999). The external surface
of the base structure and the pattern of the secondary
structures together compose a fiber bundle (Chern et al.
1999). They represent the base manifold and the fibers of
this fiber bundle, respectively. Once the description of the
fiber bundle has been derived, the corresponding structural
unit can be generated by applying an offset operation to
the external surface of the base structure based on the

pattern of the secondary structures. The offset distance of
this operation can be determined based on the criterion that
the maximal value of the contact angle at the sidewalls of
the secondary structures should be no larger than the critical
advancing angle in the terminal state of the Cassie-Baxter
mode. Therefore, the key point is to determine the fiber
bundle that minimizes the volume of the liquid bulges in the
terminal state of the Cassie-Baxter mode.

To determine the fiber bundle for hierarchical micro-
textures, topology optimization can be used to optimize
the match between the external surface of the base struc-
ture and the pattern of the secondary structures. Thus,
two design variables are defined, one for the external sur-
face of the base structure and the other for the pattern of
the secondary structures. To solve the optimization prob-
lems with two optimization variables corresponding to two
sets of design parameters, combination among topology
optimization, shape optimization, and optimal control has
been implemented (Bendsøe 1995; Maute and Ramm 1997;
Ansola et al. 2002; Hassani et al. 2013; Zhu et al. 2008;
Christiansen et al. 2015a; Yang et al. 2018; Deng et al.
2014). The incipient combination of topology and shape
optimization considered these two optimization techniques
separately, by first seeking an optimal material layout and
then refining the layout shape (Ansola et al. 2002). The
subsequent combination for the optimization of structural
patterns on curved surfaces was implemented by simulta-
neously optimizing the shape and material distribution of
shell structures, where shape and topology iterations were
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stacked alternately or carried out simultaneously (Ansola
et al. 2002; Hassani et al. 2013). In those investigations,
shape optimization was implemented by using CAD-based
parametrization methods, where the curved surface was
defined by means of control points to ensure a relatively
small number of discretized design variables; during the
optimization process, the finite element mesh was updated
corresponding to the changes of the CAD model (Daoud
et al. 2005). In topology optimization combined with opti-
mal control (Deng et al. 2014), the control variable was
normalized to have the same bound constraint as the design
variable; the design and control variables were simulta-
neously evolved at the finite element nodes by using the
method of moving asymptotes (Svanberg 1987).

In topology optimization of the hierarchical microtex-
tures for wetting behavior in the Cassie-Baxter mode, the
design variable of the secondary structures is defined on
the external surface of the base structure. Thus, the design
variable of the base structure implicitly describes the design
domain of the secondary structures. The design variable
of the base structure can be normalized to have the same
bound constraint as that of the secondary structures. The two
design variables can be simultaneously evolved at the finite
element nodes by using the method of moving asymptotes.

During the optimization process, the design variable for
the external surface of the base structure is filtered by
two sequentially implemented partial differential equation
(PDE) filters (Lazarov and Sigmund 2011), to derive
the ordinate distribution on this surface defined on the
xOy plane of a Cartesian system. These two PDE-filter
operations are collectively referred to as a double PDE-
filter approach. Compared with the filter techniques in the
CAD-free parametrization used to ensure the smoothness of
a surface (Jameson and Vassberg 2000; Daoud et al. 2005)
and the double filter approach with a projection between
the two filters used to allow for optimization of designs
towards geometric variations (Christiansen et al. 2015b), the
double PDE-filter approach in this paper has no projection
and contributes to ensure the well-posedness of the topology
optimization problem by regularizing the mean curvature of
the external surface of the base structure, because a pressure
term depending on this mean curvature is included in the
Young-Laplace equation used to describe the liquid/vapor
interface of the Cassie-Baxter mode. The design variable
for the pattern of the secondary structures is then defined
on the external surface of the base structure. During the
optimization process, this design variable is sequentially
filtered and projected by means of a surface-PDE filter and
threshold projection to remove the blurriness and control the
minimum length scale of the derived pattern, where the
surface PDE filter defined on a curved surface is originated
from the PDE filter defined on a flat plane (Wang et al.
2011; Guest et al. 2004).

The remaining sections of the paper are organized
as follows. In Section 2, the methodology for topology
optimization of hierarchical microtextures is introduced. In
Section 3, results for different tilings of a solid surface are
derived and discussed. The paper is concluded in Section 4.
Acknowledgments are presented and an Appendix is
provided at the end of this paper.

2Methodology

Hierarchical microtextures on a solid surface usually exhibit
some periodicity and symmetry (Toster and Lewis 2015).
Such microtextures can be created by periodically paving
the solid surface with repetitions of a certain structural
unit corresponding to the tiling of the solid surface. Then,
topology optimization of the hierarchical microtextures can
be implemented for the structural unit instead of the whole
hierarchical microtextures. Because of the scaling property
of the solution to the Young-Laplace equation used to
describe the liquid/vapor interface of the Cassie-Baxter
mode, dimensionless modeling can be implemented in a
three-dimensional (3D) Cartesian system with coordinates
normalized with respect to the lattice size of the hierarchical
microtextures. This approach simultaneously ensures the
scaling generality of the derived results and enhances the
accuracy of the numerical solution.

In the terminal state of the Cassie-Baxter mode, the liq-
uid/vapor interfaces are fixed on the secondary structures
of the hierarchical microtextures, where three-phase con-
tact lines among the liquid, vapor, and solid are anchored at
the corners corresponding to the pattern boundaries of the
secondary structures. Then, an offset operation is required
to be implemented to generate the corners correspond-
ing to the pattern boundaries of the secondary structures.
Because a structural unit of the hierarchical microtextures
should preserve the dominant role of the surface tension and
dimensionless modeling is implemented for the hierarchical
microtextures, a scaling operation is required to be imple-
mented on the dimensionless result to ensure the surface-
to-volume ratio of the liquid/vapor interface to be much
larger than 1, where the scaling factor is the lattice size and
it can be found by compromising the performance and man-
ufacturability of the hierarchical microtextures. Therefore,
the structural unit can be obtained by applying offset and
scaling operations to the fiber bundle corresponding to the
optimized match between the external surface of the base
structure and the pattern of the secondary structures (Fig. 3).

2.1 Modelling

In this section, description of the liuqid/vapor interface
in the terminal state of the Cassie-Baxter mode, material
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Fig. 3 Sketch for generating the structural unit based on offset and
scaling operations of the fiber bundle, composed of the 2-manifold and
the fibers, corresponding to the external surface of the base structure
and the pattern of the secondary structures, respectively. Here, � is

the external surface of the base structure and N is the pattern of the
secondary structures, ns is the unitary normal direction of �, dE is
the offset distance of the offset operation, and the lattice size L is the
scaling factor of the scaling operation

interpolation of the surface tension and performance measure-
ment of the hierarchical microtextures are presented as follows.

2.1.1 Physical model andmaterial interpolation

The interfaces among the solid, liquid, and vapor in the wet-
ting behaviors can be assumed to be geometrical surfaces
with zero thickness, when the characteristic size of these
interfaces is much larger than the molecular scale. Based on
the principle of free energy minimization at the interface of
two immiscible fluids, the liquid/vapor interface supported
by hierarchical microtextures is a surface with constant
mean curvature determined by the static pressure imposed
on the liquid. In the terminal state of the Cassie-Baxter
mode, the liquid/vapor interface is completely supported
by secondary structures, and the liquid/solid interface coin-
cides with the pattern of the secondary structures. Based
on Laplace’s law, with a physical meaning of equilib-
rium between the capillary pressure and surface tension,
the dimensionless Young-Laplace equation was derived to
describe the liquid/vapor interface in the terminal state of
the Cassie-Baxter mode (Young 1805; Laplace 1806):

2σ̄lH = 1, in � \ �N (1)

where σ̄l = σl/ (LP ) is the dimensionless surface tension at
the liquid/vapor interface, with σl , P , andL representing the
surface tension, static pressure, and lattice size of the tiling
on a solid surface, respectively; H is the mean curvature
of the liquid/vapor interface in the 3D Cartisian system
O-xyz; � ⊂ R

2, sketched in Fig. 4a, is an open, connected,
and bounded two-dimensional (2D) domain localized in the
xOy-plane and this domain is the dimensionless counterpart
of the basic lattice used to tile a solid surface; �N ⊂ � is
the projection of N along z-axis in the xOy-plane, with N
representing the pattern of the secondary structures.

As sketched in Fig. 4b, the convex liquid/vapor interface
in the terminal state of the Cassie-Baxter mode is the graph
of a multi-valued function defined on �, when the static
pressure imposed on the liquid becomes large enough. Then
the dimensionless Young-Laplace equation defined on � is
singular and its numerical solution is difficult to converge, if
the ordinate distribution on the liquid/vapor interface is used
as the physical variable to describe the Cassie-Baxter mode
and compute the mean curvature H . To solve this problem,
the displacement of the liquid/vapor interface relative to the
external surface of the base structure is used as the physical
variable and the dimensionless Young-Laplace equation is
thus transformed into the following formulation defined on
a 2-manifold (Fig. 4c):

2σ̄lHr = 1 − κ, on � \ N (2)

where � is the 2-manifold corresponding to the external
surface of the base structure, and it is the graph of a function
defined on �; � \ N is the difference set between � and
N as demonstrated in Fig. 4a; Hr is the mean curvature of
the dimensionless liquid/vapor interface relative to the 2-
manifold �; κ is referred to as the base pressure added to
the constant static pressure in (1), and it is a variable static
pressure dependent of the mean curvature of the external
surface of the base structure. The base pressure is described as

κ = 2σ̄lH�, in � \ �N (3)

where H� is the mean curvature of �. The base pressure
κ is finite, when the 2-manifold � is smooth and has no
curvature singularity.

Because the liquid/solid interface coincides with the pat-
tern of the secondary structures in the terminal state of
the Cassie-Baxter mode, this interface has zero displace-
ment relative to the external surface of the base structure.
Therefore, the liquid/solid interface has zero mean curvature
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Fig. 4 (a) Sketch for the fiber bundle composed of the 2-manifold
� and the fibers N corresponding to the external surface of the
base structure and the pattern of the secondary structures, respec-
tively. (b) Sketch for the description of the liquid/vapor inter-
face by using the ordinate distribution on the liquid/vapor inter-
face, where multi-valued points are caused by the convexity of the

liquid/vapor interface and x� is a sketched multi-valued point in
� corresponding to two different ordinates zs1 and zs2. (c) Sketch
for the description of the liquid/vapor interface by using the dis-
placement of the liquid/vapor interface relative to the external sur-
face of the base structure, where the multi-valued problem can be
avoided

relative to the 2-manifold �. The dimensionless Young-
Laplace equation defined on the 2-manifold � (2) has the
equivalent form Hr = (1 − κ) / (2σ̄l) on � \ N . From
this equivalent form, (2) can be extended onto N for the 2-
manifold � with a smooth distribution of curvature. This
extension can be implemented by setting an infinite dimen-
sionless surface tension at the liquid/solid interface. Then,
the zero relative mean curvature of the liquid/solid interface
can be described as

Hr = lim
σ̄s→+∞

1 − κ

2σ̄s

= 0, on N (4)

where σ̄s is the dimensionless surface tension at the liq-
uid/solid interface. Based on this extension, the dimension-
less Young-Laplace equation defined on the whole � can be
described as

2σ̄Hr = 1 − κ, on � (5)

where σ̄ is the dimensionless surface tension at the
two-phase interfaces consisted of the liquid/vapor and
liquid/solid interfaces, satisfying σ̄ = σ̄l at the liquid/vapor
interface and σ̄ = σ̄s → +∞ at the liquid/solid interface.
Simultaneously, the base pressure κ can be extended into the
whole � as

κ = 2σ̄lH�, in � (6)

where the dimensionless surface tension is kept as σ̄l to
ensure the finite value of (1 − κ), and the satisfication of (4)
on the liquid/solid interface.

