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Abstract: A novel tempo-spatially mixed modulation imaging Fourier transform spectrometer
based on a stepped micro-mirror has the advantages of high throughput, compactness, and
stability. In this paper, we present a method of image- and spectrum-processing and performance
evaluation, which is utilized to obtain a high-quality reconstructed image without stitching
gaps and a reconstructed spectrum with significantly reduced noise and side-lobe oscillation.
A theoretical model of instrument line shape and signal-to-noise ratio is established to verify
the effectiveness of non-uniformity sampling correction and spectral resolution enhancement.
Meanwhile, the performance of the instrument was evaluated combined with experimental results.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a safe, real-time, and accurate monitoring technology, the imaging Fourier transform
spectrometer (IFTS) can obtain two-dimensional image information and one-dimensional spectral
information simultaneously. The image can guide the spatial position of the target while the
spectra can analyze the composition and content of the target. Moreover, IFTS features high
spectral resolution, high throughput, and high stability, with strong targeting, high sensitivity,
high adaptability, and a longer working life [1].

According to different optical path difference (OPD) acquisition methods, IFTS is divided into
three types: temporal modulation (TMIFTS), spatial modulation (SMIFTS), and tempo-spatially
mixed modulation (TSMIFTS) [2]. TSMIFTS obtains the OPD in the spatial dimension and
completes OPD accumulation in the time dimension. The interference system of TSMIFTS has
no movable parts and slits. Therefore, TSMIFTS possesses high stability of SMIFTS and a high
luminous flux of TMIFTS simultaneously.
TSMIFTS, due to the above characteristics, has garnered much interest, and currently has a

variety of structures: Sagnac based [3], corner based [4], scanning-mirror based [5], and snapshot
[6,7], popularized inmany different fields. In TSMIFTS interference data processing, in 2010, Jian
et al. researched the data processing process of a tempo-spatially mixed modulated polarization
interference imaging spectrometer, which was modulated by polarized interference optoelectronic
devices [8–11], and proposed a multi-spectral data reconstruction method [12,13]. In 2014,
Kleinert et al. proposed a nonlinear spectral radiation calibration method to improve the accuracy
of radiation measurement [14]. In 2017, Ferrec et al. usedmultiplicative decomposition to remove
fringes from the interferogram [15]. In 2018, Yan et al. proposed a method of high spectral
resolution channeled imaging spectropolarimetry based on a high-throughput tempo-spatially
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mixed modulated mode Savart interferometer, greatly increasing the reconstructed-spectrum
resolution [16,17].

In 2014, we presented a TSMIFTS that used a stepped micro-mirror, instead of a high-precision
moving mirror to obtain the OPD, greatly improving stability and ensuring high throughput and
certain spectral resolution [18]. We also performed a laboratory imaging experiment; however,
due to the new structure of the interference core that introduced the stepped micro-mirror,
data processing and performance evaluation of the instrument was not completed and had
many problems. For example, the uneven width and edge distribution of the sub-steps of the
micro-mirror caused stitching gaps of the reconstructed images, and the uneven height distribution
of the sub-steps of the micro-mirror caused wavenumber shifts of the reconstructed spectra. The
existing methods [12–17] provide a reference value, but cannot solve the inherent problems of
this instrument. In this paper, we propose a TSMIFTS based on a stepped micro-mirror with a
greater number of steps to achieve higher spectral resolution. Problems related to data processing
are considered and corresponding solutions are proposed. Moreover, for potential applications,
we evaluate instrument-performance indicators and propose methods to move indicators close to
their theoretical values.

2. Instrument structure and parameters

2.1. Structure and working principle

Figure 1(a) shows that the stepped micro-mirror TSMIFTS comprises a scanning mirror, a first
imaging system, a plane mirror, a beam splitter, a compensator plate, a stepped micro-mirror, a
second imaging system, and a detector with a cold stop.

Fig. 1. (a) Simplified configuration of the TSMIFTS based on 128-step micro-mirror. (b)
Internal structure of the prototype.

