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Cloud-Aware Generative Network: Removing Cloud
From Optical Remote Sensing Images
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Abstract— In the optical remote sensing and earth observation
fields, clouds severely obscure the land’s visibility and degrade
the image. In recent years, there have been many excellent efforts
to mitigate the effects of cloud cover. However, it has been found
that there will be some blurs in the area if a single degraded
image is restored by autoencoder-based methods. This letter
focuses on removing clouds from single optical remote sensing
images by autoencoder-based methods without multitemporal
information while at the same time mitigating blurs caused
by missing information. Therefore, we propose a novel cloud
removal method that combines image inpainting and image
denoising, called the Cloud-Aware Generative Network (CAGN).
The CAGN consists of two stages: the first stage is a recurrent
convolution network for potential cloud region detection and
the second is an autoencoder for cloud removal. The method
uses a side-guided method that adds attention mechanisms in
the first stage to assist in predicting the mask. Furthermore,
to update the mask adaptively for restoring degraded image
areas greedily, the method embeds partial convolution in the
autoencoder to condition the convolution calculation of pixels
in the regions of thick clouds at different layers. Extensive
experiments demonstrate clearly that CAGN can easily achieve a
considerable increase in the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) compared with a
competitive baseline model.

Index Terms— Attention mechanism, cloud detection, cloud
removal, generative network, remote sensing.

I. INTRODUCTION

REMOTE sensing technology has been widely used
for earth observation. Optical remote sensing image

Manuscript received March 14, 2019; revised April 18, 2019 and
June 11, 2019; accepted July 7, 2019. This work was supported in part by the
Youth Innovation Promotion Association, CAS, under Grant 2016201 and in
part by the National Defense Science and Technology Innovation Zone under
Grant 18-H863-00-TS-002-018-01. (Corresponding author: Ye Zhang.)

L. Sun is with the Image Processing Department, Key Laboratory of
Airborne Optical Imaging and Measurement, Chinese Academy of Sci-
ences, Changchun Institute of Optics, Fine Mechanics and Physics, Chi-
nese Academy of Sciences, Changchun 130033, China, and also with
the College of Materials Sciences and Opto-Electronic Technology, Uni-
versity of Chinese Academy of Sciences, Beijing 100059, China (e-mail:
sunlinjian16@mails.ucas.edu.cn).

Y. Zhang, X. Chang, and J. Xu are with the State Key Laboratory
of Applied Optics, Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, Changchun 130033, China, and also
with the AI Lab, Changchun Spirits AI Technology Co., Ltd., Changchun
130033, China (e-mail: zhangye@ciomp.ac.cn; xuling.chang@ciomp.ac.cn;
jiajia.xu@ciomp.ac.cn).

Y. Wang is with the Image Processing Department, Key Laboratory of
Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Acad-
emy of Sciences, Changchun 130033, China (e-mail: wangyj@ciomp.ac.cn).

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2019.2928840

processing is an important category, and it is easily affected
by cloud cover. Clouds will severely hamper the visibility
of the land and degrade an image considerably. Cloud cover
can cause partial information loss, which will cause adverse
effects on subsequent image processing. Therefore, solving the
degradation problem of optical remote sensing image occluded
by cloud cover has become an urgent need.

In the last few years, to mitigate the influence of cloud
cover, many methods have been proposed. These methods can
be classified into three categories [1]: inpainting-based meth-
ods, multispectral-based methods, and multitemporal-based
methods. Inpainting-based methods [2], [3] make use of the
context surrounding the region occluded by clouds to infer and
complete the lost information in images. Owing to the context
without clouds nearby, the cloud region is usually similar to the
occluded part. Image inpainting is an important task in com-
puter vision that aims to fill missing pixels of an image. The
challenge mainly comes from synthesizing visually realistic
and semantically plausible pixels for the missing region that
are coherent with surrounding image content. Multispectral-
based methods [4]–[6] use multispectral data for detecting
the region of cloud and reconstructing the missing part of the
image. Multitemporal-based methods [7], [8] mainly use the
correlation of different temporal images to solve the problem
of cloud removal; therefore, both temporal coherence and spa-
tial coherence can be used. In addition, if considering different
cloud cover conditions, the multispectral methods are mainly
applied for thin-cloud removal, while multitemporal-based
methods are more suitable for large-area thick-cloud removal.
Recently, convolutional neural networks (CNNs) have been
very successful and are used on a variety of computer vision
tasks. An excellent autoencoder-based method [8] has already
solved cloud removal focused on using multitemporal images.
We therefore also consider using an autoencoder to solve the
bothersome problem of cloud cover.