On the 2-manifold�, a binary distribution can be defined
to describe the pattern of the secondary structures as

γp =
{

0, on N
1, on � \ N , (7)

where γp is the binary variable corresponding to the pattern
of the secondary structures; the values of 0 and 1 correspond
to the secondary structures and the void, respectively.

Based on this binary distribution, the dimensionless surface
tension σ̄ can be described as

σ̄
(
γp

) =
{

σ̄s , for γp = 0
σ̄l , for γp = 1

. (8)

The optimization task of this paper is to find the optimized
match between the 2-manifold � and the binary distribution
γp, corresponding to a minimal volume of the liquid bulges
suspended at the liquid/vapor interface in the terminal
state of the Cassie-Baxter mode. The binary optimization
problem with γp ∈ {0, 1} defined on a variable 2-manifold
is difficult to solve numerically. Thus, the binary variable γp

is relaxed to vary continuously in [0, 1]. The relaxed binary
variable is referred to as the material density of the surface
tension (Sigmund 2007).

The non-uniform distribution of the material density
causes the gradient of the surface tension. In the topol-
ogy optimization process, the material density is evolved
by using the sensitivity of the design objective; correspond-
ingly, the gradient of the surface tension is changed and this
actuates the evolution of the liquid-vapor interface. When
the optimization process converges, the evolution of the
liquid-vapor interface is stopped, because the intermediate
material density valued between 0 and 1 is removed and the
gradient of the surface tension vanishes on the liquid/vapor
and liquid/solid interfaces, respectively. This process, which
achieves a penalization of the intermediate material density,
can correspond to a Marangoni phenomenon (Vanhook et al.
1997). Based on this Marangoni phenomenon, the material
interpolation of topology optimization is implemented by
using the material density of the surface tension.

On the implementation of material interpolation, several
schemes have been developed, and are summarized in the
references of Bendsøe and Sigmund (1999) and Hvejsel and
Lund (2011). In this paper, the convexity of the liquid/vapor
interface is sensitive to the surface tension value. The
convex and q-parameterized interpolation scheme is chosen
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to implement the material interpolation of the dimensionless
surface tension as (Borrvall and Petersson 2003)

σ̄
(
γp

) = σ̄l + (σ̄s − σ̄l) q
1 − γp

q + γp

, (9)

where σ̄
(
γp

)
is the interpolated dimensionless surface

tension; q is the parameter used to tune the convexity of the
interpolation function. Theoretically, σ̄s should be infinite;
numerically, a finite but large enough value satisfying
σ̄s � sup� |κ| can be chosen for σ̄s , to simultaneously
ensure the stability of the numerical implementation and
approximate the liquid/solid interface with an acceptable
tolerance, where sup is the operator used to extract the
suprema of a function.

During the optimization process, the external surface of
the base structure is evolved iteratively, where the suprema
of |κ| cannot be determined in advance. This can result in
losing an approximation of equation 6 and penalization of
the intermediate material density, because the preset value
of σ̄s can violate σ̄s � sup� |κ| in some iterations. To
solve this problem, material interpolation can be imposed
on the base pressure in equation 5. This interpolation
should be able to better determine the liquid/solid interface
by eliminating the base pressure from the pattern of the
secondary structures and maintaining its existence at the
liquid/vapor interface. Therefore, the interpolation of the
base pressure is implemented by multiplying it with

pκ

(
γp

) = pκ,max + (pκ,min − pκ,max
)
q
1 − γp

q + γp

, (10)

where the convex and q-parameterized scheme is chosen;
pκ is the penalization factor; pκ,min = 0 and pκ,max = 1 are
the minimal and maximal values of pκ , respectively. Based
on this interpolation, the base pressure can be eliminated at
the liquid/solid interface by pκ

(
γp

) = pκ,min = 0, where
γp is equal to 0; conversely, it is maintained without change
at the liquid/vapor interface by pκ

(
γp

) = pκ,max = 1,
where γp is equal to 1.

Based on the differential computation of the mean cur-
vature, and the material interpolation of the dimensionless
surface tension and the base pressure, the dimensionless
Young-Laplace equation with the normalized displacement
of the two-phase interfaces relative to the 2-manifold � can
be derived as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

∇s ·
[
σ̄
(
γp

) ∇s d̄√
1/d20+∣∣∇s d̄

∣∣2
]

= 1 − pκ

(
γp

)
κ (zs) , on �

d̄ = 0, at ∂�

κ (zs) = σ̄l∇ ·
(

∇zs√
1+|∇zs |2

)
, in �

σ̄
(
γp

) = σ̄l + (σ̄s − σ̄l ) q
1−γp

q+γp

pκ

(
γp

) = pκ,max + (pκ,min − pκ,max
)
q
1−γp

q+γp

,

(11)

where ∇s is the surface gradient operator defined on �; d̄

is the normalized displacement of the two-phase interfaces
relative to the 2-manifold � (Fig. 4c); d0 is the magnitude
of the displacement of the two-phase interfaces; zs is the
ordinate distribution on the 2-manifold �; to consider more
periodicity (e.g., chirality and quasiperiodicity) beyond axial
symmetry, the periodicity of the solution of equation 11 is
enforced by imposing a homogeneous boundary condition
on d̄ , i.e., the two-phase interfaces are constrained by setting
d̄ = 0 at ∂� to ensure the solution uniqueness of equation
11 and fix the external surface of the base structure on the
skeletons of the tiling of a solid surface, and this can permit to
periodically pave the solid surface with a derived structural
unit. In (11), the magnitude d0 is used to normalize the
dimensionless displacement of the two-phase interfaces.
This can effectively enhance the accuracy of the numerical
solution to (11), and the dimensionless displacement of the
two-phase interfaces relative to the external surface of the
base structure can be computed as d0d̄.

2.1.2 Performance measurement

The performance of the microtextures used to control the
wetting behavior in the Cassie-Baxter mode can be mea-
sured by the volume of the liquid bulges suspended at
the liquid/vapor interface, because a smaller volume of
the liquid bulges corresponds to more robust Cassie-Baxter
mode (Deng 2018, 2019). A similar performance measure-
ment can also be adopted to evaluate the terminal state of the
Cassie-Baxter mode, for which the liquid bulges enclosed
by the liquid/vapor interface and the external surface of
the base structure have been sketched in Fig. 4c. To ensure
the numerical stability of the optimization process, the per-
formance of the hierarchical microtextures is equivalently
measured by the following well-posed formulation:

J = 1

|�|2
∫

�

d̄2 d�, (12)

where |�| is the area of �, and it is computed as

|�| =
∫

�

1 d�. (13)

Because of the norm equivalence in the first-order Sobolev
space H (�) (Hebey 1996), the performance measurement
in (12) is equivalent to the square of the normalized volume

of the liquid bulges
(∫

�

∣∣d̄∣∣ d�/ |�|)2.
2.2 Design variables

To optimize the match between the external surface of the
base structure and the pattern of the secondary structures
by minimizing the volume of the liquid bulges suspended
at the liquid/vapor interface in the terminal state of the
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Cassie-Baxter mode, it is required to define two design
variables for the external surface of the base structure and
the pattern of the secondary structures, respectively.

2.2.1 Design variable of base structure

To describe the external surface of the base structure, a
design variable zm that takes continuous values in [0, 1] is
defined for the ordinate distribution on the 2-manifold �,
which is the design domain for the pattern of the secondary
structures. To control the smoothness of this design variable,
it is filtered by a PDE filter (Lazarov and Sigmund 2011):{ −∇ · (r2m∇zf

)+ zf = zm, in �

zf = 0, on ∂�
, (14)

where zf is the filtered design variable; rm is the filter
radius, which is constant. Then, the filtered design variable
zf is further smoothed by implementing a similar PDE-filter
operation to derive the ordinate distribution zs of � and
control the height of the structural unit:{ −∇ · (r2m∇zs

)+ zs = bzzf , in �

zs = 0, on ∂�
, (15)

where ∇ = ∂
∂x
i + ∂

∂y
j is the gradient operator on the xOy-

plane; i and j are the unitary directional vectors of x and y

axes, respectively; bz is a specified height amplitude of the
structural unit and it is nonnegative. It has been mentioned
that the approach used to regularize the design variable
of the base structure by using two sequentially imple-
mented PDE filters is referred to as a double PDE-filter

approach, which is sketched in Fig. 5 including the related
quantities.

The design variable of the base structure and the two PDE
filters in the double PDE-filter approach can determine a
differential homeomorphism corresponding to the bijection
x� = x� + zs (x�) k for ∀x� ∈ �, where x� and x� are
the points on � and �, respectively, zs (x�) is the ordinate
distribution of �, and k is the unitary directional vector
of z axis of the 3D Cartesian system. Therefore, � is a
2-manifold immersed in R2.

From the PDE filter in (15) with a constant filter radius,
∇2zs = (zs − bzzf

) /
r2m can be obtained; further, the base

pressure κ in (11) can be transformed into the following
form based on the two PDE filters for the design variable of
the base structure:

κ = 2σ̄lH�

= σ̄l∇ ·
(

∇zs√
1 + |∇zs |2

)

= σ̄l

∇2zs√
1 + |∇zs |2

− σ̄l
(∇zs · ∇zs)∇2zs(√

1 + |∇zs |2
)3

= σ̄l

r2m

⎡
⎢⎣ zs − bzzf√

1 + |∇zs |2
− |∇zs |2

(
zs − bzzf

)
(√

1 + |∇zs |2
)3
⎤
⎥⎦

= σ̄l

r2m

zs − bzzf(√
1 + |∇zs |2

)3 . (16)

Fig. 5 Sketch for the double PDE-filter approach used to regular-
ize the design variable of the base structure, where the second row
contains the cross-sectional views of the sketch in the first row. In
this sketch, zm, zf , and zs are the design variable, filtered design

variable, and ordinate distribution on the 2-manifold �, respectively;
bz is a specified height amplitude of the structural unit; � is the
dimensionless lattice of a tiling; ns is the unitary normal vector
of �
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The transformation of the base pressure shows that the
double PDE-filter approach can eliminate the second-order
derivative in the mean curvature of the external surface
of the base structure. Because the second-order derivative
in the base pressure can not be directly eliminated in the
Galerkin variational of the dimensionless Young-Laplace
(11), the transformation of the base pressure can effectively
ensure the numerical accuracy and feasibility of using
the efficient linear-element-based finite element method to
solve the dimensionless Young-Laplace equation.

