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Abstract: Block-matching and three-dimensional filtering (BM3D) is generally considered as a milestone for its outstanding
performance in the area of image denoising. However, it still suffers from the loss of image detail due to the utilisation of hard
thresholding on transform domain during the phase of the basic estimate. In the frequency domain, a large amount of image
detail information is in high frequency, which tends to be mixed with noise. Since its low amplitude is below the threshold, some
image detail is filtered out with the noise. To retain more details, this study proposes an improved BM3D. It adopts an adaptable
threshold with the core of Gaussian function during hard thresholding, which can filter out more noise while retaining more high-
frequency information. When grouping, the normalised angular distance is taken as a measure of similarity to relieve the
interference of noise further and achieve a higher peak signal-to-noise ratio (PSNR). The experimental results show that under
the background of Gaussian noise with standard deviation of 20-60, the PSNR of denoised images (with a large amount of

detail), applied with the authors’ improved algorithm, can be improved by 0.1 — 0.4 dB compared with original BM3D.

1 Introduction

When computers process and analyse digital images (such as image
registration [1, 2], image fusion [3], video tracking [4], panoramic
video acquisition [5, 6] etc.), feature detection is first performed.
However, feature detection is extremely susceptible to noise
interference, resulting in erroneous extraction of features; as a
result, subsequent image processing will not work. Therefore,
image denoising is particularly important in the entire image
processing. Recently, scholars have proposed various kinds of
denoising algorithms to preserve as much detail as possible while
denoising. Denoising methods can be roughly divided into three
categories: spatial filtering, transform domain filtering and
artificial networks models. In spatial filtering (such as mean filter
and median filter etc.), pixels affected by noise are generally
estimated based on its adjacent pixels; this kind of algorithms are
suitable for processing randomly distributed noise such as salt and
pepper noise [7, 8]. Transform domain filtering — a method that
first transforms the image into the frequency domain and then
processes it according to the characteristics of the noise — is
generally applicable to regularly distributed noise [9] such as
sinusoidal noise. Nowadays, several trainable models used for
denoising had been proposed such as multi-layer perception [10],
trainable nonlinear reaction diffusion [11], denoising convolution
neural networks (DnCNN) [12] etc., but they all need training, and
their denoising performance depends on the choice of training sets.
One breakthrough in the traditional denoising algorithms is the
non-local mean algorithm (NLM) [13, 14], which extends the
adjacent filter window of the current pixel to the entire image. The
NLM can also adjust the filter coefficients according to the
similarity with the current pixel. The performance of NLM
algorithm is significantly better than common spatial domain
filters. Another method that uses a similar model is weighted
nuclear norm minimisation (WNNM) [15] which achieves
promising denoising quality at the cost of computational efficiency.

Recently, the block-matching and three-dimensional filtering
(BM3D), proposed by Dabov et al. [16], combines the advantages
of spatial filtering and frequency filtering to achieve better
denoising effect, which is a milestone in the traditional denoising
algorithms. It first establishes a search window nearby the block
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which is currently processed — the reference block, then searches
several other blocks which are similar to the reference block in the
search window and group them into a 3D block. Hard thresholding
is performed in transform domain, and a filtered 3D block is
outputted. The grey level of each pixel is, therefore, estimated and
accumulated; meanwhile, times of estimate for each pixel is also
recorded to get an estimate frequency matrix. A basic estimate
image is then obtained by estimate-time-weighted averaging after
processing all blocks. Finally, repeat the above step, except that the
hard thresholding is replaced by Wiener filtering, the final estimate
is obtained. The algorithm shows a significant enhancement over
previous denoising algorithms. Inspired by the same wisdom,
Dabov also proposed CBM3D for colour images [17].

