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Abstract: Due to the limits of computational time and computer memory, topology optimization
problems involving fluidic flow frequently use simplified 2D models. Extruded versions of the 2D
optimized results typically comprise the 3D designs to be fabricated. In practice, the depth of the
fabricated flow channels is finite; the limited flow depth together with the no-slip condition potentially
make the fluidic performance of the 3D model very different from that of the simplified 2D model.
This discrepancy significantly limits the usefulness of performing topology optimization involving
fluidic flow in 2D—at least if special care is not taken. Inspired by the electric circuit analogy method,
we limit the widths of the microchannels in the 2D optimization process. To reduce the difference
of fluidic performance between the 2D model and its 3D counterpart, we propose an applicable 2D
optimization model, and ensure the manufacturability of the obtained layout, combinations of several
morphology-mimicking filters impose maximum or minimum length scales on the solid phase or
the fluidic phase. Two typical Lab-on-chip functional units, Tesla valve and fluidic channel splitter,
are used to illustrate the validity of the proposed application of length scale control.

Keywords: topology optimization; fluidic flow; length scale control; morphology mimicking filters

1. Introduction

With the trend of miniaturization in recent years, Lab-on-a-chip devices have been widely used
in the area of the analysis, synthesis, and separations of biofluidics due to the advantages of high
efficiency, portability, and low reagent consumption [1]. Many functions of the conventional analytical
laboratory can be achieved on a centimeter-level chip, such as injection, mixing, reaction, cleaning,
separation, and detection. In recent years, various microfluidic devices have been designed and
applied, such as micropumps, microvalves, micromixers, and microchannels [2–5]. To pursue more
functions and higher efficiency, the design and optimization of microfluidic devices is a continuously
studied topic.

Borrvall et al. [6] performed topology optimization for fluidic flow governed by the Stokes equation.
Their approach was later generalized to the Navier–Stokes equations by Gersborg–Hansen et al. [7] and
Olesen et al. [8]. Topology optimization methods have been used to successfully design lab-on-a-chip
microfluidic devices, such as microchannel splitters, micropumps, no-moving-part microvalves,
and micromixers [9–15]. The topology optimization model of fluidic flow usually uses a simplified
2D problem. Extruded versions of the 2D optimization results typically comprise the 3D designs to
be fabricated. We remark that if the 2D design is stretched so that the 3D flow path has infinite depth,
then the full 3D problem describing the fluidic flow reduces to the 2D problem used in the optimization.
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However, in practice, the depth of the flow channel is not infinite. The limited flow depth and the
no-slip condition, which states that the flow speed is zero along the walls, together make the fluidic
performance of the 3D model very different from that of the 2D model. This discrepancy significantly
limits the application of the obtained 2D results. Some simplification methods have been proposed by
build pseudo-3D models in recent years [16–19], and these research works are mostly focus on heat sinks
problem. Zhao et al. [20] impose length scale control on the cooling channel. Based on our previous
work [9,14], the length scale control methods are used to design the microfluidic devices with physical
constraints (Diodicity for the example of Tesla valve, or the ratio of flowrate at the outlet for the example
of splitter) in this paper.

Electric circuit analogy is a method of calculating and designing microchannel networks by
analogizing the foundation parameters of the fluid to those of an electrical circuit [21]. When the
height of the channel is constant, the hydraulic resistance is linear with the length and non-linear
with the width of the channel. Inspired by this, we limit the widths of the microchannels in the
optimization process to reduce the difference between the fluidic performance of the 2D and 3D model.
Combinations of morphology mimicking filters [22–24] impose maximum or minimum length scales on
the solid phase or the fluidic phase. The length scale control also ensures the manufacturability of the
obtained layout, which avoids unreasonable small-sized islands inside the fluidic channel or thin-sized
width of the fluidic channel. This paper is organized as follows—the topology optimization method
and electric circuit analogy method are introduced in Section 2; the length scale control method
using the morphology-mimicking filters and several numerical results are presented in Section 3;
the discussion and conclusion are stated in Section 4.