The working principle of the system is that at a certain time the light emitted by the target
object passes through the scanning mirror and first imaging system, forming two primary image
points on the plane mirror and the stepped micro-mirror, respectively. The two primary image
points are ultimately imaged through the second imaging system on the focal plane of the
detector, after being reflected by the plane mirror and micro-mirror. The difference in height
between the plane mirror and micro-mirror causes the OPD between the two beams reaching
the detector to be different, thereby forming interference fringes on the detector. Therefore,
image and spectral information regarding the target reaches the detector. Then the scanning
mirror rotates, and the target is imaged on the next step surface, so the detector can obtain
interference information concerning different OPDs of the target. After one scan period, the
detector obtains a three-dimensional data cube containing two-dimensional spatial information
and one-dimensional spectral information.
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2.2. Overall parameters

The instrument uses a medium-wave infrared HgCdTe area array detector, with a response band
of 3.7∼4.8 µm. The F# is 4. The pixel number is 320 × 256. The pixel size is 30 µm × 30 µm.
The theoretical spatial resolution of the instrument is 0.833 m at 2000 m. The theoretical width
is 213 m at 2000 m.

2.3. Stepped micro-mirror

Figure 2(a) shows the stepped micro-mirror prototype, with its partial enlargement shown in
Fig. 2(b).

Fig. 2. (a) Prototype of the stepped micro-mirror (steps are all in the dotted line). (b) Partial
enlargement of the stepped micro-mirror.

The micro-mirror is made by a micro-nano process, and the design parameters are shown in
Table 1.

Table 1. Design parameters of the stepped micro-mirror

Design parameters Value

Number of steps 128

Total length/mm 25.6

Total height/µm 80

Total width/mm 32

Sub-step height/µm 0.625

width of a sub-step/mm 0.25

The sub-step height design is as follows: Let the optical signal wavelength range be [λmin, λmax],
and the sub-step height of the step micro-mirror be d, then the OPD sampling interval is 2d.
According to the Nyquist-Shannon sampling theorem, the sampling frequency should be greater
than twice the maximum signal frequency, that is, the sampling interval should satisfy 2d ≤λmin/2,
and the sub-step height of the micro-mirror should satisfy d ≤λmin/4. Substituting λmin into the
working band of the instrument, 3.7∼4.8 µm, and get d ≤ 3.7/4= 0.925 µm. With respect to
adjustment-error influence and micro-mirror-processing precision, the OPD during sampling has
a certain error, and a certain margin should be left for the sampling interval. Therefore, we set
the sub-step height of the micro-mirror to 0.625 µm.

For non-uniformity sampling correction in subsequent data processing, we used a stylus profiler
to measure the micro-mirror step height. The probe scanning distance of the stylus profiler was
32 mm, covering all steps from the lowest to the highest. The scanning speed was 100 µm/s and
the scanning frequency was 100 Hz. Figure 3(a) shows the sub-step height distribution of the test
data; the test data was processed summarized. Figure 3(b) shows the sub-step height distribution
histogram, and the measured parameters are summarized in Table 2.
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Fig. 3. (a) Partial distribution of the step height. (b) Sub-step height distribution histogram.

Table 2. Measured parameter of the stepped micro-mirror

Measured parameter Value

Average sub-step height/µm 0.6189

Standard deviation/µm 0.0348

Surface roughness/µm 0.0192

3. Data processing

The data processing process takes place on the data cube to obtain the scene image and
reconstructed spectrum, the flow of which is in Fig. 4. The image is divided into different image
units according to the different interference orders. The next processing stage comprises two
routes. The first route involves stitching and reconstructing the scene image. We stitch image
units of the same order in each image according to scanning direction to obtain the sequence
of scene images; we then fuse the images to finally obtain the scene image. The second route
involves stitching the interferogram sequence and reconstructing the spectrum. We stitch image
units of different orders of the same target in each image according to the OPD sequence, to obtain
the target interference pattern sequence, and then perform dimensionality reduction, baseline
correction, apodization, non-uniformity sampling correction, and a Fourier transform on the
target interferogram sequence to obtain the reconstructed spectrum.

Fig. 4. Data processing flow chart.