Moreover, scholars in various fields have adopted the BM3D
and its variations for different purposes according to various kinds
of noises. For example, Zhao et al. [18] proposed an improved
BM3D that is applicable to ultra-low-dose computed tomography
(CT) image denoising. Yang et al. [19] implemented integer block-
matching and three-dimensional filtering using only integer
calculations to improve efficiency. Under the background of large
salt and pepper noise, Djurovic [20] proposed BM3D combined
with adaptive median filtering. However, BM3D and its variations
still have their shortcomings: when denoising under the
background of additive white Gaussian noise (AWGN), the BM3D
algorithm and its variations will cause some image detail loss.
Therefore, it is particularly important to develop an algorithm that
can effectively denoise while retaining the image detail as much as
possible. To solve the problems described above, this paper
proposes an improved BM3D algorithm based on the distribution
characteristics of image detail in the transform domain. First, a new
Gaussian threshold (GT) function is proposed to replace the
original hard thresholding, which can preserve more high-
frequency information while denoising as much as possible.
Second, the normalised angular distance (AD) is introduced as the
measure of similarity in the process of grouping 3D blocks, which
can further eliminate noise interference, thereby further improving
the peak signal-to-noise ratio (PSNR) of the denoised image.

The remainder of this paper is organised as follows: Section 2
describes the original BM3D; Section 3 proposes the improved
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Fig. 1 Flowchart of original BM3D

BM3D algorithm; Section 4 shows the experimental comparison;
and Section 5 concludes this paper.

2 Review of BM3D algorithm
2.1 Structure of the BM3D algorithm

The algorithm is divided into two steps: in the first step, the
algorithm adopts hard thresholding during collaborative filtering; a
basic estimate will be obtained. The parameters used in the first
step are labelled Aard. In the second step, the algorithm applies the
Wiener filter on the original noisy image, together with the basic
estimate obtained in the first step. This step will generate a final
estimated image. The parameters involved in the second step are
labelled as wie. Fig. 1 indicates the whole processing of original
BM3D.

2.2 First step: basic estimate
The algorithm regards a noisy image as a series of overlapped
reference blocks. A noisy image can be represented as

2(x) = y(x) + n(x) (M

where y(x) denotes a clean image and n(x) represents noise. For

each reference block with a size of K™ x k"™ a search window

sized n"¥9 x nMd is established around it, in which the algorithm
searches some other blocks that are similar to the reference block
according to the constraint

Z(x) = {Q:d(R, Q) < ™) 2
where 7" denotes hard threshold of similarity distance and
d(R, Q) is a normalised distance between the reference block R and
any other block Q in the search window. Those selected blocks,
together with the reference block, are stacked to form a 3D block
Z, then hard thresholding is performed in the transform domain
and a reverse operation is exerted to obtain the filtered 3D block.
Meanwhile, the grey level of each pixel is estimated and
accumulated into a buffer, and the times of estimate for each pixel
is also recorded into the other buffer, then element-wise division is
performed between those buffers. This is known as weighted
averaging, also called aggregation. Once the aggregation is done, a
basic estimate Jy,qc(x) is obtained. To alleviate the false contour
phenomenon, the Kaiser window is applied when estimating the
pixels of the image block; therefore, a larger weight is given to the
pixels at the centre of each image block.

2.3 Second step: final estimate

The second step is almost the same as the first step, but holds the
difference that for each reference block R some other similar
blocks around it are searched in the basic estimated image rather

than the original noisy image. Once a 3D block \A/(x) is obtained
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from basic estimated image, it is transformed together with the
corresponding Z(x) obtained from the first step, and 3D

coefficients T[\A((x)] and T[Z(x)] are obtained. T[Z(x)] is filtered

by Wiener filter parameterised with T[\A((x)], followed by inverse

transformation, and a filtered spatial 3D block is obtained. Finally,
BM3D repeats the aggregation mentioned in the first step and a
denoised image is finally estimated.

2.4 Problem existed in BM3D
When BM3D is performing hard thresholding in the first step, the

following formula is used:

hard
xXI<Ap o

0
y(x) = i
x  otherwise

3
where x represents the coefficient in the transform domain. In
transform domain, however, the differences between low and high
frequencies are extremely large, a single threshold is more likely to
filter out high-frequency information, which can make image detail
blurred or even vanished, as shown in Fig. 2. As can be seen from
Fig. 2¢, the hard thresholding performed by original BM3D will
filter out a great deal of high-frequency information, which results
in heavy loss in image detail. As for the images with a large
amount of detail, compared with common images, the mean grey
level of local area of the former is more likely to be affected by
noise. Therefore, after grouped into 3D block, ‘false contour’
between adjacent blocks in a 3D block is easily formed, which can
produce unnecessary high-frequency information.