2. Problem Statement

2.1. Fluid Flow Model

Based on the continuity assumption, Navier–Stokes equations describe the fluid flow

ρ(u · ∇)u− η∆u +∇p = f ,

∇ · u = 0,
(1)

where f is the body forces acting on the fluid and u, p, ρ, and η are the velocity, pressure, density,
and viscosity of the fluid, respectively. To model the fluid–solid interface, we let f be an artificial
friction force, similarly as proposed for the Stokes flow by Borrvall et al. [6]. More precisely, the artificial
friction force f = −α(γ)u, where α is the impermeability of the artificial porous material and γ is a
material indicator function. The function γ varies in the interval [0, 1], where 0 and 1 denote the solid
and fluid phase, respectively. The impermeability of the porous material is the interpolation function
of the function γ:

α(γ) = αmax
q(1− γ)

q + γ
, (2)

where αmax is the impermeability of the solid phase and q is a positive value used to adjust the
convexity of the interpolation function. To obtain perfect impermeability of the solid no-slip boundary,
αmax should be infinite; but a finite number has to be chosen to ensure numerical stability. For the
topology optimization of fluid, the aim of the optimization is usually to minimize

Φ =
∫

Ω
2ηε(u) : ε(u) + α(γ)|u|2 dΩ, (3)

where ε(u) =
(
∇u +∇uT) /2, | ∗ | is L2 norm. That is, the typical aim is to minimize the viscous

dissipation inside the computational domain Ω.
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2.2. Electric Circuit Analogy Method

The electric circuit analogy method provides a fast calculation of laminar flow in microchannels
based on the analogous behavior of hydraulic and electric circuits with correlations of pressure to
voltage, volumetric flowrate to current, and hydraulic resistance to electric resistance [21]. The hydraulic
resistance is an important parameter in the design of microfluidic networks by electric circuit analogy.
The hydraulic resistance RH of a rectangular microchannel section can be calculated as [25]

RH =
12ηL

wh3
(

1− h
w

(
192
π5 ∑∞

n=1,3,5
1

n5 tanh
( nπw

2h
))) , (4)

where η is the viscosity of the fluid and w, h, and L are the width, height, and length of the microchannel
section, respectively. Figure 1 illustrates the hydraulic resistance changes with the length (red),
height (blue), and width (green) of the channel, where the viscosity of the fluid η is normalized as 1.
When the height of the channel is constant, the hydraulic resistance changes linearly with the length
and nonlinearly with the width of the channel. By limiting the width of the flow channel, the hydraulic
resistance changes linearly with the length. The hydraulic resistance ratio between different parts of
the fluid network can remain unchanged in different stretching heights, so the difference of fluidic
performance between the 2D model and its 3D counterpart is small. In order to preserve the flexibility
of topology optimization, the changes of the channel width is constrained within a certain range.
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Figure 1. The hydraulic resistance changes with the length (red), height (blue), and width (green) of
the channel, η = 1 .

3. Numerical Experiments

To demonstrate the validity of the proposed method, which can reduce the difference of fluidic
performance between the 2D model and its 3D counterpart by using the size control of the widths
of the fluidic channels, two examples are used in this paper. The viscosity and density of the fluid
are 10−3 Pa·s and 998 kg·m−3, respectively. The inlet velocity is chosen to have a parabolic profile.
The intermediate fluid velocity in the height direction at the entrance of the 3D model is selected to be
consistent with the 2D model’s inlet velocity. For all numerical experiments, Svanberg’s method of
moving asymptotes [26] solves the resulting optimization problem.

We discretize our computational domain Ω by N quadrilateral elements. Comsol multiphysics
solves the governing Navier–Stokes equation using bi-linear tensor product elements together with
GLS (Galerkin least squares) streamline diffusion with the crosswind diffusion parameter set to 0.1.

We let M denote the number of nodal points in the discretization of the design domain ΩD.
We define our material indicator function γ to be an nodal-wise bi-linear function whose restriction
to Ω \ΩD satisfies γ |Ω\ΩD

≡ 1. The M nodal values of the material indicator function in ΩD are
obtained by using a harmonic mean based open–close f W-mean filter. For a comprehensive review
of mathematical morphology, we refer the reader to the Heijmans article [27]. Figure 2 illustrates
the four-basic morphological operators: dilation, erosion, opening, and closing. In colloquial terms,
given a brush with shape B, then the opening of S by B holds all points the can be filled by using this
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brush without touching any point outside S; and given a fully filled space and an eraser with shape B,
the closing of S is the region that remains after having erased as much as possible without removing
any point in S. Or, in other words, applying the opening operator to a set S removes all small parts
from S; similarly, applying the closing operator to a set S removes all small internals holes. The region
obtained by the open operation can be written as a union of translates of B, and the complement of the
region obtained by the close operation can be written as a union of translates of B. It can be shown that
the minimum size of OB(S) as well as Rd \ CB(S) is at least the size of B.

B

S

DB(S)

EB(S) OB(S) = DB(EB(S))

CB(S) = EB(DB(S))

Figure 2. The four basic morphological operators defined by the ball B acting on the set S.