The transformed base pressure in (16) depends on
zs and zf , both of which are functions in H (�). The
finite element solutions of zs and zf are functions in the
infinite smooth function space C∞ (�̄), which is dense in
H (�); here, �̄ is the closure of �. The double PDE-
filter approach can thus provide a well-posed approach to
ensure the curvature smoothness of a surface. It has been
specified that the precondition for using the liquid/vapor
interface to approximate the liquid/solid interface is the
curvature smoothness of the 2-manifold �. Therefore,
the double PDE-filter approach can effectively ensure the
well-posedness of the topology optimization problem, by
avoiding the non-smoothness of the curvature caused by the
design variable zm ∈ H−1 (�), where H−1 (�) is the dual

space of
◦
H (�) representing the closure of the compactly

supported and infinitely smooth function space C∞
0 (�).

The double PDE-filter approach increases the CPU-time
cost of solving the topology optimization problem, although
it can ensure the smoothness of a surface’s curvature. If the
second PDE filter is removed, this approach will degenerate
into the single PDE-filter approach similar to Bletzinger’s
CAD-free approach (Daoud et al. 2005), which can ensure
the surface smoothness instead of the curvature smoothness.
Bletzinger’s CAD-free approach has been implemented
on curved surfaces, e.g., the cylindrical surface; the
current double PDE-filter approach is implemented on the
xOy-plane, and this approach can be extended to curved
surfaces. In the extension, the PDE filters will be replaced
by the surface-PDE filters (Deng et al. 2020). If a projection
is added between the two filters, this double PDE-filter
approach can turn into a similar one suggested in the
reference of Christiansen et al. (2015b).

2.2.2 Design variable of secondary structures

To implement the material interpolation of the surface
tension, a design variable γ takes continuous values in
[0, 1] as defined on the 2-manifold � with the ordinate
distribution zs . The material density of the surface tension
can be derived by smoothing and projecting the design
variable γ , on which a surface-PDE filter (Lazarov and
Sigmund 2011; Deng et al. 2020) and threshold projection
(Wang et al. 2011; Guest et al. 2004) are implemented

sequentially. The filter and projection operations can
effectively remove the blurriness and control the minimum
length scale in the derived pattern of the secondary
structures (Sigmund and Maute 2013). The surface-PDE
filter for the design variable γ is

{
−∇s ·

(
r2f ∇sγf

)
+ γf = γ, on �

γf = 0, at ∂�
, (17)

where rf is the filter radius, which is constant. The filtered
design variable γf is projected to derive the material
density:

γp = tanh (βξ) + tanh
(
β
(
γf − ξ

))
tanh (βξ) + tanh (β (1 − ξ))

, (18)

where β and ξ are the parameters for this threshold projec-
tion, with values chosen based on numerical experiments
(Guest et al. 2004). The surface-PDE filter, the threshold
projection, and the related quantities are sketched in Fig. 6.

2.2.3 Coupling of design variables

In this topology optimization, the design variable of the
secondary structures is defined on the 2-manifold described
by the design variable for the external surface of the base
structure. The design variable for the external surface of
the base structure implicitly describes a variable design
domain of the secondary structures. During the optimization
process, the two design variables are coupled, because
the surface gradient operator ∇s defined on the implicitly
described 2-manifold � requires to be transformed into its
equivalent form defined on �.

Because the 2-manifold � is the graph of a function
defined on �, � is homeomorphic to �, and the function in
H (�) can be transformed into its equivalent form inH (�),
where H (�) and H (�) are the first-order Sobolev spaces
defined on � and �, respectively. This transformation can
be implemented by replacing the independent variable x� of
the function inH (�)with x�+zs (x�) k. Therefore,H (�)

is homeomorphic to H (�), and the function in H (�) and
its equivalent counterpart in H (�) are not distinguished
in this paper. The surface gradient operator ∇s defined
on � can be transformed into its equivalent form ∇ −
[ns (zs) · ∇]ns (zs) defined on �:

∇s = ∇ − ∇zs − k

1 + |∇zs |2
(∇zs · ∇) , (19)

where ns (zs), sketched in Fig. 5, is the unitary normal
vector of �, and it is expressed as

ns (zs) = −∇zs + k√
1 + |∇zs |2

. (20)

2531



Y. Deng et al.

Fig. 6 Sketch for the surface-PDE filter and threshold projection of the design variable of the secondary structures. In this sketch, γ is the design
variable of the secondary structures; γf and γp are the filtered and projected counterparts of γ , respectively

Because ∇s depends on zs , its first-order variational to zs is:

∇(z̃s )
s = − ∇zs − k

1 + |∇zs |2
(∇ z̃s · ∇) − ∇ z̃s

1 + |∇zs |2
(∇zs · ∇)

+ 2 (∇zs − k)(
1 + |∇zs |2

)2 (∇zs · ∇ z̃s ) (∇zs · ∇) ,

∀z̃s ∈ H (�) (21)

where z̃s is the test function of zs ; the superscript (z̃s)

is used to indicate the dependence on z̃s . The first-order
variational of ∇s to zs will be used in the adjoint analysis of
the topology optimization problem.

After the implementation of the topology optimization,
the match between the external surface of the base structure
and the pattern of the secondary structures can be optimized,
where the ordinate distribution zs on � converges to the
outer shape of the base structure and the material density γp

is penalized into the pattern of the secondary structures. By
defining the natural projection proj1 : � × γp (�) → �

satisfying

proj1
(
ϕ (x�) , γp (x�)

) = x� for ∀x� ∈ �, (22)

the optimized match between the external surface of the
base structure and pattern of the secondary structures
composes the fiber bundle:

(
� × γp (�) , �, proj1, γp (�)

)
, (23)

where � and γp : � → [0, 1] are the base manifold
and the fibers of this fiber bundle, respectively; ϕ is
the homeomorphism determined by the bijection x� =
x� + zs (x�) k. Therefore, topology optimization of the
fiber bundle in (23) can be implemented by optimizing
the match between its base manifold and fibers, where
the optimization process is implemented on a variable
design domain evolving together with the structures defined
on it.

Based on the transformation of the base pressure in
(16) and the transformed surface gradient operator in (19),
the dimensionless Young-Laplace equation in (11) can
be transformed into the following form, which is used
to describe the two-phase interfaces on the fiber bundle
described in (23):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

∇s ·
[
σ̄
(
γp

) ∇s d̄√
1/d20+∣∣∇s d̄

∣∣2
]

= 1 − pκ

(
γp

)
κ
(
zs, zf

)
, on � (�)

d̄ = 0, at ∂� (�)

κ
(
zs, zf

) = σ̄l

r2m

zs−bzzf(√
1+|∇zs |2

)3 , in �

σ̄
(
γp

) = σ̄l + (σ̄s − σ̄l) q
1−γp

q+γp

pκ

(
γp

) = pκ,max + (pκ,min − pκ,max
)
q
1−γp

q+γp

. (24)

2.3 Topology optimization problem

The ratio of the pattern area of the secondary structures
to the area of the external surface of the base structure
is referred to as the duty ratio, which is a key factor
used to retrieve the macroscale wetting performance of
hierarchial microtextures. The duty ratio can be computed as
|N | / |�|, where |N | and |�| represent the areas of N and

� sketched in Fig. 3, respectively. To derive the hierarchical
microtextures with a specified value of the duty ratio, a
bilateral constraint on the duty ratio of the fiber bundle
can be added to the topology optimization problem of the
hierarchical microtextures.

The optimization task is to find the fiber bundle for the
hierarchical microtextures with a specified duty ratio, by
equivalently minimizing the volume of the liquid bulges
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suspended at the liquid/vapor interface in the terminal state of
the Cassie-Baxter mode, where the fiber bundle is composed
of the 2-manifold and fibers corresponding to the external

surface of the base structure and the pattern of the secondary
structures, respectively. Therefore, the corresponding topol-
ogy optimization problem can be formulated as

find zm : � �→ [0, 1] and γ : � �→ [0, 1] for
(
� × γp (�) , �, proj1, γp (�)

)
,

to minimize
J

J0
with J = 1

|�|2
∫

�

d̄2 d� constrained by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

∇s ·
[
σ̄
(
γp

) ∇s d̄√
1/d20+∣∣∇s d̄

∣∣2
]

= 1 − pκ

(
γp

)
κ
(
zs, zf

)
, on � (�)

d̄ = 0, at ∂� (�)

κ
(
zs, zf

) = σ̄l

r2m

zs−bzzf(√
1+|∇zs |2

)3 , in �

σ̄
(
γp

) = σ̄l + (σ̄s − σ̄l) q
1−γp

q+γp

pκ

(
γp

) = pκ,max + (pκ,min − pκ,max
)
q
1−γp

q+γp

(Young − Laplace equation)

{ −∇ · (r2m∇zf

)+ zf = zm, in �

zf = 0, on ∂�
(PDE filter 1){ −∇ · (r2m∇zs

)+ zs = bzzf , in �

zs = 0, on ∂�
(PDE filter 2){

−∇s ·
(
r2f ∇sγf

)
+ γf = γ, on � (�)

γf = 0, at ∂� (�)
(PDE filter 3)

γp = tanh(βξ)+tanh(β(γf −ξ))
tanh(βξ)+tanh(β(1−ξ))

(Threshold projection)

|fd − f0| ≤ 10−3 (Duty − ratio constraint)

, (25)

where J0 is the value of the performance measurement
corresponding to the initial distributions of the design
variables zm and γ ; fd is the duty ratio expressed as

fd = 1

|�|
∫

�

1 − γp d�; (26)

and f0 ∈ (0, 1) is the specified duty ratio with a permitted
tolerance of 10−3.

The coupling relations among the variables, functions,
and surface gradient operator in the topology optimization
problem are illustrated by the following arrow chart:

where the design variables zm and γ , marked in blue, are the
inputs; the design objective J and the duty ratio fd , marked
in red, are the outputs.

2.4 Adjoint analysis

The topology optimization problem in (25) can be solved
by using a gradient-information-based iterative procedure,
where the adjoint sensitivities are used to determine
the gradient information. An adjoint analysis has been
implemented for the performance measurement and the duty
ratio to derive their adjoint sensitivities. The details of this
adjoint analysis are provided in Appendix Sections 1–4.

