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Abstract
In this paper, we present a novel upsampling framework to enhance the spatial resolution of the depth image. In our framework,
the upscaling of a low-resolution depth image is guided by a corresponding intensity images; we formulate it as a cost
aggregation problem with the guided filter. However, the guided filter does not make full use of the information of the depth
image. Since depth images have quite sparse gradients, it inspires us to regularize the gradients for improving depth upscaling
results. Statistics show a special property of depth images, that is, there is a non-ignorable part of pixels whose horizontal or
vertical derivatives are equal to ±1. Based on this special property, we propose a low gradient regularization method which
reduces the penalty for horizontal or vertical derivative ±1, and well describes the statistics of the depth image gradients.
Then, we present a solution to the low gradient minimization problem based on threshold shrinkage. Finally, the proposed
low gradient regularization is integrated with the guided filter into the depth image upsampling method. Experimental results
demonstrate the effectiveness of our proposed approach both qualitatively and quantitatively comparedwith the state-of-the-art
methods.

Keywords Depth image · Upsampling · Low gradient minimization · Guided filter · Regularization method

1 Introduction

Over the last decade, RGB-D sensors have made rapid devel-
opment, such as Microsoft Kinect, Intel Leap Motion and
ASUSXtion Pro. They enable a variety of applications based
on thedepth imageof the scenes, for instance, pose estimation
[1] and scene understanding [2]. Moreover, object tracking
using depth information plays a vital role in several applica-
tions such as multimedia contexts, body-parts movements,
video streaming, healthcare systems and smart indoor secu-
rity systems [3].

In order to get better tracking and detection perfor-
mance, researchers explore other sensors: RGB-D, bumble-
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bee and stereo-cameras and their characteristics/properties
with respect to object detection and tracking [4].

Moving objects detection and tracking are two important
applications of depth cameras. Meanwhile, depth images are
widely used for feature representation and extraction, and
can assist RGB image to accomplish more complex tasks,
such as action recognition, gait recognition, face recognition
and behavior recognition [5,6].

However, current depth cameras are limited by manu-
facturing and physical constraints. Hence, depth images are
affected by degenerations due to noise, missing values, and
typically have a low resolution [7,8]. To mitigate these prob-
lems, we need to recover the corresponding high-resolution
(HR) depth image from a given low-resolution (LR) one.

Depth image upsampling is a quite challenging task.
Specifically, due to the limited spatial resolution, the LR
image loses or distorts fine structures of the HR image. A
brute-force upscaling method often makes those structures
which have sharp edges become blurred in the upsampled
image. In particular, for the case of single-image upscaling,
the severely distorted fine structures often exist [9].

To address the above problem, a common approach is
to utilize a corresponding HR intensity image as guidance
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[10,11]. This is based on the fact that a correspondence
between a depth edge and an intensity edge can most likely
be established. Some of the most successful algorithms for
upsampling depth images aim at exploiting this correspon-
dence assumption.

In this work, we present a novel method that combines
the advantages of guided filter and the energy minimiza-
tion model to compute an accurate high-resolution output
from a LR depth map with the corresponding HR intensity
image. In recent years, the guided filter as a new edge-
preserving technology has also been employed in a wide
range of applications, such as image deconvolution [12],
image super-resolution [13] and image fusion [14]. Since the
depth image is smooth, it is appropriate to be processed by
guided filter which has shown to be effective for textureless
image. And the guided filter can effectively fuse images from
different sensors. Inspired by these, we attempt to use guided
filter for depth image upsampling. However, the properties
of depth images are not fully exploited by the guided filter. A
shallow observation is that gradients of the depth image are 0
at most places [15]. Therefore, together with the textureless
property, we also regularize the depth maps with the sparse
gradient prior in the meanwhile.