The use of a cascade of filters to approximate the open–close operator was suggested
by Sigmund [28], and harmonic mean based filters were introduced by Svanberg et al. [29]. Using the
notation for fW-filters [30], we define the equally weighted discrete harmonic erode and dilate operators
with radius r > 0 and parameter β > 0 by

EH
r,β(x) = f−1

EH
β

(
D−1

r Gr f EH
β
(x)
)

, (5)

DH
r,β(x) = f−1

DH
β

(
D−1

r Gr fDH
β
(x)
)

, (6)

where x is an M× 1 vector; f EH
β
(x) and fDH

β
(x) represent entry-wise application of the functions fEH

β

and fDH
β

, defined as fEH
β
(x) = (x + β)−1 and fDH

β
(x) = fEH

β
(1− x), respectively; the neighborhood

matrix Gr has entries gij = 1 if the distance between the centroids of elements i and j is smaller than r,
else gij = 0; and Dr = diag{Gr1}, where 1 is the M× 1 vector with all entries set to one. The vector γ

that holds the nodal values of the material indicator function γ in ΩD is

γ = EH
rc ,β

(
DH

rc ,β

(
DH

ro ,β

(
EH

ro ,β(ξ)
)))

, (7)

where ξ is our design vector. In the numerical experiments, we use parameter β = 10−4. The values
for ro and rc dictate the desired minimum length scale for the fluidic and solid phase, respectively.
These values are selected separately for each experiment. We remark that the existence of a minimum
size scale for both phases cannot be guaranteed when using open–close filters [31]. However, in many
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cases the optimized designs, obtained by using such filters, possess a minimum size scale on both
phases [24,28].

To impose a constraint on the total volume of the fluidic phase as well as to constrain the maximum
length scale of the fluidic phase, we add additional two constraints [22,23]

vTγ ≤ V∗, (8)

vTEH
rm ,β(γ) ≤ ε, (9)

where V∗ is the maximum fraction of Ω to be filled with the fluid, ε = 10−4, parameter rm specifies the
desired maximum length scale of the fluidic channels, and v is a vector with entries

vi =
1
|ΩD|

∫
ΩD

ϕi dΩ, (10)

where ϕi is basis function corresponding to the ith node in ΩD and |ΩD| is the area of ΩD.

3.1. Tesla Valve

The Tesla valve is a basic device for controlling fluid motion [14,32]. Figure 3 shows the
computational domain Ω for the Tesla valve. We denote the channels connected to the inlet and
outlet by ΩC, and the Tesla valve occupies the domain ΩT = ΩCT ∪ΩD, where ΩD is the design
domain. The width of inlet L is 200 µm.

Direction of flow

Γin

Γout

L
L

2
L

L
L

L L 6L L L

ΩD

ΩC ΩCT

ΩCT
ΩC

Figure 3. The computational domain Ω for the Tesla valve.

The domain for the Tesla valve is a two-port network, where boundaries Γin and Γout represent
the two ports. We consider the flow in the two directions from Γin to Γout and vice-versa. Henceforth,
we denote the two flow directions by the forward and backward direction, respectively. In both
the forward and backward direction, the flow profile is specified at the port from which the fluid
flows. We let p f and u f denote the pressure and velocity, respectively, for the forward-directed fluid
field. Similarly, pr and ur denote the pressure and velocity, respectively, for the backward-directed
fluid field. The forward flow can be modeled by Navier–Stokes Equation (1) in Ω together with the
boundary condition

u f = u0 on Γin,[
−p f I + 2ηε(u f )

]
· n = 0 on Γout,

(11)

where u0 is the given flow velocity profile at Γin. The backward flow can be modeled by Navier–Stokes
Equation (1) in Ω together with the boundary condition

ur = u0 on Γout,

[−pr I + 2ηε(ur)] · n = 0 on Γin,
(12)
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where u0 is the given flow velocity profile at Γout. The performance of Tesla valve is measured by
diodicity, which is defined as the ratio of pressure drop of the forward flow to that of the reverse flow.
From the kinetic energy viewpoint, the diodicity is also expressed as the ratio of the consumption
of the forward pressure work to the reverse pressure work, under the assumption that the flux in
the two opposite directions is equal. The diodicity of the Tesla valve can be alternatively calculated
as [13,14,32,33]

Di =
−
∫

Γin
p f (u f · n)dΓ−

∫
Γout

p f (u f · n)dΓ

−
∫

Γin
pr(ur · n)dΓ−

∫
Γout

pr(ur · n)dΓ
=

∫
ΩT
∇ · (p f u f )dΩ∫

ΩT
∇ · (prur)dΩ

. (13)

The topology optimization problem is

min
ξ∈RM

Φ,

subject to Di ≤ Cmax,

vTγ ≤ V∗,

0 ≤ ξ ≤ 1.