Based on the adjoint analysis method (Hinze et al. 2009),
the adjoint sensitivity of the performance measurement J =
1

|�|2
∫
�

d̄2 d� can be computed as

δJ = δ

(
J |�|2
|�|2

)
= 1

|�|2 δ
(
J |�|2

)
− 2J

|�|δ |�| , (27)

where δ is the first-order variational operator. In (27), the
adjoint sensitivity of J |�|2 = ∫

�
d̄2 d� is derived as

δ
(
J |�|2

)
= −

∫
�

γf aδγ d� −
∫

�

zf aδzm d�,

δγ ∈ H−1 (�) and δzm ∈ H−1 (�) , (28)

where γf a and zf a are the adjoint variables of the filtered
design variables γf and zf , respectively; being similar with

H−1 (�), H−1 (�) is the dual space of
◦
H (�) representing
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the closure of the compactly supported and infinitely
smooth function space C∞

0 (�). In (27), γf a and zf a are
derived by sequentially solving the following variational
formulations of the adjoint equations:

– Find d̄a ∈ H (�) with d̄a = 0 at ∂�, satisfying

∫
�

2d̄ ˜̄d − σ̄
∇s d̄a · ∇s

˜̄d√
1/d2

0 + ∣∣∇s d̄
∣∣2

+σ̄

(∇s d̄ · ∇s d̄a

) (∇s d̄ · ∇s
˜̄d
)

(√
1/d2

0 + ∣∣∇s d̄
∣∣2)3

d� = 0,

∀ ˜̄d ∈ H (�) ; (29)

– Find κa ∈ ◦
H (�), satisfying

∫
�

(
pκd̄a

√
1 + |∇zs |2 + κa

)
κ̃a d� = 0, ∀κ̃a ∈ H−1 (�) ;

(30)

– Find γf a ∈ H (�) with γf a = 0 at ∂�, satisfying∫
�

r2f ∇sγf a · ∇s γ̃f a + γf aγ̃f a − ∂σ̄

∂γp

∂γp

∂γf

× ∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 γ̃f a+ ∂pκ

∂γp

∂γp

∂γf

κd̄aγ̃f a d� = 0,

∀γ̃f a ∈ H (�) ; (31)

– Find zsa ∈ H (�) with zsa = 0 on ∂�, satisfying

∫
�

r2m∇zsa · ∇ z̃sa + zsa z̃sa + r2f

×
[
∇(z̃sa )

s γf · ∇sγf a + ∇sγf · ∇(z̃sa )
s γf a

]√
1 + |∇zs |2

−σ̄

⎡
⎢⎣∇(z̃sa )

s d̄ · ∇s d̄a + ∇s d̄ · ∇(z̃sa )
s d̄a√

1/d2
0 + ∣∣∇s d̄

∣∣2

−
(∇s d̄ · ∇s d̄a

) (∇(z̃sa )
s d̄ · ∇s d̄

)
(√

1/d2
0 + ∣∣∇s d̄

∣∣2)3

⎤
⎥⎥⎥⎦
√
1 + |∇zs |2

+
⎡
⎢⎣d̄2 − σ̄

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) d̄a + r2f ∇sγf

·∇sγf a + γf γf a − γ γf a

⎤
⎥⎦ ∇zs · ∇ z̃sa√

1 + |∇zs |2

− σ̄l

r2m

⎡
⎢⎣ z̃sa(√

1 + |∇zs |2
)3 − 3

(
zs − bzzf

)
(∇zs · ∇ z̃sa)(√

1 + |∇zs |2
)5

⎤
⎥⎦

×κa d� = 0, ∀z̃sa ∈ H (�) ; (32)

– Find zf a ∈ H (�) with zf a = 0 on ∂�, satisfying

∫
�

r2m∇zf a · ∇ z̃f a + zf az̃f a − bzzsaz̃f a

+ σ̄l

r2m

bzκa(√
1 + |∇zs |2

)3 z̃f a d� = 0, ∀z̃f a ∈ H (�) ,

(33)

where d̄a , κa , and zsa are the adjoint variables of d̄ , κ ,

and zs , respectively;
˜̄da , κ̃a , γ̃a , z̃sa , and z̃f a are the test

functions of the adjoint variables d̄a , κa , γa , zsa , and zf a ,
respectively. The adjoint sensitivity of the area of � in (27)
is derived as

δ |�| = −
∫

�

zf aδzm d�, δzm ∈ H−1 (�) , (34)

where the adjoint variable zf a is derived by sequentially
solving the following variational formulations of the adjoint
equations:

– Find zsa ∈ H (�) with zsa = 0 on ∂�, satisfying
∫

�

∇zs · ∇ z̃sa√
1 + |∇zs |2

+ r2m∇zsa · ∇ z̃sa + zsaz̃sa d� = 0,

∀z̃sa ∈ H (�) ; (35)

– Find zf a ∈ H (�) with zf a = 0 on ∂�, satisfying

∫
�

r2m∇zf a · ∇ z̃f a + zf az̃f a − bzzsaz̃f a d� = 0,

∀z̃f a ∈ H (�) . (36)

For the constraint of the duty ratio, the adjoint sensitivity
of the duty ratio can be derived from that of fd |�| and |�|:

δfd = δ

(
fd |�|
|�|

)
= 1

|�|δ (fd |�|) − fd

|�|δ |�| . (37)

In (37), the adjoint sensitivity of |�| is derived from (34),
where the adjoint variables are solved from (35) and (36);
the adjoint sensitivity of the pattern area fd |�| = ∫

�
1 −

γp d� of the secondary structures is derived as

δ (fd |�|) = −
∫

�

γf aδγ d� −
∫

�

zf aδzm d�,

δγ ∈ H−1 (�) and δzm ∈ H−1 (�) , (38)

where the adjoint variables γf a and zf a are solved from the
following variational formulations of the adjoint equations:

– Find γf a ∈ H (�) with γf a = 0 at ∂�, satisfying

∫
�

− ∂γp

∂γf

γ̃f a + r2f ∇sγf a · ∇s γ̃f a + γf aγ̃f a d�=0,

∀γ̃f a ∈ H (�) ; (39)
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– Find zsa ∈ H (�) with zsa = 0 at ∂�, satisfying

∫
�

r2f

(
∇(z̃sa)

s γf · ∇sγf a + ∇sγf · ∇(z̃sa)
s γf a

)

×
√
1 + |∇zs |2 +

(
1 − γp + r2f ∇sγf · ∇sγf a

+γf γf a − γ γf a

) ∇zs · ∇ z̃sa√
1 + |∇zs |2

+r2m∇zsa · ∇ z̃sa + zsaz̃sa d� = 0, ∀z̃sa ∈ H (�) ;
(40)

– Find zf a ∈ H (�) with zf a = 0 at ∂�, satisfying

∫
�

r2m∇zf a · ∇ z̃f a + zf az̃f a − bzzsaz̃f a d� = 0,

∀z̃f a ∈ H (�) . (41)

After the derivation of the adjoint sensitivities in (27)
and (37), the design variables zm and γ can be iteratively
evolved to obtain the fiber bundle for the hierarchical
microtextures.

2.5 Numerical implementation

To solve the topology optimization problem in (25), an
optimization procedure is implemented as outlined by the
pseudocode in Table 1. The finite element method is utilized
to solve the variational formulations of the PDEs (Appendix
Section 1) and adjoint equations. The finite element solution
can be obtained using a finite element software package that
includes a nonlinear solver. The dimensionless counterparts
of the lattices used to tile a solid surface are discretized by
using the triangular elements with a size of 1/120 (Fig. 7).
Linear elements are used to discretize the design domains,
because a relative fine mesh with linear elements can simul-
taneously enhance the efficiency of the numerical imple-
mentation and ensure the numerical accuracy of the finite
element solution. Linear elements can also effectively
ensure the positivity of the distributions of the design vari-
ables, filtered design variables, and material density.

In the iterative procedure, the projection parameter β,
with the initial value of 1, is doubled after every 30
iterations; the loop is stopped when the maximal number
of iterations is reached or if the averaged variation of
the design objective over continuous 5 iterations and
the residual of the constraint on the duty ratio are
simultaneously less than the specified tolerance of 10−3.
The design variables are updated by using the method of
moving asymptotes (Svanberg 1987).

Table 1 Pseudocode for topology optimization of the fiber bundle for
hierarchical microtextures

Choose σ̄l , f0 and d0;

Set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nmax ← 315

γ ← 1 − f0

zm ← 1

ni ← 1

ξ ← 0.5

β ← 1

, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̄s ← 105σ̄l

q ← 10−4

pκ,min ← 0

pκ,max ← 1

loop

Solve (14) to derive zf by filtering zm;

Solve (15) to derive zs by filtering zf ;

Solve (17) to derive γf by filtering γ ;

Project γf to derive γp and compute fd ;

Solve d̄ and κ from (24), and evaluate J/J0 from (12);

Solve d̄a , κa , γf a , zsa , and zf a from (29–33);

Evaluate δ
(
J/ |�|2) from (28);

Solve zsa and zf a from (35) and (36);

Evaluate δ |�| from (34);

Calculate δJ from (27) based on δ
(
J/ |�|2) and δ |�|;

Solve γf a , zsa , and zf a from (39)–(41);

Evaluate δ (fd |�|) from (38);

Calculate δfd in (37) from δ (fd |�|) and δ |�|;
Update zm and γ , based on δJ/J0 and δfd ;

if mod (ni , 30) == 0

β ← 2β;
end(if)

if (ni == nmax) or

⎧⎪⎪⎨
⎪⎪⎩

β == 210

1
5

∑4
m=0

∣∣Jni
− Jni−m

∣∣/J0 ≤ 10−3

|fd − f0| ≤ 10−3

break;

end(if)

ni ← ni + 1

end(loop)

In the iterative solution loop for the topology optimization problem in
(25), ni is the loop-index, nmax is the maximal value of ni , Jni

is the
value of J in the ni th iteration, and mod is the operator used to take
the remainder

3 Results and discussion

In this section, various hierarchical microtextures are
numerically investigated for their wetting behaviors in the
Cassie-Baxter mode. They are designed using the approach
introduced in Section 2, with the design parameters listed in
Table 2. Based on the optimization procedure, a fiber bundle
can be firstly derived by solving the topology optimization
problem with a reasonable choice of the parameters. Then,
the derived result can be translated into a manufacturable
design by applying offset and scaling operations to it
(Fig. 3).
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1

2

Fig. 7 Illustration for a finite element mesh with triangular elements
used to discretize the dimensionless design domains

In the offset operation, the offset distance is the key
parameter. This parameter can be determined based on the
fact that the maximal value of the contact angle at the
sidewalls of the secondary structures is not larger than the
crucial advancing angle, when the three-phase contact lines
are anchored at the corners corresponding to the pattern
boundaries of the secondary structures. Therefore, the offset
distance satisfies{

dE = d0d̄, ∀x� ∈ N
dE ≤ d0

(
inf d̄c

)
, ∀x� ∈ � \ N , (42)

where dE is the offset distance, inf is the operator used
to extract the infimum of a function, d̄c is the normalized
displacement of the critical liquid/vapor interface supported
by the secondary structures, and N is the pattern of the
secondary structures. The pattern N is the null space of
γp > 1/2 at the minimum value of the performance
measurement:

N =
{
x� ∈ � :

(
γp (x�)

∣∣
argmin
γ∈[0,1]

J
>

1

2

)
∈ {0}

}
, (43)

where 1/2 is the average of the upper and lower bounds on
γp. The offset distance dE and the pattern N are sketched
in Fig. 3. In (42), the critical liquid/vapor interface is
determined by using the relation between the contact angle
and the critical advancing angle:

sup
x�∈∂N

θ (x�) ≤ θA, (44)

Table 2 Parameters used for solving the topology optimization
problem in (25)

σ̄l d0 rf rm f0 zm bz

100 10−3 1/20 1/12 0.3 1 1

where θ and θA are the contact angle sketched in Fig. 2b
and the critical advancing angle, respectively. The contact
angle is expressed as

θ (x�) = π − cos−1

(
∇d̄∣∣∇d̄
∣∣ · ns

)
, ∀x� ∈ ∂N . (45)

For microtextures with known material, the critical advanc-
ing angle θA is usually found from experimental tests. θA

is equal to its equilibrium counterpart when the sidewalls
are regarded to be smooth and chemically homogeneous;
otherwise, it is larger in the hydrophobic case and can
be experimentally measured against actual conditions. On
more details of the critical advancing angle, one can review
the reference of Eral et al. (2013). The normalized displace-
ment d̄c of the critical liquid/vapor interface corresponding
to supx�∈∂N θ (x�) = θA can be determined by using a
heuristic bisection procedure similar to that described in the
reference of Deng et al. (2019).