3.1. Image cutting

Image cutting forms the basis of subsequent data processing. In theory, the image-unit position
corresponding to each interference order is determined by the geometric shape of the stepped
micro-mirror. However, the low precision in micro-mirror manufacturing and the instrument
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adjustment error, may cause alignment errors in the optical system; therefore, the image-unit
widths corresponding to different interference orders may be different and the Hough transform
method is chosen for image-unit separation.

TheHough transform is an effective curve-detectionmethod, converting images from coordinate
space to parameter space, detecting curves that can be parameterized, and controlling detection
length by setting thresholds, thus filtering out unwanted ones. After detecting the step edge using
the Hough transform, and using micro-mirror parameters, interpolation obtains the undetected
edge; the least-squares method fits the corresponding line—the edge of the interference image
unit.

3.2. Image stitching

Due to the difference in the widths between the different sub-steps of the micro-mirror, if the
interferogram units are simply combined in order, the resulting stitched image has a stitching gap.
Therefore, we use feature-based image-stitching methods to stitch scene images, the main steps
of which include feature extraction, image registration, and image fusion.
The first step is feature extraction, where the considerably robust scale invariant feature

transform (SIFT) algorithm is used [19,20]. The SIFT algorithm must usually be divided into
several steps: detecting and locating scale-space extreme points, determining feature-point
directions, and generating feature descriptors. We only use the algorithm to determine extreme-
point position. To detect stable extreme points in scale space, we adopt Gaussian difference scale
space, using different scale Gaussian difference kernels for convolution generation of images:

D(x, y,σ) = (G(x, y, kσ) − G(x, y,σ)) ⊗ I(x, y) = L(x, y, kσ) − L(x, y,σ) (1)

where G(x, y,σ) = exp(−(x2 + y2)/2σ2)/2πσ2, and G(x, y,σ) is a Gaussian function of varying
scale; (x, y) and σ are the space and scale coordinates, respectively.
The second step is image registration. We use the feature matching algorithm based on local

maximum entropy to obtain the matching result with greatest credibility, via correlation matching
of local feature points. Entropy [21] expresses the complexity or uncertainty of a system, and
can be used to describe mutual information, representing the statistical correlation between two
random variables. Image matching based on mutual information searches for the pair of points
with the largest amount of mutual information among the two images to be registered, obtaining
the feature-point matching pair of the image. For an m × n image module, entropy is:

Hf = −

m∑
i=1

n∑
j=1

pij log pij (2)

where pij represents the grayscale distribution of the image in (i, j) coordinates. If H(A), H(B)
represent the entropy of images A and B, respectively, and H(A, B) represents the joint entropy of
the two images, then the information amount is:

K(A,B) = H(A) + H(B) − H(A,B) (3)

The third step is image fusion. The stitched image has a number of vertical stitching gaps,
periodically arranged. After a two-dimensional fast Fourier transform, the vertical stitching gap
in the image peaks on the horizontal axis of the Fourier frequency domain energy spectrum.
Therefore, we can choose the appropriate filter and multiply it with the previously obtained
frequency domain energy distribution, so that the gap components in the frequency domain space
can be filtered out. Finally, we perform an inverse Fourier transform on the filtered spectrum to
obtain a spatial image without stitching gaps.
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3.3. Spectral reconstruction

Using the above stitching method, we stitch image units of different orders of the same target in
each image according to the OPD sequence. The interferogram sequence of the target is thus
obtained, meaning the spectrum can now be reconstructed. Due to the instrument’s structure, our
spectral reconstruction method consists of: (1) dimensionality reduction, (2) baseline correction,
(3) apodization, and (4) Fourier transform.

(1) The dimensionality reduction of the interferogram sequence is represented by the following
two equations:

I0 =



I11 · · · I1n

I21 · · · I2n
... · · ·

...

Im1 · · · Imn



I1(n+1) · · · I1(n×N)

I2(n+1) · · · I2(n×N)
... · · ·

...

Im(n+1) · · · Im(n×N)

(4)

I ′0 = (I
′
1I
′
2I
′
3I
′
4 · · · I

′
N) (5)

Equation (4) represents a two-dimensional interferogram sequence, the matrix in the box
represents an image in a sub-step mirror, and N represents the number of sample points
resampled. Equation (5) represents a one-dimensional interference intensity sequence after
dimensionality reduction.