In this letter, we simplify cloud removal by using a sin-
gle cloud-contaminated image as a combination of image
inpainting and denoising problems. We propose Cloud-Aware
Generative Network (CAGN) for cloud removal, as shown
in Fig. 1. Different from the previous method described in [8],
the CAGN uses a single degraded image for restoration with-
out multitemporal information. The pipeline of the network
has two stages: the first stage is for cloud region detection
and the second stage is for reconstruction. In the first stage,
we use a recurrent network to produce a binary mask of the
cloud region. We simply consider the region with thick cloud
as having lost all information, and the region with thin cloud
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Fig. 1. Architecture of CAGN consists of two subnetworks. The first stage of the network consists of four convolutional LSTM units and a segmentation
network to generate a mask of the cloud region. The second stage of the network consists of an autoencoder with partial convolutional layers.

is considered to retain more information about the scene of
the ground. We introduce a vision attention mechanism in
the first stage, which pays more attention to the region of
thick cloud. The second stage is an autoencoder embedded
with partial convolutional layers, taking both the raw image
and the binary mask as the input to produce a cloud-free
image. We use the partial convolutional layers and condition
the autoencoder dynamically to complete the region of thick
cloud while denoising the region of thin cloud. In addition,
we train the CAGN using a synthetic data set. Finally, we fine-
tune on a smaller real cloud data set and achieve good results.

The main contributions of this letter are as follows.
1) We propose CAGN, which injects a visual attention

mechanism to detect and remove clouds by using a sin-
gle optical remote sensing image without multitemporal
information.

2) We introduce partial convolutional layers embedded
in the autoencoder to dynamically condition the thick
cloud region to participate in convolution calculations
to mitigate blurring.

II. STUDY AREA AND MATERIALS

We focus on mitigating the degradation of optical remote
sensing images caused by cloud occlusion. We present a
method that can capture the region where the land is occluded
by clouds and reconstruct the region automatically. For this
special task, we need paired training data consisting of a
clear remote sensing image and its corresponding degraded
image. The influence of clouds on radiation transmission is
a complex physical process, which is difficult to simulate
completely and realistically. For simplicity, this letter mainly
tries to alleviate the problem of cloud occlusion from the
perspective of image processing methods. To simulate the
near-earth optical remote sensing image degraded by cloud,
we make a small-scale synthetic data set using 361 clear
satellite images (800×800 pixels) acquired from Google Earth.
To obtain the degraded image paired with the clear image,
we used Adobe Photoshop to create a transparent layer and
then randomly generated the cloud on the transparent layer
by using its own rendering function. Finally, stacking the
transparent layer with cloud on the clear image, we obtain
the degraded image. We crop the original-sized image to

256 × 256 pixels using the step of 100 pixels along both the
horizontal and vertical directions. Finally, we obtain the data
set, which consists of 12 996 pairs of optical remote sensing
images. The data set was divided into 12 000 image pairs for
training and 996 for testing.

The data set for the experiments mainly consists of a triple
type. We divide the problem of removing the cloud from
optic remote sensing images into two subproblems. The first
subproblem is cloud region detection, which can be transferred
to coarse-grained binary semantic segmentation. The second
problem is the region of image reconstruction, which can be
considered as an image inpainting problem. We propose our
two-stage model to solve the above two problems. The mask
used in training the first-stage model is a binary representation
of which pixels belong to the region occluded by cloud. If a
pixel belongs to the region of thick cloud, the pixel value is 1;
otherwise, its value is 0. During the second-stage training,
the mask value is opposite to the mask used during the first
stage.