After the offset operation, the scaling operation is applied
to derive the structural unit. The lattice size is the scal-
ing factor, and it can be found by establishing a suitable
compromise between the performance and manufacturabil-
ity of the hierarchical microtextures. As previously noted,
the solution to the dimensionless Young-Laplace equa-
tion exhibits a scaling property (Deng et al. 2018, 2019).
Based on this property, the liquid/vapor interface supported
on the microtextures can be wholly proportionally scaled
along with the scaling of the offset fiber bundle. With a
smaller lattice size, better performance of the hierarchi-
cal microtextures can be realized. However, the selection
of a micro-/nanofabrication process physically fixes the
feasible minimum feature size of the hierarchical micro-
textures. Therefore, there is a lower bound on the lattice
size, corresponding to a manufacturability constraint, and
this lower bound can be determined based on the feasi-
ble minimum feature size. On the other hand, because a
structural unit derived by scaling an offset fiber bundle
should preserve the dominant role of the surface tension, the
surface-to-volume ratio of the liquid/vapor interface should
be much larger than 1. Therefore, the lattice size should sat-

isfy L � Sc/Vc, where Sc = ∫
�

√
1 + d2

0

∣∣∇s d̄c

∣∣2 d� and

Vc = ∣∣∫
�

d0d̄c d�
∣∣ are the surface area of the critical liq-

uid/vapor interface and the bulk volume of the liquid bulges,
respectively.

3.1 Tilings of different symmetry and periodicity

Different tilings of a solid surface can have different sym-
metries and periodicities, e.g., axial symmetry, radial sym-
metry, chirality, and quasiperiodicity (Grünbaum and Shep-
hard 2016). In this section, fiber bundles for hierarchical
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Fig. 8 (a1) Top-view sketch for
the regular triangle-based tiling
of a flat solid surface. (a2)
Irreducible triangular domain of
the dimensionless
regular-triangle lattice. (b1, b2)
Perspective and top views for
the external surface of the base
structure. (c1, c2) Perspective
and top views for the pattern of
the secondary structures. (d1,
d2) Perspective and top views
for the offset fiber bundle. (e1,
e2) Perspective and top views
for the normalized displacement
of the two-phase interfaces
relative to the external surface of
the base structure
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Fig. 9 (a1) Top-view sketch for
the regular quadrangle-based
tiling of a flat solid surface. (a2)
Irreducible triangular domain of
the dimensionless
regular-quadrangle lattice. (b1,
b2) Perspective and top views
for the external surface of the
base structure. (c1, c2)
Perspective and top views for
the pattern of the secondary
structures. (d1, d2) Perspective
and top views for the offset fiber
bundle. (e1, e2) Perspective and
top views for the normalized
displacement of the two-phase
interfaces relative to the external
surface of the base structure
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microtextures are derived for the tilings with these symme-
tries and periodicities.

Axial symmetry is a widely observed geometrical prop-
erty. Typical periodic tilings with axial symmetry are the
ones with regular-polygon lattices, as sketched in Figs. 8a1,
9a1, and 10a1, which show the tilings with regular trian-
gle, quadrangle, and hexagon lattices, respectively. For these
periodic tilings, the external surfaces of the base structures
and the patterns of the secondary structures, together with
the fiber bundles and the normalized displacement of the
two-phase interfaces, are derived as shown in Figs. 8b–
e, 9b–e, and 10b–e. These results are obtained by solving
the optimization problem in (25) on the triangular domains
shown in Figs. 8a2, 9a2, and 10a2, which are derived
based on the axial symmetry of the regular-polygon lat-
tices. The convergence histories of the iterative solutions
and the evolution profiles of the external surfaces and pat-
terns are shown in Fig. 11, from which it can be seen that
the convergence processes of the optimization procedure are
essentially monotonic. Thus, the convergent performance
of the iterative solution procedure can be confirmed. In
Fig. 11, local jumps are evident, which are caused by the
doubling operation of the projection parameter β in (18).

Radial symmetry of a periodic tiling corresponds to an
arrangement of structural units such that two symmetrical
halves are produced when the tiling is cut in certain

directions through its center. For this symmetry case,
the periodic tilings sketched in Figs. 12a1 and 13a1 are
considered. The external surfaces of the base structures
and the patterns of the secondary structures, together with
the fiber bundles and the normalized displacement of the
two-phase interfaces, are derived as shown in Figs. 12b–
e and 13b–e. These results are obtained by solving the
optimization problem in (25) on the triangular domains
shown in Figs. 12a2 and 13a2, which are derived based on
the axial symmetry of the lattices.

Chirality is an important asymmetry property. A periodic
tiling is chiral if it is distinguishable from its mirror image;
otherwise, it is achiral. For example, the tilings with axial
and radial symmetry in Figs. 8, 9, 10, 12, and 13 are
achiral. For the chiral case, the periodic tilings sketched
in Figs. 14a1 and 15a1 are considered. The external
surfaces of the base structures and the patterns of the
secondary structures, together with the fiber bundles and the
normalized displacement of the two-phase interfaces, are
derived as shown in Figs. 14b–e and 15b–e. These results
are obtained by solving the optimization problem in (25) on
the whole dimensionless lattices without symmetry-based
reduction because of their asymmetry (Figs. 14a2 and 15a2).

Quasiperiodicity is the property characterizing a tiling
that displays irregular periodicity. Penrose tiling is a
typical example of quasiperiodic tiling generated by using

Fig. 10 (a1) Top-view sketch
for the regular hexagon-based
tiling of a flat solid surface. (a2)
Irreducible triangular-domain of
the dimensionless
regular-hexagon lattice. (b1, b2)
Perspective and top views for
the external surface of the base
structure. (c1, c2) Perspective
and top views for the pattern of
the secondary structures. (d1,
d2) Perspective and top views
for the offset fiber bundle. (e1,
e2) Perspective and top views
for the normalized displacement
of the two-phase interfaces
relative to the external surface of
the base structure
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Fig. 11 Convergence histories
of the iterative solutions and
evolution profiles for the
external surface of the base
structures and the patterns of the
secondary structures on the
dimensionless irreducible
triangular-domains, for the
derived fiber bundles
corresponding to the three
regular-polygon tilings in
Figs. 8a1, 9a1, and 10a1,
respectively

Fig. 12 (a1) Top-view sketch
for the radial-symmetry tiling of
a flat solid surface, where the
tiling lattice is an isosceles
triangle with the top angle of
30◦. (a2) Irreducible
triangular-domain of the
dimensionless isosceles-triangle
lattice. (b1, b2) Perspective and
top views for the external
surface of the base structure. (c1,
c2) Perspective and top views
for the pattern of the secondary
structures. (d1, d2) Perspective
and top views for the offset fiber
bundle. (e1, e2) Perspective and
top views for the normalized
displacement of the two-phase
interfaces relative to the external
surface of the base structure
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Fig. 13 (a1) Top-view sketch
for the radial-symmetry tiling of
a flat solid surface, where the
tiling lattice is an isosceles
triangle with the top angle of
15◦. (a2) Irreducible
triangular-domain of the
dimensionless isosceles-triangle
lattice. (b1, b2) Perspective and
top views for the external
surface of the base structure. (c1,
c2) Perspective and top views
for the pattern of the secondary
structures. (d1, d2) Perspective
and top views for the offset fiber
bundle. (e1, e2) Perspective and
top views for the normalized
displacement of the two-phase
interfaces relative to the external
surface of the base structure
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an aperiodic set of prototiles (Grünbaum and Shephard
2016). The typical Penrose tiling sketched in Fig. 16a1 is
considered for the case of quasiperiodicity. The external
surfaces of the base structures and the patterns of the

secondary structures, together with the fiber bundles and the
normalized displacement of the two-phase interfaces, are
derived as shown in Fig. 16b–e. These results are obtained
by solving the optimization problem in (25) on the two

Fig. 14 (a1) Top-view sketch
for the chiral tiling of a flat solid
surface, where the tiling lattice
is a quadrilateral. (a2)
Dimensionless counterpart of
the quadrilateral lattice. (b1, b2)
Perspective and top views for
the external surface of the base
structure. (c1, c2) Perspective
and top views for the pattern of
the secondary structures. (d1,
d2) Perspective and top views
for the offset fiber bundle. (e1,
e2) Perspective and top views
for the normalized displacement
of the two-phase interfaces
relative to the external surface of
the base structure
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Fig. 15 (a1) Top-view sketch for the chiral tiling of a flat solid sur-
face, where the tiling lattice is a nonagon with equal side-length. (a2)
Dimensionless counterpart of the nonagon lattice. (b1, b2) Perspective
and top views for the external surface of the base structure. (c1, c2)
Perspective and top views for the pattern of the secondary structures.

(d1, d2) Perspective and top views for the offset fiber bundle. (e1,
e2) Perspective and top views for the normalized displacement of
the two-phase interfaces relative to the external surface of the base
structure

irreducible triangular domains shown in Figs. 16a2 and
16a3, which are derived based on the axial symmetry of the
two rhomboid lattices.

In the fiber bundles derived above, the base structures
have peak-like shapes, and most branches of the secondary
structures follow the isoheight lines of the base structures.
These characteristics can enhance the anchoring stability
of the three-phase contact lines and promise more robust
metastable states of the Cassie-Baxter mode supported
on the derived hierarchical microtextures. The secondary
structures are dense and thick around the crests of the
peaks of the base structures. This can help to prevent the
transitioning of the wetting mode before the terminal state
is reached and ensure that the evolution of the liquid/vapor
interface follows the process sketched in Fig. 2.