Based on the statistics of the depth image gradient, we
are surprised to find that the sparse gradient model is not
accurate enough [16]. In the depth image, although more
than 80% pixels have zero gradients (see Fig. 1), there is
a non-ignorable part of pixels whose horizontal or vertical
derivatives are equal to±1 (their proportion is about 15%, see
Fig. 1). In other words, at many places, gradients of the depth
map do not vanish but are very small [16]. This property has
not been considered for depth image upsampling because it is
not universal in natural images. Hence, we develop a specific
gradient regularization which is denoted as lt0 gradient reg-
ularization. Unlike the l0 norm which penalizes the nonzero
elements equally (the norm is always 1 if the element is not 0)
[17,18], our proposed lt0 measure reduces the penalty for hor-
izontal or vertical derivative ±1 and thus allows for gradual
depth changes.

The main contributions of this work are threefold: (1)
We present a specific gradient regularization lt0 which well
describes the statistical property of the depth image gradi-
ents. (2) We propose a solution to lt0 gradient minimization
problem based on threshold shrinkage. (3) We integrate the
proposed lt0 gradient regularization with the guided filter into
the the depth image upsampling method. In the experiments,
we demonstrate that the proposed method provides compet-
itive results compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows: Section 2
briefly introduces related work in depth image upsampling.
Section 3 describes the proposed approach which considers
the guided filter and the low gradient regularization. In Sect.
4, we perform simulations on the benchmark dataset and

show the effectiveness of our method. We conclude the work
in Sect. 5.

2 Related work

There aremanymethods to perform depth image upsampling
in the literature. In general, they can be categorized into four
classes:

Exemplars-based approaches These approaches build dic-
tionaries for the LR and HR domains that are coupled by
a common encoding. Yang et al. [19] seek the coefficients
of this representation to obtain an upsampling result, but an
important question is how to determine the optional dictio-
nary size. To improve the inference speed, Timofte et al. [20]
introduce the anchored neighborhood regression. Li et al.
[21] present a joint examples-based upscaling approach. Fer-
stl et al. [22] present a dictionary learning method with edge
priors for an anisotropic guidance. Schulter et al. [23] use ran-
dom regression forests instead of the flat code-book of sparse
codingmethods.Mahmoudi et al. [24] denoise noisy samples
and learn a depth dictionary from noisy and denoised sam-
ples. However, since the reconstruction is highly biased to the
available training examples, these methods may not provide
reliable results when no correspondence can be established.

Local image filteringKopf et al. [25] propose a joint bilateral
filter-based algorithm to smooth each depth pixel by consid-
ering the intensity similarity between the center pixel and
its neighborhood. Yang et al. [26] present a method based
on the bilateral filter that is iteratively used to generate an
upsampled result. However, it is observed that the guid-
ance of color image to upscaling of depth map runs the risk
of texture copying and edge blurring, especially in smooth
geometry regions. Geodesic distances are used to design
the upsampling weights in [27], but it is designed without
any consideration of the noise issue from depth sensors. Lu
et al. [28] propose a smoothing approach to upscale depth
map with the use of image segmentation, but segmenta-
tion errors will clearly disrupt the method. Li et al. [29]
develop a fast guided interpolation (FGI) approach based on
weighted least squares, which densifies depthmaps by global
interpolation with alternating guidances, but it may generate
oversmooth results in some cases.

Global energy minimization methods These approaches for-
mulate depth upscaling as an optimization problem which
employs data fidelity and regularization term [30]. Diebel et
al. [31] develop Markov Random Field (MRF)-based energy
minimization framework, which fuses the LR depth map and
the corresponding HR intensity image, but it tends to gen-
erate oversmooth results and is also sensitive to noises. In
order to maintain local structures, Park et al. [32] use a non-
local means filter (MRF+NLM) to regularize the depth map,
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but jaggy artifacts occur in some boundaries. A more recent
approach of Ferstl et al. [10] utilizes an anisotropic diffu-
sion tensor to guide the depth map upsampling (TGV), and
the tensor is calculated from a HR intensity image; how-
ever, it is not smooth in some internal areas. Aodha et al.
[33] treat depth image upsampling as MRF labeling prob-
lem which matches LR depth image patches to HR patches
from an ancillary database; the training of data, matching,
and fusion are quite computationally intensive. In [34], an
adaptive intensity-guided regression method is proposed for
depth upsampling, but its relative high computational com-
plexity would limit its practical applications.