(2) In baseline correction, the interference intensity sequence consists of two parts, the
DC-component and the AC-component. Due to the linearity of the Fourier transform, the
AC-component modulates the interferogram, determining the shape and peak position of the
spectrum, but the DC-component has little effect. When error exists in the DC-component,
it causes a baseline curvature of the interference intensity sequence. The least-squares
method is used to fit the baseline of the interference intensity sequence, and then obtain the
corresponding DC-components at different sampling points. Finally, the corresponding
DC-component value is subtracted from the intensity value of each sampling point in the
interference intensity sequence.

(3) In apodization, the integral interval of the Fourier transform is infinite, but acquisition of
the interferogram can only be performed in a limited interval, called the “sampling cutoff.”
Sampling cutoff causes side-lobe oscillation in the spectrum, and the first side-lobe should
be no more than 22% larger than the main peak. Therefore, the apodization function must
apodize the interference intensity sequence to mitigate side-lobe oscillation. We use the
Happ-Genzel function, which has little influence on spectral resolution. Let the sampling
length be ∆:

A(δ) = 0.54 + 0.46 cos
(
π

(
2δ
∆
+ 1

))
(6)

(4) We perform a fast Fourier transform on the interference intensity sequence to obtain the
reconstructed spectrum.

3.4. Non-uniformity sampling correction

Due to the influence of the substrate material and manufacturing process, the height of each
sub-step of the micro-mirror can be offset from the theoretical height, so the errors will be
introduced into the OPD corresponding to each interference order. Set the height of the sub-step
of the stepped micro-mirror to δ/2 and the sampling point to N. Therefore, the sampling interval
is 2δ and the maximum OPD of the instrument is Nδ. According to Fourier transform infrared
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spectroscopy [22], for the n-th (n = 0, 1, . . . ,N − 1) sampling point in the frequency domain, the
wavenumber is νn0 = 1/(Nδ). Set OPD errors to εi(i = 1, 2, . . . ,N), the sampling interval in the
frequency domain will turn into νn = 1/(Nδ +

∑N
i=1 εi). Its spectral intensity has the following

relationship with the interference intensity in the OPD domain:
B(νn) =

+∞∫
−∞

I(δ) exp(−j2πνnδ)dδ

I(δk) =
+∞∫
−∞

B(ν) exp(j2πνδk)dν
(7)

where k = 0, 1, . . . ,N − 1. Then the phase angle of the n-th sampling point is:

θnk = 2πυnδk = 2π
n

Nδ +
N∑

i=1
εi

(kδ + εk) (8)

Therefore, the phase error of the n-th sampling point is:

∆θnk = θnk − θnk0 = 2π(νnδk − νn0δk0) = 2nπ(
kδ + εk

Nδ +
N∑

i=1
εi

−
k
N
) (9)

The phase error will cause the spectral peaks to shift from the theoretical value.
To correct the above phase error, we performed non-uniformity sampling correction as follows:

First, set the height error of the i-th sub-step of the micro-mirror as εi/2, and the OPD error is εi
according to the interference principle. Then let ∆Ri(i = 1, 2, . . . ,N) represent the actual OPD
matrix, ∆Ei the OPD error matrix, and ∆Ii the ideal OPD matrix, so that the non-uniformity
sampling error correction process is:

(1) Calculate the corresponding height error εi/2 based on the measured step-mirror height
data (Section 2.3), and calculate the OPD error matrix as ∆Ei = εi; then the actual OPD
matrix is:

∆Ri = ∆Ii − ∆Ei (10)

(2) Use the least-squares method to fit the functional relationship between the actual OPD
matrix and the value of the interference intensity sequence:

IRi = f (∆Ri) (11)

(3) Substitute the ideal OPD matrix into Eq. (11) to find the ideal interference intensity
sequence:

IIi = f (∆Ii) (12)

3.5. Spectral resolution enhancement

Due to the image noise and apodization algorithms, the resolution of the reconstructed spectrum
is lower than the theoretical value. Therefore, after analyzing the spectral characteristics, we
propose a spectral resolution enhancement algorithm based on empirical mode decomposition
(EMD).