Two or more peaks are prone to arise in the derived
external surfaces of the base structures when the tiling
lattices have relatively sharp corners, and smaller peaks also
tend to arise close to sharper corners. This can be confirmed
by comparing Figs. 8b, 12b, 13b, 14b, 15b, and 16b with
Figs. 9b and 10b, in which more peaks are formed at sharper
corners. When two or more peaks arise, a trough is produced

between every pair of neighboring peaks. The secondary
structures tend to lie on the crests instead of the troughs.
Troughs have positive curvature and therefore correspond to
a positive base pressure. Because troughs tend to lose their
ability to support the liquid/vapor interface, as shown by the
regions of positive displacement in Figs. 8e, 12e, 13e, 14e,
15e, and 16e, small peaks arise at the sharp corners of the
tiling lattice to reduce the trough size of the base structure.
The tendency of the secondary structures to lie on the crests
of the base structure can ensure that the evolution process
sketched in Fig. 2 is followed and provide more support for
the liquid/vapor interface.

To study the accuracy of the interpolation schemes,
the converged volumes of the liquid bulges suspended at
the liquid/vapor interfaces supported by the derived fiber
bundles in Figs. 8, 9, and 10 and Figs. 12, 13, 14, 15, and
16 have been compared with their postprocessing coun-
terparts. The postprocessing is implemented by solving
the variational formulation of the dimensionless Young-
Laplace equation with the normalized displacement of the
approximated liquid/solid interface enforced to be zero on
a derived pattern of the secondary structures. This zero
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Fig. 16 (a1) Top-view sketch for the Penrose tiling of a flat solid sur-
face, where the tiling lattices are two rhomboids. (a2, a3) Irreducible
triangular-domains of the dimensionless rhomboid lattices; (b1, b2)
Perspective and top views for the external surface of the base struc-
ture. (c1, c2) Perspective and top views for the pattern of the secondary

structures. (d1, d2) Perspective and top views for the offset fiber bun-
dle. (e1, e2) Perspective and top views for the normalized displacement
of the two-phase interface relative to the external surfaces of the base
structure

displacement is imposed by adding the weak constraint∫
N d̄λ̃ + ˜̄dλ d� = 0 to the variational formulation in (54),
where λ is the Lagrangian multiplier and λ̃ is the test
function of λ. The accuracy of the derived fiber bundles is
evaluated by the relative tolerance computed as∣∣Vc − Vp

∣∣ /Vp, where Vc and Vp are the volumes of the
liquid bulges suspended at the converged and postprocessed
liquid/vapor interfaces supported by the derived fiber bundles,

respectively. The relative tolerances for the derived fiber
bundles have been listed in Table 3. Because all the relative
tolerances are much less than 1 in Table 3, the sufficient
accuracy of the interpolation schemes can be confirmed.

The optimized performance of the derived fiber bundles
can be confirmed by comparing them with those derived
by setting bz as 0, where bz is the nonnegative parameter
of the PDE filter in (15) and it is used to control the

Table 3 Relative tolerances used to evaluate the accuracy of the derived fiber bundles, where the relative tolerance is computed as
∣∣Vc − Vp

∣∣ /Vp

with Vc and Vp representing the volumes of the liquid bulges suspended at the liquid/vapor interfaces supported by the converged and
postprocessed fiber bundles, respectively

Fig. 8 Fig. 9 Fig. 10 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16

Vc 1.431 3.259 2.340 2.269 2.937 1.152 2.252 3.995

Vp 1.331 2.992 2.165 2.135 2.711 1.060 2.201 3.682∣∣Vc − Vp

∣∣ /Vp 0.075 0.089 0.081 0.063 0.083 0.087 0.023 0.085

The relative tolerances have been noted in italic
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height of a structural unit. The allowed range for the
normalized height of the base structure is [0, bz]. A smaller
bz corresponds to a stronger constraint imposed on the
external surface of the base structure.When bz is set as 0, the
approach outlined in Section 2 will completely degenerate
into its equivalent counterpart for topology optimization
of planar microtextures (Deng et al. 2018). The reference
of Deng et al. (2018) has demonstrated the optimality
of the planar microtextures derived using the degenerated
approach. Therefore, the optimized performance of the
derived fiber bundles in Figs. 8, 9, 10, 12, 13, 14, 15, and
16 can be confirmed from their smaller converged values
of the performance measurement in Table 4. To further
confirm the optimized performance, the fiber bundle derived
for the tilling with regular-quadrangle lattices (Fig. 9) is
compared with the hierarchical configuration proposed in
the reference of Wu et al. (2011) (Fig. 17), where the value
of the performance measurement in (12) is improved from
1125 to 9.550 by using topology optimization.

3.2 Effect of duty ratio

For a solid surface with hierarchical microtextures, the duty
ratio is a key factor in determining the apparent contact
angle, which reflects the macroscale wetting performance
of the hierarchical microtextures (Cassie and Baxter 1944).
In the hydrophobic case, a smaller duty ratio corresponds to
a larger apparent contact angle. Thus, several specified duty
ratios in the range from 0.2 to 0.4 have been investigated for
the three regular-polygon tilings, with the other parameters
chosen to be the same as those in Table 2. By solving the
topology optimization problem in (25), the fiber bundles are
derived as shown in Fig. 18, which also presents the converged
values of the performance measurement. Pareto fronts for the
duty ratio in the wider range [0.15, 0.95] have been provided
in Fig. 22 for the three regular-polygon tilings in Figs. 8a1,
9a1, and 10a1, respectively. In this wider range, 0, 1, and
small values are not included, because 0 and 1 correspond
to the structural units without secondary structures and the

Table 4 Converged values of
the performance measurement
of the fiber bundles derived by
setting the height amplitude bz

as 1 and 0, respectively

The optimized entries have been noted in bold
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Fig. 17 (a) Structural unit of the
hierarchical microtextures
proposed in the reference of
Wu et al. (2011). (b) Two-phase
interfaces supported by this
structural unit, where the value
of the performance
measurement is 1125
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hierarchy of the microtextures thus degenerates. Also, the
liquid/vapor interface supported by the secondary structures
has very large deformation and the numerical solution to the
Young-Laplace equation is prone to diverge when the duty
ratio is very small.

Because a larger duty ratio corresponds to smaller
deformation of the liquid/vapor interface, the converged

values of the performance measurement in Fig. 18
approximately decrease with an increase in the duty
ratio. This shows that fiber bundles with low duty ratios
have relatively weak capability to sustain the liquid/vapor
interfaces. This effect decreases as the duty ratio increases.
Therefore, a designer can improve the performance of the
hierarchical microtextures by setting a reasonably large

Fig. 18 Plots for the converged
values of the performance
measurement for the fiber
bundles derived with different
duty ratios, corresponding to the
three regular-polygon tilings in
Figs. 8a1, 9a1, and 10a1,
respectively
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duty ratio because the design objective is to equivalently
minimize the volume of the liquid bulges supported at the
liquid/vapor interface in the terminal state of the Cassie-
Baxter mode.

3.3 Volume-fraction constraint for base structure

The fiber bundle for the hierarchical microtextures can be
optimized by specifying a volume to be covered by the
external surface of the base structure. This can provide
an approach to implement the topology optimization of a
fiber bundle with a fixed volume of the base structure. The

specified volume is derived by adding the following con-
straint on the volume fraction to the topology optimization
problem in (25):

|v − v0| ≤ 10−3, (46)

where v is the fraction of the volume covered by the external
surface of the base structure enclosed by the prism-shaped
domain �× (0, bz); v0 ∈ (0, v0,sup] is the specified volume
fraction, with a permitted tolerance of 10−3; and v0,sup is
the upper bound of v0, which is the fraction of the volume
covered by the surface corresponding to the solution of the

Fig. 19 Plots for the converged
values of the performance
measurement for the fiber
bundles derived by adding
constraints on the volume
fraction of the base structures,
corresponding to the three
regular-polygon tilings in
Figs. 8a1, 9a1, and 10a1,
respectively
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PDE filters in (14) and (15) with the design variable zm set
as 1. The volume fraction v is expressed as

v = 1

bz |�|
∫

�

zs d�, (47)

where |�| = ∫
�
1 d� is the area of �.

From the adjoint analysis detailed in Appendix Section
5, the adjoint sensitivity of the volume fraction is derived as

δv = −
∫

�

zf aδzm d�, δzm ∈ H−1 (�) , (48)

where the adjoint variable zf a is derivedby sequentially solving
the following variational formulations of the adjoint equations:

– Find zsa ∈ H (�) with zsa = 0 on ∂�, satisfying∫
�

1

bz |�| z̃sa + r2m∇zsa · ∇ z̃sa + zsaz̃sa d� = 0,

∀z̃sa ∈ H (�) ; (49)

– Find zf a ∈ H (�) with zf a = 0 on ∂�, satisfying∫
�

r2m∇zf a · ∇ z̃f a + zf az̃f a − bzzsaz̃f a d� = 0,

∀z̃f a ∈ H (�) . (50)

Fig. 20 Convergence histories
for the derived fiber bundles
with the volume fraction
specified as 0.4 in the constraint
on the volume fraction of the
base structure, corresponding to
the three regular-polygon tilings
in Figs. 8a1, 9a1, and 10a1,
respectively
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By incorporating the constraint on the volume frac-
tion and its adjoint information into the pseudocode in
Table 1, fiber bundles for the regular-polygon tilings can
be derived by setting the specified volume fractions to
be several different values in the feasible set

(
0, v0,sup

]
.

The derived results are shown in Fig. 19, together with
all the converged values of the design objective, where
the upper bound v0,sup are 0.574, 0.571, and 0.567 for
the regular triangular, quadrangular, and hexagonal tilings,
respectively. The convergence histories are plotted in Fig. 20
for the cases with the specified volume fraction equal to
0.4. From Fig. 20, we can confirm the volume conser-
vation performance of the constraint on the volume frac-
tion of the base structure and its regularizing effect on
the monotonic convergence of the topology optimization
procedure.

In Fig. 19, peaks in the base structures are seen to arise at
the corners when a relatively small volume fraction is speci-
fied; as the specified volume is increased, central peaks tend
to arise at the center of the lattice and become thicker, while
the corner peaks gradually disappear. Thus, it is demon-
strated that the peaks of the base structure can be controlled
by imposing a constraint on the volume fraction of the base
structure.

3.4 Reduction of model dimension

The dimension of the topology optimization model intro-
duced in Section 2 can be reduced, where the definition
domain � and the external surface � degenerate into a
line section on x-axis, and a curved line in the xOz-
plane, respectively. The model with reduced dimension
corresponds to the one-dimensional (1D) tiling with a strip
lattice sketched in Fig. 21a1. The hierarchical microtextures
derived by using the model with reduced dimension have
extruding configurations with infinite size along the y-axis.