3 Improved BM3D algorithm

An improved BM3D is proposed according to the characteristics of
the coefficient distribution of the detail information in the
transform domain. When proposing the improved algorithm, the
following assumptions are made:

(1) In the Fourier transform domain, the high-frequency region has
small coefficients and is susceptible to noise interference.

(ii) Adding noise into a clean image will increase the amount of
useless detail of whole image, which can also increase the
components of high frequency in frequency domain, and therefore
can interfere with the useful detail.

(iii) Image detail has some elements of regularity in spatial
distribution, whereas the noise distribution is completely random.

3.1 Normalised AD as measure of similarity

3.1.1 Necessity of introducing normalised AD: When searching
similar blocks, the original BM3D calculates the similarity between
blocks according to the following equation (or other similar
methods):
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d= ” mxn men ” = (4)

where R,,,, and Q,,,, are pixel intensity matrices of a reference
block and any other block, respectively, and r;; and g;; are the
elements in R, ,, and Q,,,,, respectively. Put it in the other way,
for each block in the search window centred on a reference block,
compared with the reference block, the more similar in intensity
between each pair of corresponding pixels in the two blocks, the
more similarities between the two blocks. However, for the images
filled with detail, there exists a large undulation in intensity
between any pixel and its adjacency. According to the equation that
describes the relationship between the standard deviation of mean
and the capacity of samples: 6, = 6/+/n, it can be concluded that
compared with the whole image, image blocks — with less number
of samples — are more susceptible to the uneven distributed noise.
This will lead to significant changes in the average intensity and
contrast of image blocks; however, Euclidean distance and its
variations cannot compensate for this effect. Fig. 3 shows the four
8 % 8 blocks.

These four image blocks are similar, with Fig. 3a as a reference,
Fig. 34 is identical to Fig. 3a, Fig. 3c is the result of contrast
stretching from Fig. 3a and Fig. 3d is the result of synchronously
increasing from Fig. 3a by N intensity units. As can be seen from
above, if using Euclidean distance, with (a) as a reference, only the
block (b) is close to (a), whereas the other two blocks are not. The
results do not match our subjective judgement. To eliminate the
influence of contrast, we propose normalised AD as a measure of
similarity.

Reference

3.1.2 Derivation of the normalised AD: Given a reference block
R, ., and another block Q,,, in the search window, their angular
similarity is calculated as below:

Rmxn ) men

I Risen I 1l Qo |l
Zrzj‘Zij 5)

dangle = ArCCOS

i

J£ E05 £ a

i=1j=1 i=1j=1

= arccos

= HM§

A contrast-stretched image can be seen as an image with amplified
intensity, but its amplification factor will be cancelled during
calculating (5), so the influence of the difference of the contrast is
effectively reduced. To eliminate the impact of the variation of
mean intensity, we modify (5), and obtain

dangle = arccos — (6)

where 7 and g represent the means of the elements in R,,,, and
Q..+ respectively. Thus, the four image blocks shown in Fig. 3
will be considered similar.
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Fig. 2 Illustration of any 3D block and its transform domain

(a) 3D block, (b) Transform domain of (a), (¢) Filtered transform domain 3D block obtained by hard thresholding. All those 3D blocks are sized 8 X 8 X 16, the intensity of each

pixel in figures (b) and (c) represents modulus of corresponding coefficient, log scaled

|E'
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d

Fig. 3 lllustration of same image blocks, but with different intensities or different contrasts
(a) Original, (b) Identical to (a), (c) Contrast stretching from (a), (d) Synchronously intensity stretching from (a)
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Fig. 4 Comparison between the GT and CGT

(a) Discrete Gaussian function with a standard deviation of 6, (b) Discrete cylindrical Gaussian function with a standard deviation of 6

Fig. 5 Illustration of thresholding.