EMD is a signal decomposition method proposed by NASA’s Huang et al., which decomposes
signals into different eigenmode functions according to frequency [23,24]. The eigenmode
function must satisfy the following two conditions:
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(1) The number of times the signal passes through the zero point is equal to the number of
poles, and if not equal, it is at most one.

(2) The signal is locally symmetrical about the time axis, i.e., the mean value of the upper and
lower envelopes at any point on the signal curve is zero.

With the above restrictions, we can decompose the spectral signal, set a spectral signal to S(f ),
find all the extreme values of S(f ), find the upper and lower envelopes by interpolation, and then
solve the mean of the upper and lower envelopes EM1(f ); calculate:

IMF1 = S(f ) − EM1(f ) (13)

If IMF1 satisfies the constraint condition of the eigenmode function, it is the first eigenmode
function, otherwise let S(f ) = IMF1; repeat Eq. (13) until IMF1 satisfies the constraint condition
of the eigenmode function. Next, we subtract IMF1 from the original signal, and take the
obtained S1(f ) as the new original signal, obtaining IMF2 by the above steps. Repeat the above
steps to obtain the empirical modal function IMF3, IMF4, . . . , IMFn until the n-th time Sn(f ) is
a monotonic function, and the eigenmodes satisfying the condition can no longer be obtained.
Express the spectral signal in the form of a sum of the empirical modal functions:

S(f ) =
n∑

i=1
ωiIMFi(f ) + Sn(f ) (14)

where ωi is the weight coefficient. Since most of the information in the spectral signal is in the
characteristic peak, to enhance spectral resolution, the higher the weight of the high-frequency
part of the spectral signal, the higher the spectral resolution. Therefore, an exponential function
is used to calculate the weight coefficient: let the maximum value of each eigenmode function be
Mi, the initial weight coefficient ωi, and the new weight coefficient ω′i (i = 1, 2, . . . , n). The new
weight coefficients can be calculated by Eqs. (15) and (16):

S =
n∑

i=1
Mi (15)

ω′i =


ω1 + ∆ i = 1

ωi
ei i = 2, 3, . . . , n

(16)

where ωi = Mi/S, ∆ =
n∑

i=2
(ωi − ω

′
i ). After obtaining the new weight coefficient, we can

reconstruct the spectrum using Eq. (14).

4. Experimental results

The experimental location of this paper is 43° 50’ 53.76’’ north latitude, 125° 23’ 54.96’’ east
longitude, and the target distance is 725 meters. To obtain the complete data cube of the target,
the instrument must accumulate over a certain period of time to make the target traversing all
interference orders via swing of the scanning mirror.

4.1. Data acquisition

To obtain the target interferogram from the zero OPD position to the maximum OPD position,
the distance that the target moves on the micro-mirror should be less than or equal to the width of
one sub-step mirror. To reduce scan time, the distance is set equal to the width of one sub-step
mirror. According to the parameters of the first imaging system and the stepped micro-mirror,
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the scanning interval is calculated to be 0.024°. Then, we determine a scan direction and acquire
an image after each scan interval of the scan mirror. After one cycle, we obtain a complete
interference data cube, shown in Fig. 5.

Fig. 5. Interference data cube.

4.2. Experimental results

After obtaining the target’s interference data cube, we reconstruct the scene image. Using
the method in Section 3.1, we perform a Hough transform and interpolation fitting on the
interferogram to obtain the interferogram units, and the results are shown in Fig. 6(a). Then
we use the method in Section 3.2 to stitch and fuse the interferogram units. The result of
feature-based image stitching is shown in Fig. 6(b), and the result of image fusion is shown in
Fig. 6(c).

Fig. 6. (a) Interferogram after Hough transform detection and interpolation. (b) Scene
image after feature-based image stitching. (c) Scene image after image fusion.

Figures 6(a) and 6(b) show that the stitched image units match very accurately, and the image
details in the red circle in Figs. 6(b) and 6(c) show that the stitching gaps and the transition
between image units are greatly improved. Our method, therefore, is suitable for scene-image
reconstruction of the instrument.
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Next, we reconstruct the spectrum. We select a point in the scene as the target of spectral
reconstruction (as shown in Fig. 7(a), select point A as the reconstructed target), then extract and
stitch the image units of all orders in the order according to the OPD to obtain a two-dimensional
interferogram sequence, as shown in Fig. 7(b).