Deep learning-based methods More recently, deep learning
methods have become popular for single-image upsampling.
A convolutional neural network (CNN) of three layers is
trained in [35], andKimet al. [36] improve this approach sub-
stantially. Dong et al. [37] present an end-to-end upsampling
convolutional neural network (SRCNN) to achieve image
super-resolution. These learning-basedmethods havemainly
been applied to color images, and not suitable for depth map
super-resolution. Xie et al. [38] propose a CNN framework
for the single depth image upsampling guided by a recon-
structedHRedgemap. Thesemethods havemainly been used
to intensity images, where a great amount of training samples
can be easily obtained. In contrast, huge datasets with dense,
accurate depth maps have recently become available, e.g.,
[39].Hui et al. [40] present aCNNframework in amulti-scale
guidance architecture (MSG-Net). Riegler et al. [7] integrate
an energyminimizationmodelwith anisotropicTGVregular-
ization into a end-to-end convolutional network for a single
depth image upsampling. However, CNN-based methods are
highly dependent on training samples; these methods may
not produce competitive results when the test data are not
similar to the training set.

3 Depth image upsampling

Given an original HR intensity image IH and a LR depth
image IL , we hope to obtain a HR depth map u. If IH is a
RGB image, it should be converted from the RGB space to
the gray space. We first generate a coarse estimated depth
image D↑ by bicubic interpolation from IL ; the resolutions
of D↑ and IH are equal.

In conventional image restoration problems, the guided
filter performs very well in terms of both quality and
efficiency [12,13]. The filter can smooth imagewith the edge-
preserving property as the bilateral filter, but there are no
gradient reversal artifacts. The advantage of guided filter is
very suitable for processing depth image, so we introduce the
guided filter into the upsampling algorithm. As discussed in
Sect. 1, we first add the sparse gradient regularization for

depth upsampling. Altogether, we construct a new formula
as follows:

min
u

‖ u − D↑ ‖22 +ρ ‖ u − GF(u, IH ) ‖22 +η ‖ ∇u ‖0
(1)

where ∇u = (ux , uy) = (∂x ∗ u, ∂y ∗ u) is the gradient of
u, ∂x = [1,−1] and ∂y = [1,−1]T are the horizontal and
vertical derivative operators, respectively, ρ and η are two
regularization parameters, GF(·, ·) is the guided filter, and
the output of ‖ ∇u ‖0 is the number of nonzero elements in
∇u; we call this method GFL0.

BecauseGF(·, ·) is highly nonlinear, it is difficult to solve
the problem directly. Following the solution in [12], we
employ a split variable approach to solve Eq. (1) and the
variables are iteratively updated:

z = GF(u, IH ) (2)

u = argmin
u

‖ u − D↑ ‖22 +ρ ‖ u − z ‖22 +η ‖ ∇u ‖0 (3)

The minimization problem in Eq. (3) is widely used in image
restoration models, and many approaches have been pro-
posed to solve it directly and approximately [17,18,41].

l0 gradient minimization does not always perform well
[16]; one of the reasons may be the solution is only an
approximation. That is to say, we do not make full use of
the properties of the gradient maps. We count the gradient
histogram of depth images and find out that the sparse gradi-
ent assumption is not accurate enough. In addition to 0, there
is a non-ignorable part of pixels that has horizontal or vertical
derivative ±1. In l0 regularization, all nonzero gradients are
penalized equally [16].Based on the special property of depth
images, we propose a new gradient regularization algorithm
to reduce the penalty for horizontal or vertical derivative±1.

3.1 lt0 gradient minimization

In this subsection, we will show the statistics of depth image
gradients and describe the proposed lt0 gradient regularization
method.

In this work, we use Middlebury Stereo Datasets (2001,
2003, 2005, 2006 and 2014) to do statistics on the depth
gradients, and show the horizontal and vertical derivative
magnitude histograms in Fig. 1. It is observed that depth
image gradients cannot be simply described as sparse. We
can see that most pixels have gradient magnitude 0 and a
non-ignorable part whose gradients are (±1,±1), (0,±1)
or (±1, 0). Similar to the Total variation (TV) model, we
propose a lt0 norm to reduce the penalty for horizontal and
vertical derivatives ±1.