9

c

(a) Any 3D block of transform domain, () Discrete GT with a standard deviation of 6, (¢) Filtered 3D block of transform domain after thresholding. The intensity of each small

block in (a) and (c) represents log-scaled amplitude

3.2 Introduction of Gaussian function thresholding

In the transform domain, the energy of low frequency is high and
not susceptible to noise, while the energy of high-frequency
information is faint and susceptible to noise. This paper proposes a
new method that can automatically adjust thresholds according to
the frequency. That is, a larger threshold should be set in the low-
frequency region, and a smaller threshold should be set in the high-
frequency region to retain the high-frequency information as much
as possible. Therefore, we let the hard threshold to be a dependent
variable in a 3D block according to Gaussian function

Lt [+ f2)

BB (oo f 1) = A" expl—( o ™

where A?Srd denotes a hard threshold during the basic estimating,

(fx» fy» f2) represents a 3D coordinate in transform domain and

2 is a threshold function that depends on (f,, fy f2). T is the
standard deviation of the function, called GT; it is adjustable during
the following experiments, but independent to noise level, and its
specific value will be discussed in Section 4.1.2. Since the patches
are not ordered in any meaningful way when grouping, it is
important to ensure whether the frequency across the z-direction is
still meaningful. So, there is an alternative GT called cylindrical
GT (CGT), and its function is given below:

(£ ©

lganc(fxs fy’ fz) = A?Srd exp 732

Fig. 4 shows the comparison between (7) and (8), and the choice
between them will be discussed in Sections 4.1.2 and 4.2. Once the
threshold function is determined, the process of thresholding
according to (9) is then performed (see (9)) . Fig. 5 indicates the
illustration of thresholding.

3.3 Normalised quantity of high frequency

To describe the amount of detail quantitatively, we introduce the
normalised quantity of high frequency (NQHF). Given an image
sizedm X n

8lxi, ) 8(xi, y)

Gxn = (10)

80> ¥1) 8(Xus V)

where g(x,, y,) represents the intensity of the pixel (x,, y,). The
shifted 2D Fourier transform (zero-frequency component centred)
of the image is

[, ») SfCas v
F, .= : : (11)
S Gy 1) NG )
then a weight matrix is given by
w(xi, ») WX, Y1)
w(xi, Yp) W(Xas V)

where w(x;, y;) = (i — m/2) + (j — n/2)’, finally, the NQHF of an
image can be calculated as below:

(see (13))

According to (13), the more detail in an image, the greater the
high-frequency components in its Fourier transform, the higher
NQHF.

It should be noted that, for the images of same contents, having
a larger size will result in a higher NQHF, because for larger
images, additional high-frequency region (which contains high-
frequency information) will be added. When comparing NQHFs,

T fo fro f) = .
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(13)

Fig. 6 First row: images with a small amount of detail, from left to right: Pepper, Star, Butterfly, their NOHFs are 1.722 x 10*, 1.613 x 10" and 1.727 x 10,

respectively

Table 1 Normal profile of BM3D used in the experiments

Value
Parameter Value Parameter o <40 o> 40
pha.rd’ pwie 3 khard7 kwie 8
tauggd Bior1.5 ;L-l;]zsrd 27
taude diffraction CT tauhard 2500 5000
Nhard 16 tau™e 400 3500
NV 32 e, gwie 2500 5000

the images must be of the same dimension; otherwise, it makes no
sense.

4 Experimental results
4.1 Preparation of experiments

To test the performance of the algorithm proposed in this paper,
rational designed experiments and comparisons between the
proposed algorithm and the original BM3D are both necessary. The
design of experiments is considered heavily on three aspects: types
of images, choices of experimental parameters and levels of
Gaussian noise.

4.1.1 Images used to choose the optimal parameters in
experiments: To optimise the algorithm proposed in this paper, we
used nine images (256 x 256) for optimisation, according to their
NQHEF, they are categorised into three groups: a group of images
with small amount of detail (NQHF < 2.0 10%, a group of
images with medium amount of detail
(2.0 x 10* < NQHF < 2.4 x 10%) and a group of images with large
amount of detail (NQHF > 2.4 x 10%), as shown in Fig. 6, each
group contains three images.

Second row: Images with a medium amount of detail, from left
to right: PEK, aeroplane, city and their NQHFs are 2.190 x 10*,
2.277 x 10*, and 2.171 x 10%, respectively.

IET Image Process., 2020, Vol. 14 Iss. 3, pp. 431-441
© The Institution of Engineering and Technology 2019

Last row: Images with a large amount of detail, from left to
right: Washington, Isracl, London and their NQHFs are
2.647 x 10*, 2.471 x 10" and 2.626 x 10", respectively.

4.1.2 Determining and adjusting experimental
parameters: The dimensions of the nine images shown in Fig. 6
are all 256x256 px2, and AWGN is added. According to Lebrun
[21], the determined experimental parameters are shown in Table 1.