Fig. 7. (a) Reconstructed target in the scene image. (b) Two-dimensional interferogram
sequence of the reconstructed target.

We then use the methods in Sections 3.3, 3.4, and 3.5 to process the two-dimensional
interferogram sequence. The result is shown in Figs. 8(a)–8(e).

Fig. 8. (a) Interference intensity sequence after dimension reduction. (b) Interference
intensity sequence after baseline correction. (c) Interference intensity sequence after
apodization. (d) Interference intensity sequence after non-uniform sampling correction. (e)
Comparison of unoptimized spectrum and reconstructed spectrum.

After a series of interference data processing, we finally obtain the reconstructed spectrum.
Figure 8(e) shows that the optimized spectrum by the above steps has significantly reduced noise
and side-lobe oscillation than the unoptimized spectrum, which shows that our method in section
3.3 has obvious effects. It can also be seen from Fig. 8(e) that the peaks of the spectrum before
and after the optimization are slightly different, which shows that the non-uniform sampling
correction in section 3.4 has a certain improvement on the wavenumber shift of the spectrum.

However, because the composition of the selected spectral reconstructed target is undetermined,
and the spectrum is mixed with many unknown atmospheric components, the resulting spectrum
cannot evaluate instrument performance in terms of spectral resolution and signal to noise ratio
(SNR). Therefore, follow-up experiments are required to evaluate this performance.

5. Instrument performance evaluation

5.1. Spectral resolution

Spectral resolution characterizes the ability of an instrument to resolve adjacent lines. The
criterion for distinguishing two adjacent lines of equal intensity and half-height width is that they
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have a depression of not less than 20% of the peak value of the intensity value after synthesis
[25,26]. The theoretical calculation formula is:

∆υ =
1
δmax

(17)

where ∆υ is the spectral resolution in cm−1 and δmax is the maximum OPD in cm. Substituting
δmax = 0.625 × 2 × 128 × 10−4 = 0.016 cm, the theoretical spectral resolution is obtained as 62.5
cm−1.
To obtain the true spectral-resolution value, we use the instrument line shape (ILS). The

calculation process is as follows: Because of the effect of window truncation caused by limited
OPD of the instrument, the actual reconstructed spectrum is:

B(σ) = FT[Π(δ)I(δ)]−1 = FT[Π(δ)]−1 ⊗ FT[I(δ)]−1 (18)

where I(δ) is the interference intensity andΠ(δ) is the truncation window; i.e., the actual spectrum
B(σ) can be expressed as the convolution of the ideal spectrum with the Fourier transform of the
truncation window. When we only consider the window truncation effect, the ILS is:

ILS = FT[Π(x)]−1 =
∞

∫
−∞
Π(x)e−2iπvxdx (19)

When the ideal spectrum is an infinitely narrow single chromatogram, it is an σ function.
According to the nature of the σ function, the actual spectrum is B(σ)= ILS; i.e., ILS can
be regarded as the output spectrum when the input spectrum is an infinitely narrow single
chromatogram, which is determined by the characteristics of the spectrometer and the spectral
transformation method [27,28].

According to the above calculation, we design the following ILS measurement experiment: A
point-source black body and a narrow-band filter, with a center wavelength of 4.26 µm and a
bandwidth of 66cm−1, form a light source, and three calcium fluoride lenses form a collimation
system to simulate a collimated monochromatic light source with parallel incidence. The
optical path design and experimental platform are shown in Fig. 9(a). Then, we process the
experimentally measured data [Fig. 9(b)] to obtain an interference intensity sequence [Figs. 9(c)
and 9(d)], obtaining ILS as shown in Fig. 9(e).
Figure 9(e) shows that the main peak position of the ILS without non-uniformity sampling

correction is 2398cm−1, and the deviation from the theoretical value of 2347.4cm−1 is 1.28%.
After non-uniformity sampling correction, the ILS main peak position is 2364cm−1, only 0.41%
from the theoretical value, 2347.4cm−1, indicating that non-uniformity sampling correction
effectively corrects the wavenumber shift of the spectrum caused by the step-height shift. However,
the half-width (spectral resolution) is 79cm−1, quite different from the instrument index, 62.5cm−1.
This is probably because of the narrow band source that replaces the monochromatic source,
leading to ILS broadening. Therefore, we further processed the interference data, to enhance the
resolution of ILS to bring it closer to the theoretical value. After spectral resolution enhancement,
the ILS spectral resolution reached 65cm−1, very close to the theoretical value of 62.5cm−1.