We define the ‖ · ‖lt0 norm as:

‖ ∇u ‖lt0=‖ ux ‖lt0 + ‖ uy ‖lt0 (4)
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Fig. 1 Horizontal and vertical derivativemagnitude histogramsof ground-truth disparitymapofMiddleburyStereoDatasets.aHorizontal derivative.
b Vertical derivative. We can see that most pixels have gradient magnitude 0 and a non-ignorable part has magnitude 1

where

‖ f ‖lt0= �{i | | fi |> 1} + t�{i | | fi |= 1} (5)

and 0 < t < 1, �{·} is the number of elements in the data. In
order to construct a problem that can be applied to a contin-
uous domain, we revise the definition of ‖ · ‖lt0 as

‖ f ‖lt0= �{i | | fi |> 1} + t�{i |0 <| fi |≤ 1} (6)

Actually the lt0 “norm” is not a proper norm because it is
not homogeneous; therefore, we call it a measure. Based on
the statistics on the depth gradients, we set t = 0.75 in all
the experiments.

Thus, we use the ‖ · ‖lt0 measure in place of l0 norm in
Eq. (1), and it leads to the following optimization model:

min
u

‖ u − D↑ ‖22 +ρ ‖ u − GF(u, re f ) ‖22 +η ‖ ∇u ‖lt0
(7)

where the re f is the IH in this work.
Similar to Eq. (1), we extend the split variable method to

solve Eq. (7). In this case, two subproblems are as follows:

z = GF(u, IH ) (8)

u = argmin
u

‖ u − D↑ ‖22 +ρ ‖ u − z ‖22 +η ‖ ∇u ‖tl0 (9)

To solve Eq. (9), we introduce auxiliary variables h and
v, corresponding to ux and uy , respectively, and rewrite the
cost function as:

{u, h, v} = arg min
u,h,v

‖ u − D↑ ‖22 +ρ ‖ u − z ‖22

+β(‖ h − ux ‖22 + ‖ v − uy ‖22)
+ γ (‖ h ‖tl0 + ‖ v ‖tl0) (10)

where β is an automatically adapting parameter. Equation
(11) is solved through alternatively minimizing (h, v) and u,
and it is split into three subproblems in this work:

u = argmin
u

‖ u − D↑ ‖22 +ρ ‖ u − z ‖22
+β(‖ ux − h ‖22 + ‖ uy − v ‖22) (11)

h = argmin
h

‖ h − ux ‖22 +λ ‖ h ‖tl0 (12)

v = argmin
v

‖ v − uy ‖22 +λ ‖ v ‖tl0 (13)

Equation (11) is quadratic and thus has a global minimum.
We use fast Fourier transform (FFT) to speedup the diago-
nalization of derivative operators. These yield solutions in
the Fourier domain

F(u) = F(D↑) + ρF(z) + β(F(∂x )
∗F(h) + F(∂y)

∗F(v))

1 + ρ + β(|F(∂x )|2 + |F(∂y)|2)
(14)

where F and F(·)∗ denote the FFT operator and the com-
plex conjugate, respectively. The plus, multiplication, and
division are all component-wise operators.

Now, the remaining question is how to solve Eqs. (12) and
(13). In next subsection, we will show that these two appar-
ently sophisticated subproblems have closed-form solutions
and can be solved quickly.

The L0 gradient minimization leads to better results in
depth upscaling results in most cases. However, it does not
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Fig. 2 Illustrations for contrast between the gradient minimization-based approach and our proposed method (scaling factor = 4). a Ground truth,
b GFL0 result, c our result

always perform well (see Fig. 2). Figure 2 shows a failure
case of gradient minimization.