(14)

For the numerical simulations, each square space with an edge size equal to L is discretized by
20× 20 quadrilateral elements. Hence 120× 120 elements discretize the design domain ΩD. The values
of αmax and q in the topology method are chosen to be 5 × 108 and 1, respectively. Here, we set
length scale parameters rc and ro small enough to ensure that the neighborhood of each node in ΩD
only consists of the node itself. This yields that γ = ξ. The initial value of the design variable ξ is
1, the Reynolds number is 100, and V∗ is 0.55. Figure 4 shows two optimized Tesla valves. Due to
physical problems and geometric constraints, there is a lower limit for the diodicity of the Tesla valve
in a particular design domain. And the optimization results depend on the optimization process.
Initially, we set a low Cmax and then increased during the optimization. The left and right valves are
obtained for the value of Cmax is 0.351 and 0.551, respectively. We create body-fitted 2D models that
only consider the fluidic phase. The diodicities computed by using these body-fitted 2D models are
0.408 and 0.600 for the left and right design in Figure 4, respectively.

Figure 4. Two optimized Tesla valves with the value of Cmax is 0.351 (a) and 0.551 (b), respectively.
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Next, we add a constraint on the maximum length scale in the optimization model and consider
the problem

min
ξ∈RM

Φ,

subject to Di ≤ Cmax,

vTγ ≤ V∗,

vTEH
rm ,β(γ) ≤ ε,

0 ≤ ξ ≤ 1.

(15)

The maximum and minimum length of the fluidic phase are rm = 200 µm and ro = 100 µm,
respectively, and the minimum length of the solid phase is rc = 60 µm. For this test, we set V∗ = 0.25
and Cmax = 0.5. Figure 5 shows the optimized Tesla valve with the value of Cmax = 0.829. We can see
that the optimized design is very similar to the two commonly used Tesla valves in series. We create a
body-fitted 2D model that only considers the fluidic phase. The diodicity computed by using the body
fitted 2D model is 0.882. It is clear that the design constraint of diodicity is violated because of using
size control during the optimization procedure.

Figure 5. Tesla valve optimized with the full length scale control optimization Formulation (15).

Finally, we create 3D models for the results in Figures 4 and 5 by stretching the body-fitted 2D
models. Figures 6–8 shows the velocity fields of the 2D model (left image) as well as the 3D model (right
image) for the optimized Tesla valve in Figures 4 and 5. Having access to the 3D models, we compute
the difference

δ1 =

∣∣∣∣1− Di3D

Di2D

∣∣∣∣× 100 %, (16)

where the subscripts 2D and 3D represent the 2D model and its 3D counterpart, respectively. In the
ideal case, δ1 is equal to 0. Figure 9 shows the difference of three optimization results between 2D
and 3D models with the ratio of depth to width of the inlet n. The difference in fluidic performance
between the optimized 2D model and its 3D counterpart gradually decreases as the height of the 3D
model increases. This confirms that the 2D model assumption that the height is infinite, the higher the
stretching height of the 3D model, the smaller the difference between the 2D model and the 3D model.
The difference of the optimization results using dimension control is significantly smaller than that of
unused optimization results, and it is acceptable when n is greater than 1.
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Figure 6. Reverse flow velocity field of the 2D model (a) and its 3D counterpart (b) for the optimized
Tesla valve with the value of Cmax = 0.408 in Figure 4.

Figure 7. Reverse flow velocity field of the 2D model (a) and its 3D counterpart (b) for the optimized
Tesla valve with the value of Cmax = 0.600 in Figure 4.

Figure 8. Reverse flow velocity field of the 2D model (a) and its 3D counterpart (b) for the optimized
Tesla valve in Figure 5.
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Figure 9. The difference δ1 of three optimization results between 2D and 3D models with the ratio of
depth to width of the inlet n.

3.2. Microfluidic Splitters with Equivalent Outlet Flowrate

As our second test problem, we study the problem of designing microfluidic splitters originally
proposed by Zhou et al. [9]. Figure 10 shows the computational domain Ω = ΩC ∪ΩD for this test
case. The width of inlet L is 100 µm. Here, we have one inlet Γin and three outlets Γ(1)

out, Γ(2)
out, and Γ(3)

out;
we denote the union of the outlets by Γout. Given a specified velocity profile, given by u0 on the inlet,
the flow is modeled by Navier–Stokes Equation (1) in Ω together with boundary condition (11).