5.2. Signal to noise ratio

The signal to noise ratio (SNR) is also an important performance characterization parameter
of the spectrometer, related to factors such as target radiation and reflection characteristics,
background characteristics, atmospheric transmittance, optical system aperture, relative aperture,
transmittance, detector responsiveness, quantum efficiency, and specific detection rate [29,30].
Because the final data obtained by the instrument includes both interference images and spectral
information, the SNR of the interferogram and the SNR of the reconstructed spectrum must be
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Fig. 9. (a) Simplified configuration of the ILS measurement system. (b) Two-dimensional
interferogram sequence. (c) Interference intensity sequence. (d) Interference intensity
sequence after data processing. (e) Instrument line shape.

measured simultaneously, where the interferogram SNR reflects original-image quality, and the
reconstructed-spectrum SNR reflects the instrument’s spectral response performance.

First we calculate the theoretical SNR value. The theoretical value of the interferogram SNR
is derived as follows: Set the detector area toAd, the focal length of the optical system to f, the
incident aperture toD, the atmospheric transmittance to τa, the optical system transmittance to τ0;
the target spectral radiance is Lλ. The luminous flux to the detector is:

φλd =
πAdLλτaD2(λ)τ0(λ)

4f 2
(20)

The corresponding output signal voltage of the detector is:

V(λ) = φλdR(λ) =
πAdLλτaD2(λ)τ0(λ)R(λ)

4f 2
=
πAdLλτaD2(λ)τ0(λ)VsD∗

4f 2(Ad∆f )1/2
(21)

where R(λ) is the spectral response rate of the detector, Vs is the total output noise, D∗ is the
spectral ratio detection rate, ∆f = 1/2tint is the noise equivalent bandwidth, and tint is the detector
integration time. Then, the SNR (integral form) is:

SNRx =
V(λ)
Vs
=
πD2√Ad

4f 2
√
∆f

Lλτa(λ)τ0(λ)D∗(λ)dλ (22)

Rewrite Eq. (22) by use the average over the wavelength range:

SNRx =
πD2√Ad

4f 2
√
∆f

Lτaτ0D∗∆λ (23)

where L = εW/π = εc1/(πλ5 × (ec2/λT − 1)) is the target spectral radiance, ε is the emissivity,
W is the spectral radiant flux density, c1 = 3.7415 × 10−16W · m2 is the first radiation constant,
c2 = 1.43879 × 10−2m · K is the second radiation constant, and T is the absolute temperature of



Research Article Vol. 28, No. 5 / 2 March 2020 / Optics Express 6332

the target. Substituting various parameters into Eq. (23), set the target temperature to T= 700 K
and calculate the theoretical value of the SNR of the interferogram: SNRx = 204.4829.
The theoretical SNR value of the reconstructed spectrum is derived as follows [31]: The

Fourier transform relationship between interference intensity I(x) and spectral intensity B(σ) is:
B(σ) =

∫ +∞
−∞

I(x) exp(−i2πσx)dx

I(x) =
∫ +∞
−∞

B(σ) exp(−i2πσx)dσ
(24)

According to the Paseval theorem [32]:

δυ |B|
2
= δx|I |

2
(25)

where δυ is the spectral resolution and δx is the OPD sampling interval. For this instrument, the
following relationship exists: 

δx = 2δ/N

δυ = 2υmax/N

N × δx × δυ = 1

(26)

where N is the number of bilateral sampling points, υmax is the maximum wave number difference,
and −δ ∼ δ is the OPD sampling range. Multiply both sides by the number of bilateral sampling
points to get:

2υmax |B|
2
= 2δ |I |

2
(27)

giving the conversion relationship between frequency-domain noise and airspace noise as:

εσ = εx
√
δ/υmax =

δσNB(σ)
√
2SNRx

√
δ/υmax (28)

where B(σ) is the average of the spectral intensities at N sampling points. Then, the spectrum’s
SNR is:

SNRσ =
B(σ)
εσ
=

√
2
N

SNRx (29)

Substituting N = 128, SNRx = 204.4829 into Eq. (29); the SNR theoretical value of the
reconstructed spectrum is SNRσ = 25.5604.
Measure and calculate the SNR true value, where measurement of the SNR true value of the

interferogram is as follows: Choose the SNR at the 0-path difference with the largest interference
intensity as the SNR of the interferogram:

SNRx =
I0

σ[I0]
(30)

where I0 represents the interference intensity at the 0-path difference.
Use the point source black body and the integrating sphere to simulate an approximately

uniform surface light source; set the temperature to be the same as the theoretical calculation, then
use the instrument to scan one cycle to obtain a time-dimensional 0-path difference interference
intensity sequence. Calculate the mean and standard deviation of the sequence and substitute
them into Eq. (30) to obtain the interferogram SNR.

Measure the true value of the reconstructed spectrum’s SNR as follows: Use the data obtained
from the interferogram-SNR calculation to obtain the black body’s reconstructed spectrum;
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compare it with the theoretical (simulated) black body spectrum; substituting the data into the
following formula, the spectrum’s average SNR is:

SNRσ =
n∑

i=1
SNRσ(i) =

n∑
i=1

B(i)
σ(i)

(31)

where n is the number of spectral channels, SNRσ(i) is the SNR of the i-th spectral channel, B(i)
is the reconstructed spectrum of the i-th spectral channel, and σ(i) is the noise standard deviation
of the i-th spectral channel. Figure 10 is the measured blackbody interference data, and the
comparison between the reconstructed spectrum post-processing and the blackbody theoretical
spectrum.

Fig. 10. (a) Interference data cube of blackbody. (b) Interference intensity sequence of
blackbody. (c) Theoretical spectrum and reconstructed spectrum of blackbody.

It can be seen from Fig. 10(c) that the theoretical spectrum and the measured spectrum
of blackbody are slightly different. This is due to the influence of some factors, such as the
interference of the experimental environment, the non-uniform spectral response of the detector
and the uneven transmittance of the anti-reflection coated lens during the spectral response range.
After calculation, the measured value of the interferogram SNR is: SNRxt = 189.3201, and

the measured value of the reconstructed-spectrum SNR is: SNRσt = 22.8817. Therefore, the
interferogram SNR error is 7.42%, and the reconstructed-spectrum SNR error is 10.48%.

6. Conclusions

Several novel algorithms are used to process data related to the characteristics of a stepped
micro-mirror to eliminate the image’s stitching gaps, and the spectral noise and side-lobe
oscillations to generate a high-quality reconstructed image and an impressive reconstructed target
spectrum.
Moreover, to evaluate instrument performance and verify the validity of non-uniformity

sampling correction and spectral resolution enhancement, the theoretical values of spectral
resolution and the SNR are rigorously derived from the instrument parameters and characteristics.
This derivation establish the conversion relationship between the interferogram SNR and the
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reconstructed-spectrum SNR. Experimental results shows that the main peak positions of the
ILS before and after non-uniformity sampling correction are 2398cm−1 and 2364cm−1, differing
by 1.28% and 0.41% from the theoretical value of 2347.4cm−1, indicating that non-uniformity
sampling correction does correct wavenumber shift. The spectral resolutions before and after
spectral-resolution enhancement are 79cm−1 and 65cm−1, differing by 26.4% and 4% from the
theoretical value, 62.5cm−1, indicating that the spectral resolution enhancement based on EMD
enhances spectral resolution. The interferogram SNR of the instrument is 189.3201 and its
error from the theoretical value of 204.4829 is 7.42%. The reconstructed-spectrum SNR of the
instrument is 22.8817 and its error from the theoretical value of 25.5604 is 10.48%. Further
research will focus on data-processing optimization to improve the accuracy of the main-peak
position of the reconstructed spectrum and bring the SNR closer to the theoretical value, thus
enhancing the applicability of the instrument.
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