III. METHODOLOGY

A. CAGN Architecture Overview
The architecture of the CAGN is shown in Fig. 1. The

CAGN consists of two subnetworks, the attention-based cloud
region detection subnetwork and the autoencoder subnetwork.
In the attention-based cloud region detection subnetwork,
we utilize a recurrent network used in [9] to produce an
attention map of the cloud region in the input image. Each
block of the recurrent network consists of a ResNet with
several layers as the feature extractor, a convolutional long
short-term memory (LSTM) unit [10], and a convolutional
block for generating attention maps. The attention map is
learned in multisteps and is a one-channel 2-D matrix of the
score. The score ranges from 0 to 1. The greater the value of
the score is at a location, the greater the attention it suggests.
The attention map represents the increasing possibility from
the region not occluded by the cloud to the region that is
occluded by the cloud. The LSTM unit plays an important
role in the attention map production process. It is a popular
architecture of recurrent neural networks. Each LSTM unit
consists of a memory unit c, a hidden state h, and three
types of gates: the input gate i , the forget gate f , and the
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output gate o. These units are used to control the read-write
memory unit. For each time step t , the LSTM unit first receives
input xt and previous hidden state ht−1 and then computes
activations of the gates and updates ct and ht . The equations
involved are shown in (1), where � denotes the Hadamard
product and ∗ denotes the convolution operation

it = σ(Wxt ∗ xt + Whi ∗ ht−1 + Wci � ct−1 + bi )

ft = σ(Wxt ∗ xt + Whf ∗ ht−1 + Wcf � ct−1 + b f )

ct = ft � ct−1 + it � tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Whf ∗ ht−1 + Wco � ct + bo)

ht = ot � tanh(ct ) (1)

where xt is the feature map extracted by the residual block.
ct acts as an accumulator of the state information that will
propagate to the next LSTM unit. ht represents the output
feature of the LSTM unit that will be fed to the convolution
layer for generating the attention map. We concatenate the
current attention map with the input image in each time step
during the forward procedure. The attention map generated by
all four times step will be fed to the segmentation network for
producing a 2-D binary mask for the cloud region. Finally,
we stack the 2-D binary mask to three channels and feed it
into the autoencoder.

In the second stage of the CAGN, we use a UNet-like
architecture [11] as the autoencoder. Partial convolution has
been shown to improve the quality of image reconstruction.
We adopt the network design described in [12], which is
slightly changed relative to the original network. We replace
all batch normalization [13] with instance normalization [14]
between each convolution layer and rectified linear unit
(ReLU)/LeakyReLU layer except the first and last partial
convolutional layers. In the scenario of this letter, we use
partial convolutions where the convolution is masked and
renormalized to be conditioned on only the region without
cloud, as mentioned in Section II. We invert the binary mask
produced by the first stage network. Contrary to the procedure
producing the attention map, we set the pixel value of the
region occluded by the cloud to 0, and we set it to 1 otherwise.
The partial convolution at every location, defined in [15],
is expressed as follows:

x ′ =
{

WT (X � M) 1
sum(M) if sum(M) >0

0 otherwise
(2)

where W represents the convolution filter weights and b is the
corresponding bias. X is the feature map for the current sliding
window and M is the corresponding binary mask. After each
partial convolution, we update the mask following the rule as
follows:

m′ =
{

1 if sum(M) >0

0 otherwise.
(3)

If the convolution was able to condition its output on at
least one valid input value, then we remove the mask for
the corresponding location. We ensemble the first-stage and
second-stage networks as the whole model, training the two
parts of the model separately.