Now, we are discussing the effect of Z in (7) or (8) on filtering.
To make differences clear, with the Washington image as an
example, Fig. 7 shows a randomly selected 3D block of transform
domain and Fig. 8 shows the selected 3D block of transform
domain shown in Fig. 7 filtered by GT of different X. The noisy
image has a noise level of o = 25 and its PSNR is 20.14 dB.

As can be seen from Fig. 8, the effect of filtering will be
increased as X increases. However, to retain more details, it is
necessary to determine an optimised X. Thus, the nine images
shown in Fig. 6 will be tested to obtain PSNRs of basic estimates
generated under different conditions: variant noise levels, and GT
or CGT with variant £. However, in the comparison between GT
and CGT, our experiments show no difference in choosing the
optimal parameters. For simplicity, Tables 2—4 only show the
experimental results of basic estimates with the core of GT. We
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Fig. 8 Basic estimates and their corresponding 3D blocks of transform domain filtered by GT with different £
(a), (¢), (¢) Same 3D block as Fig. 7, but filtered by GT with X of 4, 8, 16, respectively, (b), (d), (f) Basic estimated images filtered by GT of corresponding X, the PSNRs are:

21.678, 23.776 and 23.402 dB, respectively

will compare the GT and CGT by comparing the performances of
BM3D-GT&AD and BM3D-CGT&AD in Section 4.2.

As can be seen from Tables 2 and 3, with the pictures
containing a small or medium amount of detail, the algorithm we
proposed shows little improvement compared with the original
hard thresholding. However, Table 4 indicates that with the pictures
containing a large amount of detail, our algorithm shows its
superiority to the original BM3D. Moreover, The optimised X is
variable to different noise levels. Analysing the variation of
optimised X from Table 4, we determine the optimised parameter
for different noise levels shown in Table 5.
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4.2 Experiments

To evaluate the denoising performance of the algorithm proposed
in this paper, and to determine its applicable range, the experiments
applied four kinds of algorithms: original BM3D, BM3D with GT
only (BM3D-GT), BM3D with GT and normalised AD (BM3D-
GT&AD) and BM3D with CGT and normalised AD (BM3D-
CGT&AD) to denoise the nine images shown in Fig. 6.

Fig. 9 shows the experimental results of the denoising
performance of the four algorithms performed on small/medium
amount of detail images. By comparison, it can be found that on
those types of images, they have a very little component in high-
frequency region. After adding noise, the Gaussian thresholding
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Table 2 PSNR (dB) of basic estimates obtained from experiments: three images shown in the first row of Fig. 6 under
Gaussian noise with the level of ¢ (horizontal) filtered by GT with X (vertical)

Image Noise level 20 25 30 40 50 60 80 100
=\PSNR 22.08 20.14 18.56 16.06 14.12 12.54 10.04 8.14

pepper 12 27.705 27.179 26.401 25.767 25.035 24128 22.513 21.248

16 27.710 27.209 26.449 25.848 25.115 24.251 22.642 21.374

20 27.709 27.211 26.453 25.865 25.146 24.279 22.665 21.402

50 27.694 27.201 26.454 25.875 25.160 24.293 22.684 21.425

100 27.694 27.198 26.452 25.875 25.161 24.291 22.688 21.421

original threshold 30.884 29.681 28.729 27.111 25.902 24.919 23.296 21.967

star 12 29.069 27.930 26.961 25.495 24.309 23.353 21.916 20.907

16 29.090 27.958 26.996 25.545 24.381 23.424 22.026 21.038

20 29.085 27.953 26.997 25.550 24.385 23.434 22.039 21.068

50 29.056 27.927 26.980 25.539 24.382 23.440 22.053 21.086

100 29.051 27.921 26.976 25.536 24.380 23.436 22.052 21.083

original threshold 29.450 28.270 27.297 25.670 24.517 23.607 22.165 21.131

butterfly 12 29.610 28.444 27.518 26.044 24.788 23.723 22.001 20.605

16 29.643 28.491 27.583 26.125 24.884 23.818 22.101 20.707

20 29.638 28.491 27.594 26.144 24.909 23.842 22124 20.726

50 29.610 28.469 27.589 26.144 24.905 23.841 22.129 20.740

100 29.605 28.466 27.588 26.141 24.905 23.843 22124 20.738

original threshold 30.087 28.908 27.937 26.278 25.058 24.034 22.333 21.048

Numbers in bold means its corresponding X is an optimised value under the current noise level and current image and the numbers in italic are the best PSNR compared with the
original hard thresholding (partial).