Direction of flow

Γin

Γ
(3)

out

Γ
(2)

out

Γ
(1)

out

L
L

4
L

L
4
L

L
L

2L 8L 2L

ΩDΩC

ΩC

ΩC

ΩC

Figure 10. Computational domain for the second test problem. Here, the computational domain Ω
comprises the design domain ΩD as well as four channels ΩC that are connected to the inlet and outlets
of the domain.

In this example, we consider two fluidic cases in a four-port splitter. The flow direction is from
Γin to Γout in both cases. In contrast to the previous example, we will require a specified flowrate,

Q =
∫

Γ
u · n dΓ, (17)
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at selected ports of the domain. We let preal and ureal denote the pressure and velocity, respectively,
for the so-called (in this work) real case. The real case is modeled by Navier–Stokes Equation (1) in Ω
together with the boundary condition ∫

Γin

ureal · n dΓ = Qin on Γin,

[−preal I + 2ηε(ureal)] · n = 0 on Γout.
(18)

Here Qin is the given flowrate at Γin. Similarly, we let pref and uref denote the pressure and
velocity, respectively, for the so-called reference case. The reference case is modeled by Navier–Stokes
Equation (1) in Ω together with the boundary condition

[−pref I + 2ηε(uref)] · n = 0 on Γin,∫
Γ(i)

out

uref · n dΓ = −Qin/3
on Γ(i)

out

for i = 1, 2, 3.

(19)

The topology optimization problem is

min
ξ∈RM

Φreal + Φref

b + 1− vTγ
+ θ(Φreal −Φref)

subject to 0 ≤ ξ ≤ 1.
(20)

The first term of the objective function is a fraction, in which the numerator is the sum of the
viscous dissipations of the two cases and the denominator is the volume of the solid phase, to obtain an
appropriate volume automatically. The second term of the objective function is the difference between
the viscous dissipations of the two cases, and θ is the scalar number used to penalize this difference.
By this method, the flowrate constraint of outlet in the real model is realized. The values of αmax and
q in the topology method are 5× 109 and 1, respectively. The initial value of the design variable ξ is
0.5. During the optimization, θ increases from 0 to 100. The left column of Figure 11 shows designs
optimized without length scale control. That is, just as for the results in Figure 4, rc and ro are small
enough to ensure γ = ξ. The Reynolds numbers for the simulations were 0.1 (top row), and 10 (bottom
row), and the value of b in the objective function was 0.1.

The right column of Figure 11 shows designs optimized under a maximum length scale constraint
for the fluid domain. That is, we solve optimization problem (20) appended with constraint (9).

The maximum length of the fluidic phase is 100 µm, and the value of b used in the objective
function is 0.1 and 0.2 for Reynolds numbers 0.1 and 10, respectively.

Having access to the 3D models, we compute the difference

δ2 =
1
3

3

∑
i=1

∣∣∣∣∣1− 3Q(i)

Q(1) + Q(2) + Q(3)

∣∣∣∣∣× 100 %, (21)

where Q(i) is the flowrate at port Γ(i)
out. In the ideal case, δ2 is equal to 0. Figure 12 shows the difference

for 3D models corresponding to optimized designs in Figure 11 as functions of the ratio of depth to
width of the inlet n. The difference in fluidic performance between the optimized 2D model and its
3D counterpart gradually decreases as the height of the 3D model increases. The difference of the
optimization results using dimension control is significantly smaller than that of unused optimization
results when Re = 10. and it is not significantly smaller than that of unused optimization results when
Re = 0.1. The value of Reynolds numbers maybe influences the effect of the proposed method.
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Figure 11. Optimized designs with aim to obtain equivalent outlet flowrate.
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Figure 12. The difference δ2 of four optimization results between 2D and 3D models with the ratio of
depth to width of the inlet n.

4. Discussion and Conclusions

We can see that the difference in fluidic performance between the optimized 2D model and its 3D
counterpart gradually decreases as the height of 3D model increases in Figures 9 and 12. This conforms
to the 2D model assumption is that the height is infinite.
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There is a significant difference in fluidic performance in the case where no length scale control
is applied. The difference in the optimization result of length scale control applied is much smaller.
Imposing size control of the widths of the fluidic channels can effectively reduce the difference of
fluidic performance between the 2D model and the 3D model obtained by stretching the 2D model,
so that the 2D optimization results of flow have more practical significance. Moreover, the length
scale control also ensures the manufacturability of the obtained. Numerical results demonstrate the
validity of the proposed method. We hope that this paper will spur further interest and development
on this topic.
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