3.2 The lt0 measure minimization

Without loss of generality, Eqs. (12) and (13) are written in
a unified way:

∑

i

min
xi

{(xi − pi )
2 + αHt (pi )} (15)

where

Ht (p) =

⎧
⎪⎨

⎪⎩

0 if p = 0

t if 0 <| p |≤ 1

1 if | p |> 1

(16)

Each single term w.r.t. pixel pi in Eq. (16) is

E(p) = min
p

(x − p)2 + αHt (p) (17)

For Eq. (15), we can obtain its closed-form solution based on
the following theorem. In this work, we discuss two cases,
that is, the situation of |x | ≥ 1 and the situation of |x | < 1.
Theorem 3.1 and Theorem 3.2 give the solution of Eq. (15)
in the case of |x | ≥ 1, and Theorem 3.3 shows the solution
of Eq. (15) in the case of |x | < 1.

Theorem 1 When |x | ≥ 1, Eq. (17) reaches its minimum E∗
p

under the condition

p =

⎧
⎪⎨

⎪⎩

0 if | x |≤ min( 1+αt
2 ,

√
α)

sgn(x) if 1+αt
2 <| x |≤ 1 + √

α(1 − t)

x if | x |> max(1 + √
α(1 − t),

√
α)

(18)

Proof Without loss of generality, we suppose x ≥ 0, and the
proof of x < 0 case is similar.
(1)When x > max(1+√

α(1 − t),
√

α) > 1, nonzero p > 1
yields

Ep = (x − p)2 + α (19)

when p = x , Eq. (19) achieves minimal value α.
Note that p = 0 leads to

Ep = x2 > α (20)

And we can find that 0 < p ≤ 1 yields

Ep = (x − p)2 + αt (21)

when p = 1, Eq. (19) achieves minimal value (x −1)2 +αt .
Because x > 1 + √

α(1 − t), that is to say (x − 1)2 >

α(1 − t), and (x − 1)2 + αt > α.
Comparing Eqs. (19) and (20), the minimal energy Ep is

produced when p = x .
(2) When 1+αt

2 < x ≤ 1 + √
α(1 − t), p > 1 yields

Ep = (x − p)2 + α ≥ α ≥ (x − 1)2 + αt (22)

p = 0 leads to

Ep = x2 > (x − 1)2 + αt (23)

When 0 < p ≤ 1, Eq. (21) still holds. we find that, when
x ≥ 1, the minimal energy Eq. (21) is produced when p = 1,
the minimal value is (x − 1)2 + αt .

So, in this case, comparing these three values, when p =
sgn(x) = 1, Ep achieves minimal.
(3) When x ≤ min( 1+αt

2 ,
√

α), Eq. (19) still holds, the min-
imal energy α is greater than x2.

When p = 0, Ep has its minimum value x2.
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When 0 < p ≤ 1, if x ≥ 1, Eq. (21) achieves minimal
value (x − 1)2 + αt ≥ x2.

So, the minimum energy Ep is produced when p = 0 	

In Theorem 3.1, the relationship of three functions 1 +√
α(1 − t),

√
α and 1+αt

2 is not determined, and therefore, the
reliability of the conclusion cannot be guaranteed. Through
further research, we show the three function curves in Fig. 3,
and one can clearly see the relationship between them (strict
mathematical proofs of the relationship can be found in the
supplementary material).

Now, according to the above analysis, we can rewrite The-
orem 3.1 as follows:

Theorem 2 When |x | ≥ 1, and α > 2−t+2
√
1−t

t2
, Eq. (17)

reaches its minimal E∗
p under the condition

p =
{
0 if | x |≤ √

α

x if | x |> √
α

(24)

When |x | ≥ 1, and 2−t+2
√
1−t

t2
≥ α ≥ 2−t−2

√
1−t

t2
,

Eq. (17) reaches its minimal E∗
p under the condition

p =

⎧
⎪⎨

⎪⎩

0 if | x |≤ 1+αt
2

sgn(x) if 1+αt
2 <| x |≤ 1 + √

α(1 − t)

x if | x |> 1 + √
α(1 − t)

(25)

When |x | ≥ 1, and 2−t−2
√
1−t

t2
> α > 0, Eq. (17) reaches

its minimal E∗
p under the condition

p =
{
sgn(x) if 1 ≤| x |≤ 1 + √

α(1 − t)

x if | x |> 1 + √
α(1 − t)

(26)

The detailed proofs of the Theorem 3.2 can be found in
the supplementary material.