B. Loss Function
We train the first-stage and second-stage networks sepa-

rately. The loss of the first stage can be formulated as follows:
L1st = Latt + λseg Lseg (4)

where Latt and Lseg represent the losses for the attention
map and the segmentation mask, respectively, and λseg weighs
the importance between two losses. We set λseg to 10 in
training the first-stage network. We use pairs of images with
cloud and its cloud region mask. The loss in each step
of the convolutional LSTM is defined as the mean squared
error (MSE) between At , which presents the output attention
map in step t , and the binary mask M . We set this process in
four steps, initializing the attention map with the values of 0.5.
The region without cloud in the attention map becomes smaller
as the step t increases, and simultaneously, the region with
cloud will become larger. The loss function for the attention
map is given as follows:

Latt =
4∑

t=1

θ N−t
t LMSE(At , M). (5)

We set the value of Î, the same as that in [16] to 0.8.
For the segmentation loss, we use class-balance cross-entropy
introduced in [16], which is given as follows:

Lseg = −βY ∗logŶ − (1 − β)(1 − Y ∗log(1 − Ŷ )) (6)

where Ŷ is the prediction of binary mask and Y ∗ = M is the
ground truth. The parameter β is the balancing weight between
the positive and negative samples, formulated as follows:

β = 1 −
∑

y∗∈Y ∗ y∗

|Y ∗| . (7)

We find that the combination of attention loss and segmenta-
tion loss works well for predicting the binary mask. In the
scenario of this letter, we require only coarse-gained seg-
mentation results. For convenience, we introduce the attention
mechanism as auxiliary.

When training the second-stage network, we need an input
image X in, a binary mask M , an output image Xout, and the
ground truth Xgt. Similar to the loss for the task of image
inpainting used in [19], we also facilitate pixel losses defined
as follows:

Lcloud = ||(1 − M) � (Xout − Xgt)||1
Lnoncloud = ||M � (Xout − Xgt)||1 (8)

where || • ||1 represents L1 loss. We also use perceptual
loss [17] in multiscale defined as follows:

Lperceptual =
N−1∑

n=0

||VGGn(Xout) − VGGn(Xgt)||1

+
N−1∑

n=0

||VGGn(Xcomp) − VGGn(Xgt)||1 (9)

where Xcomp = (1 − M) � Xout + M � Xgt. The perceptual
loss computes the L1 distance of features after projecting
these images into higher feature space. We use a VGG16
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network [17] pretrained on the ImageNet data set as the feature
extractor, and VGGn is the output layer that we select. We use
the output of pooling layers from 1 to 3. Next, we introduce
the style loss, which is usually used in style transfer [18] and
image reconstruction. We compute the Gram matrix using the
same feature maps as perceptual loss, defined as follows:

Lstyle =
N−1∑

n=0

∣∣∣∣Kn
(

Fn
out

T Fn
out − Fn

gt
T Fn

gt

)∣∣∣∣
1

+
N−1∑

n=0

∣∣∣∣Kn
(

Fn
comp

T Fn
comp − Fn

gt
T Fn

gt

)∣∣∣∣
1 (10)

where Fn
out = VGGn(Xout), Fn

comp = VGGn(Xcomp), and
Fn

gt = VGGn(Xgt). The kn = 1/Cn HnWn is the normalization
factor for the corresponding layer. We add a mean square term
for all the pixels of the image, which is defined as follows:

LMSE−pixel = LMSE(Xout, Xgt). (11)

The last term of the loss for the second-stage network is the
total variation loss defined as follows:
L tv =

∑

(i, j )∈C,(i, j+1)∈C

∣∣∣∣Xi, j+1
comp − Xi, j

comp

∣∣∣∣
1

+
∑

(i, j )∈C,(i+1, j )∈C

∣∣∣∣Xi+1, j
comp − Xi, j

comp

∣∣∣∣
1 (12)

where C is one pixel belonging to the region of the cloud.
It is the smooth penalty term on the region of cloud. The loss
of the second-stage network is defined as follows:
L2st = 10Lcloud + 10Lnoncloud + 10LMSE−pixel

+ 0.5Lperceptual + 120Lstyle + L tv. (13)

The weight for each term of the loss was determined by the
result observed during training.