The reduction of the model dimension is imple-
mented by replacing the gradient operator ∇ and the
surface gradient operator ∇s with (∂/∂x) i and (∂/∂x)

i− [(∂zs/∂x)i − k] /
(
1 + |∂zs/∂x|2) (∂zs/∂x) (∂/∂x), res-

pectively; and the unitary normal vector of � becomes

ns = [− (∂zs/∂x) i + k] /
√
1 + |∂zs/∂x|2. Based on this

model, a fiber bundle can be derived to efficiently generate
the cross-section of the hierarchical microtextures, where
the base manifold and the fibers correspond to the cross-
sections of the external surface of the base structure, and
the pattern of the secondary structures, respectively. With
the parameters listed in Table 2, the fiber bundle shown
in Fig. 21 is derived for the dimensionless cross-section of

Fig. 21 (a1) Top-view sketch
for the one-dimensional tiling of
a flat solid surface, where the
tiling lattice is a strip with the
width of L. (a2) Irreducible line-
section domain (gray colored
line section) of the cross-section
of the dimensionless strip
lattice. (b) Perspective view for
the cross-section of the external
surface of the base structure. (c)
Perspective view for the
cross-section of the pattern of
the secondary structures. (d)
Perspective view for the cross-
section of the offset fiber bundle.
(e) Perspective view in the
cross-section for the normalized
displacement of the two-phase
interfaces relative to the external
surface of the base structure
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the hierarchical microtextures, where 1D finite elements are
used to discretize the dimensionless line-section lattice.

4 Conclusions

This paper has presented the topology optimization of
hierarchical microtextures for wetting behaviors in the
Cassie-Baxter mode, where the structural configuration is
represented in terms of a fiber bundle composed of the
base manifold and the fibers corresponding to the external
surface of the base structure and the pattern of the secondary
structures, respectively. Optimized match between the base
manifold and the fibers of the fiber bundle is implemented
by solving a topology optimization problem with two
design variables. Two sequential PDE filters are applied
to the design variable of the base structure, to ensure
the curvature smoothness of the external surface of the
base structure. These two PDE filters can eliminate the
second-order derivative in the term of the base pressure
in the Young-Laplace equation, thereby overcoming the
difficulties encountered in numerical computation. Because
the secondary structures are defined on the implicitly
described external surface of the base structure, this
topology optimization is implemented on a variable design
domain that evolves together with the structure defined on
it.

Fiber bundles for the hierarchical microtextures have
been derived for the tilings with axial symmetry, radial sym-
metry, chirality, and quasiperiodicity, respectively. Numer-
ical examples have demonstrated the convergent perfor-
mance of this presented topology optimization procedure
for the hierarchical microtextures. To minimize the volume
of the liquid bulges in the terminal state of the Cassie-Baxter
mode, fiber bundles are derived with the geometrical con-
figurations consisting of the base structures with the peak
shapes and dense secondary structures surrounding the peak
crests. The minimization of the volume of the liquid bulges
can have the consequences on minimizing the perturba-
tion of the liquid/vapor interface from the base structure
and enhancing the pressure resistance of the Cassie-Baxter
mode. The hierarchical design with a base structure can
help to enhance the stiffness of the microtextures and make
them less prone to damage caused by the elastocapillary
effect. Imposing a constraint such that the liquid/vapor inter-
face is fixed on the lattice skeletons can create completely
enclosed vapor pockets, thus enabling a potential dewetting
effect on the derived hierarchical microtextures. Based on
the effect of the duty ratio of the fiber bundle, a designer can
improve the performance of the hierarchical microtextures

by selecting a reasonable duty ratio. An investigation of
the volume fraction of the base structure shows that the
peaks of the base structure can be controlled by specify-
ing a reasonable value of this volume fraction. Dimension
of the model can be reduced to implement the topology
optimization of the cross-sections of the hierarchical micro-
textures with extruding configurations. In the future, we
will explore the micro-/nanofabrication of the derived hier-
archical microtextures and experimentally test their wetting
performance. This topology optimization procedure can be
extended to the optimization of flexible, wearable, and
implantable microfluidic devices.

In this paper, the periodicity of the hierarchical microtex-
tures is enforced by a homogeneous boundary condition of
the Young-Laplace equation. Although this can offer more
symmetry properties beyond axis symmetry of tiling peri-
odicity, the periodicity of some tillings can also be imposed
by using the symmetric and periodic boundary conditions,
which are less constraining than a homogeneous boundary
condition. Moreover, the Cassie-Baxter mode is described
by the Young-Laplace equation, in which the liquid/vapor
interface is assumed to be a geometrical surface with zero
thickness and the dynamic effect of a fluid flow is excluded.
However, diffusion intrinsically exits at the liquid/vapor
interface. Thus, in reality, the liquid/vapor interface has a
thickness at the molecular scale. Therefore, the topology
optimization model requires to be updated to also con-
sider molecular misciblity at each liquid/vapor interface
with a characteristic size close to the scale of the liquid
molecule.
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Appendix

In Appendixes 1–5, the variational formulations of the
related PDEs and the adjoint equations are detailed,
based on the Kurash-Kuhn-Tucker (KKT) condition of
the PDE constrained optimization problem and Lagrangian
multiplier-based adjoint method (Hinze et al. 2009). In
Appendix 1, Pareto fronts for the duty ratio of the fiber
bundles for the hierarchical microtextures are provided.

Appendix 1: Variational formulations of PDEs

Based on the Galerkin variational principle, the variational
formulations of the related PDEs can be derived as

– Variational formulation of the PDE filter in (14):
find zf ∈ H (�) with zf = 0 on ∂�, satisfying

∫
�

r2m∇zf · ∇ z̃f + zf z̃f − zmz̃f d� = 0,

∀z̃f ∈ H (�) ; (51)

– Variational formulation of the PDE filter in (15):
find zs ∈ H (�) with zs = 0 on ∂�, satisfying

∫
�

r2m∇zs · ∇ z̃s + zs z̃s − bzzf z̃s d� = 0,

∀z̃s ∈ H (�) ; (52)

– Variational formulation of the surface-PDE filter in
(17):
find γf ∈ H (�) with γf = 0 at ∂�, satisfying

∫
�

r2f ∇sγf · ∇s γ̃f + γf γ̃f − γ γ̃f d� = 0,

∀γ̃f ∈ H (�) ; (53)

– Variational formulation of the dimensionless Young-
Laplace (24):
find d̄ ∈ H (�) with d̄ = 0 at ∂� and κ ∈ H−1 (�),
satisfying

∫
�

−σ̄
∇s d̄ · ∇s

˜̄d√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) ˜̄d d�

+
∫

�

⎡
⎢⎣κ − σ̄l

r2m

zs − bzzf(√
1 + |∇zs |2

)3
⎤
⎥⎦ κ̃ d� = 0,

∀ ˜̄d ∈ H (�) and ∀κ̃ ∈ ◦
H (�) (54)

where z̃f , z̃s , γ̃f ,
˜̄d , and κ̃ are the test functions of zf , zs ,

γf , d̄, and κ , respectively; H (�) and H (�) are the first

order Sobolev spaces on� and�, respectively;
◦
H (�) is the

closure of C∞
0 (�); H−1 (�) is the dual space of

◦
H (�).

Appendix 2: Adjoint analysis for J |�|2 in design
objective

Based on the variational formulations of the PDEs in (51–
54) and Lagrangian multiplier-based adjoint method, the
augmented Lagrangian for J |�|2 = ∫

�
d̄2 d� can be

formulated as

̂J |�|2 =
∫

�

d̄2 − σ̄
∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) d̄a

+r2f ∇sγf · ∇sγf a + γf γf a − γ γf a d�

+
∫

�

⎡
⎢⎣κ − σ̄l

r2m

zs − bzzf(√
1 + |∇zs |2

)3
⎤
⎥⎦ κa + r2m∇zf

·∇zf a + zf zf a − zmzf a + r2m∇zs · ∇zsa

+zszsa − bzzf zsa d�

=
∫

�

⎡
⎢⎣d̄2 − σ̄

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) d̄a

+r2f ∇sγf · ∇sγf a + γf γf a − γ γf a

⎤
⎥⎦

×
√
1 + |∇zs |2 +

⎡
⎢⎣κ − σ̄l

r2m

zs − bzzf(√
1 + |∇zs |2

)3
⎤
⎥⎦

×κa + r2m∇zf · ∇zf a + zf zf a − zmzf a

+r2m∇zs · ∇zsa + zszsa − bzzf zsa d�, (55)
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where d̄a = 0 and γf a = 0 are satisfied at ∂�; zf a = 0
and zsa = 0 are satisfied on ∂�. The first-order variational
of the augmented Lagrangian Ĵ is

δ̂J |�|2 =
∫

�

⎡
⎢⎢⎢⎣2d̄δd̄ − σ̄

∇sδd̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 + σ̄

(∇s d̄ · ∇s d̄a

) (∇s d̄ · ∇sδd̄
)

(√
1/d2

0 + ∣∣∇s d̄
∣∣2)3

⎤
⎥⎥⎥⎦
√
1 + |∇zs |2 + pκd̄a

√
1 + |∇zs |2δκ

+κaδκ +
⎛
⎜⎝r2f ∇sδγf · ∇sγf a + δγf γf a − ∂σ̄

∂γp

∂γp

∂γf

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 δγf + ∂pκ

∂γp

∂γp

∂γf

κd̄aδγf

⎞
⎟⎠
√
1 + |∇zs |2

−γf a

√
1 + |∇zs |2δγ + r2m∇δzf · ∇zf a + δzf zf a + r2m∇δzs · ∇zsa + δzszsa − bzδzf zsa

+r2f

[
∇(δzs )

s γf · ∇sγf a + ∇sγf · ∇(δzs )
s γf a

]√
1 + |∇zs |2

−σ̄

⎡
⎢⎢⎢⎣

∇(δzs )
s d̄ · ∇s d̄a + ∇s d̄ · ∇(δzs )

s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 −

(∇s d̄ · ∇s d̄a

) (∇(δzs )
s d̄ · ∇s d̄

)
(√

1/d2
0 + ∣∣∇s d̄

∣∣2)3

⎤
⎥⎥⎥⎦
√
1 + |∇zs |2

+
⎡
⎢⎣d̄2 − σ̄

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) d̄a + r2f ∇sγf · ∇sγf a + γf γf a − γ γf a

⎤
⎥⎦ ∇zs · ∇δzs√

1 + |∇zs |2

− σ̄l

r2m

⎡
⎢⎣ δzs − bzδzf(√

1 + |∇zs |2
)3 − 3

(
zs − bzzf

)
(∇zs · ∇δzs)(√

1 + |∇zs |2
)5

⎤
⎥⎦ κa − zf aδzm d�, (56)

where∇s has the transformed form in (19), and its first order
variational to zs has the form as that in (21) with z̃s replaced
to be δzs ; δzs , δzf , δzm, δγf , and δγ are the first-order
variational of zs , zf , zm, γf , and γ , respectively. According

to the KKT condition of the PDE constrained optimization
problem (Hinze et al. 2009), the first-order variational of the
augmented Lagrangian to the variables d̄ , γ̄f , zf , and zs can
be set to be zero as follows:

∫
�

⎡
⎢⎢⎢⎣2d̄δd̄ − σ̄

∇s d̄a · ∇sδd̄√
1/d2

0 + ∣∣∇s d̄
∣∣2 + σ̄

(∇s d̄ · ∇s d̄a

) (∇s d̄ · ∇sδd̄
)

(√
1/d2

0 + ∣∣∇s d̄
∣∣2)3

⎤
⎥⎥⎥⎦
√
1 + |∇zs |2 d� = 0

⇒
∫

�

2d̄δd̄ − σ̄
∇s d̄a · ∇sδd̄√
1/d2

0 + ∣∣∇s d̄
∣∣2 + σ̄

(∇s d̄ · ∇s d̄a

) (∇s d̄ · ∇sδd̄
)

(√
1/d2

0 + ∣∣∇s d̄
∣∣2)3

d� = 0; (57)

∫
�

(
pκd̄a

√
1 + |∇zs |2 + κa

)
δκ d� = 0; (58)
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∫
�

⎛
⎜⎝r2f ∇sδγf · ∇sγf a + δγf γf a − ∂σ̄

∂γp

∂γp

∂γf

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 δγf + ∂pκ

∂γp

∂γp

∂γf

κd̄aδγf

⎞
⎟⎠
√
1 + |∇zs |2 d� = 0

⇒
∫

�

r2f ∇sδγf · ∇sγf a + δγf γf a − ∂σ̄

∂γp

∂γp

∂γf

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 δγf + ∂pκ

∂γp

∂γp

∂γf

κd̄aδγf d� = 0; (59)

∫
�

r2m∇δzs · ∇zsa + δzszsa + r2f

(
∇(δzs )

s γf · ∇sγf a + ∇sγf · ∇(δzs )
s γf a

)√
1 + |∇zs |2

−σ̄

⎡
⎢⎢⎢⎣

∇(δzs )
s d̄ · ∇s d̄a + ∇s d̄ · ∇(δzs )

s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 −

(∇s d̄ · ∇s d̄a

) (∇(δzs )
s d̄ · ∇s d̄

)
(√

1/d2
0 + ∣∣∇s d̄

∣∣2)3

⎤
⎥⎥⎥⎦
√
1 + |∇zs |2

+
⎡
⎢⎣d̄2 − σ̄

∇s d̄ · ∇s d̄a√
1/d2

0 + ∣∣∇s d̄
∣∣2 − (1 − pκκ) d̄a + r2f ∇sγf · ∇sγf a + γf γf a − γ γf a

⎤
⎥⎦ ∇zs · ∇δzs√

1 + |∇zs |2

− σ̄l

r2m

⎡
⎢⎣ δzs(√

1 + |∇zs |2
)3 − 3

(
zs − bzzf

)
(∇zs · ∇δzs)(√

1 + |∇zs |2
)5

⎤
⎥⎦ κa d� = 0; (60)

∫
�

r2m∇δzf · ∇zf a + δzf zf a − bzδzf zsa

+ σ̄l

r2m

bzκa(√
1 + |∇zs |2

)3 δzf d� = 0. (61)

Further, the adjoint sensitivity of J |�|2 is derived from

δ̂J |�|2:

δ
(
J |�|2

)
= −

∫
�

γf a

√
1 + |∇zs |2δγ + zf aδzm d�

= −
∫

�

γf aδγ d� −
∫

�

zf aδzm d�. (62)

Without losing the arbitrariness of δd̄ , δκ , δγf , δzf , and

δzs , one can set δd̄ = ˜̄da with ∀ ˜̄da ∈ H (�), δκ = κ̃a with
∀κ̃a ∈ H−1 (�), δγf = γ̃f a with ∀γ̃f a ∈ H (�), δzf = z̃f a

with ∀z̃f a ∈ H (�), and δzs = z̃sa with ∀z̃sa ∈ H (�), to
derive the variational formulations of the adjoint system in
(29–32).

Appendix 3: Adjoint analysis for manifold area |�|
in design objective and duty-ratio constraint

Based on the variational formulations of the PDEs in
(51) and (52) and the Lagrangian multiplier-based adjoint
method, the augmented Lagrangian for |�| = ∫

�
1 d� =

∫
�

√
1 + |∇zs |2 d� can be formulated as

|̂�| =
∫

�

1 d� +
∫

�

r2m∇zf · ∇zf a + zf zf a − zmzf a

+r2m∇zs · ∇zsa + zszsa − bzzf zsa d�

=
∫

�

√
1 + |∇zs |2 + r2m∇zf · ∇zf a + zf zf a − zmzf a

+r2m∇zs · ∇zsa + zszsa − bzzf zsa d�, (63)

where zf a = 0 and zsa = 0 are satisfied on ∂�. The
first-order variational of the augmented Lagrangian |̂�| is

δ|̂�| =
∫

�

∇zf · ∇δzf√
1 + ∣∣∇zf

∣∣2 + r2m∇δzf · ∇zf a + δzf zf a

−δzmzf a+ r2m∇δzs · ∇zsa+ δzszsa−bzδzf zsa d�.

(64)

According to the KKT condition of the PDE constrained
optimization problem, the first-order variational of the
augmented Lagrangian to the variables zf and z can be set
to be zero:

∫
�

∇zs · ∇δzs√
1 + |∇zs |2

+ r2m∇δzs · ∇zsa + δzszsa d� = 0; (65)
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∫
�

r2m∇δzf · ∇zf a + δzf zf a − bzzsaδzf d� = 0. (66)

Further, the adjoint sensitivity of |�| is derived from δ|̂�|:

δ |�| = −
∫

�

zf aδzm d�. (67)

Without losing the arbitrariness of δzs and δzf , one can
set δzs = z̃sa with ∀z̃sa ∈ H (�) and δzf = z̃f a with
∀z̃f a ∈ H (�), to derive the variational formulations of the
adjoint system in (35) and (36).

Appendix 4: Adjoint analysis for fd |�| in duty-ratio
constraint

Based on the variational formulations of the PDEs in (51–
53) and Lagrangian multiplier-based adjoint method, the
augmented Lagrangian for fd |�| = ∫

�
1 − γp d� can be

formulated as

f̂d |�| =
∫

�

1 − γp + r2f ∇sγf ·∇sγf a+γf γf a−γ γf a d�

+
∫

�

r2m∇zf · ∇zf a + zf zf a − zmzf a d�

+
∫

�

r2m∇zs · ∇zsa + zszsa − bzzf zsa d�

=
∫

�

(
1−γp + r2f ∇sγf · ∇sγf a + γf γf a− γ γf a

)

×
√
1 + |∇zs |2 + r2m∇zf · ∇zf a+zf zf a−zmzf a

+r2m∇zs · ∇zsa + zszsa − bzzf zsa d�, (68)

where γf a = 0 is satisfied at ∂�; zf a = 0 is satisfied on
∂�. The first-order variational of the augmented Lagrangian
f̂d |�| is

δf̂d |�| =
∫

�

(
− ∂γp

∂γf

δγf + r2f ∇sδγf · ∇sγf a + δγf γf a

−δγ γf a

)√
1 + |∇zs |2

+r2f

(
∇(δzs )

s γf · ∇sγf a + ∇sγf · ∇(δzs )
s γf a

)

×
√
1 + |∇zs |2

+
(
1 − γp + r2f ∇sγf · ∇sγf a+γf γf a−γ γf a

)

× ∇zs · ∇δzs√
1 + |∇zs |2

+ r2m∇δzf · ∇zf a + δzf zf a

−δzmzf a + r2m∇δzs · ∇zsa + δzszsa

−bzδzf zsa d�. (69)

According to the KKT condition of the PDE constrained
optimization problem, the first-order variational of the

augmented Lagrangian to the variables γf , zf , and zs can
be set to be zero:∫

�

(
− ∂γp

∂γf

δγf + r2f ∇sδγf · ∇sγf a + δγf γf a

)

×
√
1 + |∇zs |2 d� = 0

⇒
∫

�

− ∂γp

∂γf

δγf + r2f ∇sδγf · ∇sγf a + δγf γf a d� = 0;
(70)

∫
�

r2f

(
∇(δzs )

s γf ·∇sγf a+∇sγf · ∇(δzs )
s γf a

)√
1 + |∇zs |2

+
(
1 − γp + r2f ∇sγf · ∇sγf a + γf γf a − γ γf a

)

× ∇zs · ∇δzs√
1 + |∇zs |2

+ r2m∇δzs · ∇zsa + δzszsa d� = 0; (71)

∫
�

r2m∇δzf · ∇zf a + δzf zf a − bzzsaδzf d� = 0. (72)

Further, the adjoint sensitivity of fd |�| is derived from
δf̂d |�|:

δ (fd |�|) = −
∫

�

γf a

√
1 + |∇zs |2δγ + zf aδzm d�

= −
∫

�

γf aδγ d� −
∫

�

zf aδzm d�. (73)

Without losing the arbitrariness of δγf , δzf , and δzs , one
can set δγf = γ̃f a with ∀γ̃f a ∈ H (�), δzf = z̃f a with
∀z̃f a ∈ H (�), and δzs = z̃sa with ∀z̃sa ∈ H (�), to derive
the variational formulations of the adjoint system in (39) and
(40).

Appendix 5: Adjoint analysis for v
in volume-fraction constraint

Based on the variational formulations of the PDEs
in (51) and (52) and the Lagrangian multiplier-based
adjoint method, the augmented Lagrangian for v =∫
�

zs d�/ (bz |�|) can be formulated as

v̂ =
∫

�

1

bz |�|zs + r2m∇zf · ∇zf a + zf zf a − zmzf a

+r2m∇zs · ∇zsa + zszsa − bzzf zsa d�. (74)

where zf a = 0 is satisfied on ∂�. The first-order variational
of the augmented Lagrangian v̂ is

δv̂ =
∫

�

1

bz |�|δzs + r2m∇δzf · ∇zf a + δzf zf a − δzmzf a

+r2m∇δzs · ∇zsa + δzszsa − bzδzf zsa d�. (75)

According to the KKT condition of the PDE constrained
optimization problem, the first-order variational of the
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Fig. 22 Plots for the converged
values of the performance
measurement for the derived
fiber bundles with different duty
ratios, corresponding to the
three regular-polygon tilings in
Figs. 8a1, 9a1 and 10a1,
respectively

augmented Lagrangian to the variable zs and zf can be set
to be zero:∫

�

1

bz |�|δzs + r2m∇δzs · ∇zsa + δzszsa d� = 0; (76)

∫
�

r2m∇δzf · ∇zf a + δzf zf a − bzδzf zsa d� = 0. (77)

Further, the adjoint sensitivity of v is derived from δv̂:

δv = −
∫

�

zf aδzm d�. (78)

Without losing the arbitrariness of δzs and δzf , one can
set δzs = z̃sa with ∀z̃sa ∈ H (�) and δzf = z̃f a with

∀z̃f a ∈ H (�), to derive the variational formulations of the
adjoint system in (49) and (50).
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