Theorem 3 When |x | < 1, Eq. (17) reaches its minimal E∗
p

under the condition

p =
{
0 if | x |≤ √

αt

x if | x |> √
αt

(27)

Proof Without loss of generality, we suppose x ≥ 0, and the
proof of x < 0 case is similar.
(1) when x2 ≤ αt , nonzeros 0 < p ≤ 1 yield

Ep = (x − p)2 + αt ≥ αt ≥ x2 (28)

Note that p = 0 leads to Ep = x2. Comparing Eq. (28),
the minimal energy Ep is produced when p = 0.
(2) when αt < x2 < 1, p = 0 leads to Ep = x2. But when
p = x , Ep has its minimal value αt . Comparing these two
values, the minimal energy Ep is produced when p = x . 	


An overview of our depth image upsampling framework
is provided in Fig. 4, and the proposed algorithm is sketched
in Algorithm 1. Once the scaling factor is determined, we use
the bicubic interpolation to obtain the initial estimation, and
then, guidedfilter and gradientminimizationmethod are used
as follows. Parameter β is automatically adapted in iterations
starting from a small value β0, and it is multiplied by κ each
time. This scheme is inspired by Wang et al. [42], which
shows that this scheme is effective to speed up convergence.
In all the experiments, we fix the regularization parameters
β0 = 0.0025 and set κ = 2 to balance the efficiency and
performance.

Algorithm 1: Depth Image Upsampling Algorithm
1. Input: LR depth image IL , HR intensity image IH ,

parameter β0

initialize u ← D↑,β = 1
2β0, λ = 255× β

β0
, ρ = 0.1×β

and κ = 2.
2. Repeat p = 1 : MAXiter :

solve for z p using Eq. (8);
solve for u p using Eq. (14);
solve for h p and v p base on Theorem 3.2 and Theorem

3.3;
update parameters: β ← κβ, λ ← 255 × β

β0
and

ρ ← 0.1 × β.
3. Output: HR depth image u.

4 Experimental results

To verify the superiority of our method, we evaluate the
performance of the proposed method with respect to some
state-of-the-art depth image upsampling methods. We per-
form experiments on a PC with Intel i7-5600U CPU (2.6
GHz) and 8 GB RAM using MATLAB 2012b. 20 − 30
iterations are generally performed in our method. Most com-
putation is spent on FFT in Eq. (14) and guided image
filtering in Eq. (8). Overall, it takes 1.4 seconds per itera-
tion to upsample ×4 to 345 × 272 depth images.

In this experiment, we evaluate our method on two stan-
dard benchmark datasets for depth map super-resolution:
Following [2,10,32], we evaluate our results on the noisy
Middlebury 2007 dataset. Additionally, in the second evalu-
ation, we compare our method on the challenging ToFMark
dataset Books, Devil and Shark which are proposed in [10].

4.1 Noisy Middlebury

In this experiment, we evaluate the performance of the pro-
posed method on Art , Books, Moebius, Dolls, Laundry
and Reindeer of the Middlebury dataset [10]. Each set con-
tains a disparity image obtained from structured light and
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Fig. 3 The relation of the three curves when t = 0.25. Left subplot: α ∈ [0, 100]. Right subplot: α ∈ [0, 2]

Fig. 4 Framework of our upsampling method

a registered RGB image. We use the RGB image as the
HR color image for guidance and the disparity image as
the ground truth. They can be available from “http://vision.
middlebury.edu/stereo/data/.”

To simulate the acquisition process of a time-of-flight
sensor, depth-dependent Gaussian noise is added to these
input images, as proposed by Park et al. [32]. This dataset
consists of three time-of-flight (ToF) depth maps of three
different scenes. For each scene, there exists an accurate
high-resolution structured light scan as ground truth. The
ToF depth maps have a resolution of 120 × 160 pixels, and
the target resolution, given by the guidance intensity image,
is 610×810 pixels. This corresponds to an upsampling factor
of approximately 5.