IV. EXPERIMENT

A. Training Detail
We implement the CAGN with PyTorch and train the

model on an NVIDIA GeForce 1060 GPU. Both the first
and second stages are trained using the ADAM [19] optimizer.
We set the mini-batch to 4 for the first-stage network training
procedure; the learning rate of ADAM starts from 1e-2, decays
to one-tenth every 20 000 iterations, and stops at 1e-4. We set
the mini-batch to 1 for the second-stage network training
procedure; the learning rate of ADAM starts from 2e-3, decays
to 0.25 every 24 000 iterations, and stops at 96 000 iterations.
Finally, we fine-tune the second-stage network, freezing all
the instance normalization layers, and use the learning rate
5e-5 by training 24 000 iterations. Both the first-stage network
and the second-stage network are trained until performance
stops improving. The choice of the learning parameters for
both the stages is based on heuristic search.

B. Results
The result of the CAGN is shown in Fig. 2. We select

six images [see Fig. 2(a)–(f)] with different scenes and
clouds for illustration. The comparisons between the output

Fig. 2. Result of the CAGN. (a)–(f) We select six images with different
scenes and clouds, including both thin cloud and thick cloud for illustration.

TABLE I

PSNR OF CLOUD REMOVAL

TABLE II

SSIM OF CLOUD REMOVAL

image and the ground truth image have shown that the
CAGN can generate results more similar to the ground truth.
We select pix2pix [20] as the baseline model and select the
peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) as metrics for cloud removal, and we make
comparisons between the input images and the output images.
Tables I and II show the results of PSNR and SSIM for
six images. The CAGN can achieve a considerable increase
in PSNR and SSIM of 13.877% and 16.266% on average,
respectively, compared with the baseline on synthetic test data.
It can be seen from Fig. 2(a)–(e) that the removal effect of thin
cloud is very obvious. The thick cloud removal effect can be
seen in Fig. 2(f). The pix2pix is also an autoencoder-based
method for image reconstruction with adversarial training.
The CAGN can provide a better result than pix2pix due to
the partial convolutional layer embedded in the second-stage
subnetwork. The approach can inhibit the convolution of the
pixels belonging to the thick cloud and gradually recover the
region from the edge to center of the thick cloud region.
We test both the CAGN and pix2pix on an NVIDIA GeForce
1060 GPU. The size of the input-degraded image in the test is
the same as that in the training. The time consumption for
both the models was 187 ms for the CAGN and 133 ms
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Fig. 3. Removal result of CAGN on real cloud images. (a)–(d) We select
four images to illustrate. Each row from top to bottom corresponds to the
cloud image, the result of CAGN, and ground truth.

TABLE III

RESULT OF CAGN FOR REAL CLOUD IMAGES

for pix2pix. The CAGN takes 48 ms to produce the mask
and 139 ms to reconstruct, and pix2pix has no component to
produce a mask. We also collected a set of remote sensing
images of Turkey from the JILIN-I satellite on May 25, 2017.
We cropped 324 patches of 256 × 256 pixels. We divided
the training set and the test set according to the ratio of 4:1.
We fine-tuned CAGN on a real cloud image data set using
a pretrained model on the synthetic data set. As shown in
Fig. 3, we selected four images to illustrate the test results.
The corresponding quantified results are shown in Table III.
We think that it can be improved by training on larger scale
real data sets in future work.

V. CONCLUSION

In this letter, CAGN has been proposed for removing clouds
from optical remote sensing images without multitemporal
information. The CAGN consists of a two-stage model with
a first-stage network for detecting the region of the cloud and
the second-stage network for cloud removal. We introduce
an attention mechanism for generating the binary mask for
cloud regions in the first-stage network, and we use partial
convolution layers to condition the region of the completed
image. We also produce a small synthetic data set to train the
CAGN and fine-tune using real images with cloud occlusion.
The result shows that the CAGN can achieve significant
effects.
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