We compare our method to simple upsampling methods,
such as bicubic interpolation. We compare our proposed

method to other approaches that utilize an additional inten-
sity image as guidance. Those methods include the Markov
Random Field (MRF)-based approach in [31], the joint bilat-
eral filtering with cost volume (JBFcv) in [26], cross-based
local multipoint filtering (CLMF) in [43] the guided image
filter (GIF) in [13], the nonlocal means filter (MRF+NLM)
in [32], the variational model (TGV) in [10] and fast guided
global interpolation (FGI) in [29]. In addition, to illustrate
the effectiveness of the low gradient regularization, we also
comparewithGFL0 proposed in Eq. (1). TheGFL0 approach
is to minimize the l0 norm of the gradient, which penalizes
the nonzero elements equally. The lt0 norm proposed in our
work also penalizes the nonzero elements, but reduces the
penalty for horizontal or vertical derivative ±1.

Table 1 reports quantitative results in terms of the root
mean squared error (RMSE) between ground-truth depth

123

http://vision.middlebury.edu/stereo/data/
http://vision.middlebury.edu/stereo/data/


1418 H. Yang, Z. Zhang

Table 1 Error as root mean
squared error (RMSE)
comparison on Middlebury
2007 datasets with added noise
for magnification factors (×2
and ×4)

Art Books Moebius Dolls Laundry Reindeer

×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4

Bicubic 4.78 5.54 4.20 4.38 4.16 4.31 4.16 4.30 4.37 4.74 4.51 4.95

MRF [31] 3.49 4.51 2.06 3.00 2.31 3.11 – – – – – –

JBFcv [26] 3.01 4.02 1.87 2.23 1.92 2.42 – – – – – –

CLMF [43] 3.29 4.03 1.80 2.38 1.79 2.29 1.83 2.37 2.36 2.91 2.52 3.15

GIF [13] 3.55 4.41 2.37 2.74 2.48 2.83 1.79 2.64 2.33 3.22 2.63 3.43

MRF+NLM [32] 3.74 4.56 1.95 2.61 1.96 2.51 2.06 2.61 2.99 3.63 3.11 3.86

TGV [10] 3.19 4.06 1.52 2.21 1.47 2.03 1.49 2.85 2.62 3.44 2.78 3.20

FGI [29] 3.13 4.14 1.48 1.92 1.65 1.94 1.47 1.84 1.94 2.59 2.22 2.86

GFL0 2.78 3.98 1.40 1.89 1.63 2.04 1.42 1.86 1.90 2.65 2.07 2.79

Ours 2.71 3.87 1.34 1.82 1.57 2.01 1.38 1.79 1.83 2.60 2.01 2.76

We highlight the best result in boldface

Fig. 5 Visual comparison of Art with cropped zoomed regions (scaling factor = 4). a Ground truth, b Bicubic, c MRF+NLM [32], d GIF [13], e
TGV [10], f FGI [29], g GFL0, h our proposed method

Fig. 6 Visual comparison of Books with cropped zoomed regions (scaling factor = 4). a Ground truth, b Bicubic, c MRF+NLM [32], d GIF [13],
e TGV [10], f FGI [29], g GFL0, h our proposed method

Fig. 7 Visual comparison of Reindeer with cropped zoomed regions (scaling factor = 4). a Ground truth, b Bicubic, cMRF+NLM [32], d CLMF
[43], e GIF [13], f TGV [10], g FGI [29], h our proposed method
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Table 2 Results on real Time-of-Flight data from the ToFMark bench-
mark dataset

Books Devil Shark

Bicubic 27.78 26.25 31.68

CLMF [43] 25.67 23.86 28.93

TGV [10] 24.68 23.19 29.89

MSG-Net [40] 25.03 23.07 30.43

Ours 24.53 23.04 28.46

We report the error as RMSE in mm and highlight the best result in
boldface

maps and the results by various depth upsampling methods
including ours.

From the quantitative results in Table 1, we observe that
the proposed method clearly performs better than the state-
of-the-art methods that utilize an additional guidance input
for most images and upsampling factors.

The proposed method clearly outperforms several exist-
ing methods such as GF [13], MRF+NLM [32], CLMF
[43] and TGV [10] that used different color-guided upsam-
pling or optimization techniques. Our method also yields
much smaller error rates than FGI [29]. Note that the GFL0
approach performs generally better than TGV and achieves
similar results to the proposed method. Our approach always
achieves the best results in RMSE because it allows for grad-
ual pixel value variation which is common in depth images.

Figures 5, 6 and 7 show the visualize qualitative results of
theMiddlebury data with zoomed cropped regions. From the
figures, we can notice that the proposed algorithm also gen-
erates more visual appealing results than the state-of-the-art
approaches. Our algorithm can preserve thin structures of the
scene in regions. Edges in our results are generally smoother
and sharper along the depth boundaries. Our algorithm also
preserves thin structures in regions. Although FGI [29], TGV
[10] and GFL0 also generate promising RMSE scores, the
results of them suffer from artifacts around boundaries visu-
ally.

In our final experiment, we evaluate our method on
the challenging ToFMark dataset [10] consisting of three
time-of-flight (ToF) pairs, Books, Shark and Devil, with
ground-truth depth maps. The depth maps are of size 120 ×
160, and the intensity images are of size 610 × 810. This
corresponds to an upsampling factor of approximately ×5.
In the low-resolution depth maps, we add depth-dependent
noise and backproject the remaining points to the target cam-
era coordinate system.

We compare our results to simple bicubic interpolation
and three state-of-the-art depth map super-resolution meth-
ods that utilize an additional guidance image as input. The
quantitative results measured with RMSE in mm are pre-
sented in Table 2. Even on this difficult dataset, we are at
least on par with other four classic or state-of-the-art meth-
ods for all the three test cases.

Fig. 8 Qualitative results for the ToFMark dataset sample Shark. a Ground truth, b Bicubic, c CLMF [43], d TGV [10], e MSG-Net [40], f our
proposed method
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Fig. 9 Convergence illustration. The curves show how RMSE changes
with iteration with upscaling factor 4. Curves of different colors repre-
sent different experimental images. The results get stable in less than
30 iterations

In Fig. 8, we show the result of upsampling the depth
image Shark. It is observed that depth maps recovered by
Bicubic and CLMF [43] still contain noises, while the results
obtained by TGV [10] and our method are much clearer. By
closer inspection, the TGVmethod in some cases introduces
faulty structures in regions where the associated intensity
image has rich textures, e.g., the shape of the shark’s dorsal
fin is deformation. MSG-Net [40] obtains a non-sharp result,
and one can see that the region of the shark’s teeth is blurred.

4.2 Convergence

Since the guided image filter is highly nonlinear, it is difficult
to prove the global convergence of our algorithm in theory.
In this work, we only provide empirical evidence to show the
stability of the proposed algorithm.

InFig. 9,we show the convergenceof the proposedmethod
for test images with upscaling factor 4. One can see that all
the RMSE curves reduce monotonically with the increase
in iteration number, and finally become stable and flat. One
can also find that 30 iterations are typically sufficient for
convergence.

4.3 Limitations

Although our method can suppress edge-blurring artifacts,
sometimes over-smoothing appears in the upscaling depth
images. This is because we do not have enough information
to predict the high-resolution edges from the low-resolution
depth input, when edges in RGB images do not correspond to
those of depth images, neither Eq. (8) nor Eq. (9) can obtain

sharp high-resolution depth images, and over-smoothingwill
appear in the results.

5 Conclusion

This work presents a new framework to recover depth
maps from low-quality measurements. Based on the gradi-
ent statistics of depth images, we propose the low gradient
regularization and combine it with the guided filter into
the depth upsampling approach. And we present a solution
to the proposed low gradient minimization problem based
on threshold shrinkage. In a quantitative evaluation using
widespread datasets (Middlebury and TofMark), we show
that the proposed algorithm clearly performs better than the
existing state-of-the-art methods in terms of RMSE. In this
work, we reveal the statistical characteristics of depth image
gradients, and provide a new optimization regularization
method to depth image upscaling. Our method is not limited
to depth image upsampling, and as a future perspective, the
proposed method can be extended to process various depth
image reconstructions, such as inpainting and denoising.
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