Table 3 PSNR (dB) of basic estimates obtained from experiments: three images shown in the second row of Fig. 6 under
Gaussian noise with the level of 5 (horizontal) filtered by GT with X (vertical)

Image Noise level 20 25 30 40 50 60 80 100
\PSNR 22.08 20.14 18.56 16.06 14.12 12.54 10.04 8.14
PEK 8 27.224 26.073 25179 23.721 22.581 21.662 20.222 19.075
10 27.308 26.192 25.331 23.952 22.882 22.045 20.791 19.813
12 27.266 26.153 25.302 23.948 22.910 22107 20.915 19.996
16 27171 26.061 25.216 23.895 22.877 22.089 20.946 20.054
20 27.116 26.006 25.168 23.858 22.850 22.070 20.946 20.071
50 27.025 25.917 25.099 23.800 22.813 22.033 20.926 20.076
100 27.010 25.905 25.087 23.791 22.805 22.030 20.921 20.072
original threshold 27.774 26.550 25.597 23.975 23.010 22.248 21.119 20.261
aeroplane 8 26.905 26.216 25.456 24.330 23.335 22.385 20.884 19.656
10 27.051 26.409 25.707 24.699 23.807 22.933 21.638 20.587
12 27.050 26.425 25.738 24.769 23.910 23.069 21.844 20.854
16 27.006 26.391 25.717 24.767 23.939 23.129 21.953 20.996
20 26.977 26.363 25.694 24.759 23.937 23.136 21.975 21.030
50 26.920 26.312 25.647 24737 23.920 23.130 21.994 21.073
100 26.911 26.304 25.640 24.732 23.915 23.130 21.998 21.080
original threshold 29.238 28.093 27.211 25.619 24.537 23.623 22.254 21.255
city 8 25.943 24.727 23.788 22.301 21.150 20.260 18.843 17.741
10 26.072 24.863 23.936 22.477 21.372 20.521 19.220 18.217
12 26.055 24.848 23.916 22.465 21.371 20.531 19.264 18.284
16 25.984 24.775 23.843 22.397 21.318 20.484 19.229 18.265

original threshold 26.140 24.913 23.933 22.360 21.321 20.514 19.318 18.439

Numbers in bold means its corresponding X is an optimised value under the current noise level and current image and the numbers in italic are the best PSNR compared with the
original hard thresholding (partial).

proposed in this paper cannot significantly distinguish the
frequency of detail from the frequency that indicates noise; thus, on
those types of images, the performance of the three altered BM3D
(the BM3D-GT&AD, the BM3D-CGT&AD and the BM3D-GT)
show little or no improvement compared with original BM3D.
However, for the images with a large amount of detail (see
Fig. 10), they contain relatively larger coefficients in high-
frequency region. For these images with the Gaussian noise level at
o < 30, because of its little influence on detail, the proposed
algorithms show little improvement in PSNR compared with
original BM3D. When ¢ € [30, 80], the coefficients in high-
frequency region introduced by noise have significant influence,
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but yet is significantly lower than coefficients of high-frequency
information that indicate detail; therefore, the BM3D-GT&AD can
efficiently filter out the high-frequency coefficients introduced by
noise. However, when ¢ > 80, the Gaussian noise is large enough
to drown the image detail, while denoising with the BM3D-
GT&AD, the frequency of image detail is more likely to be filtered
out, which can result in lower PSNR.

In the comparison between the BM3D-GT&AD and BM3D-
CGT&AD, it can be found that with the images containing a
smaller amount of detail at a smaller noise level, though the
BM3D-CGT&AD has better performance than the BM3D-
GT&AD, it is still inferior to the original BM3D. However, with
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Table 4 PSNR (dB) of basic estimates obtained from experiments: three images shown in the third row of Fig. 6 under
Gaussian noise with the level of ¢ (horizontal) filtered by GT with X (vertical)

Image Noise level 20 25
\PSNR 22.08 20.14
Washington 7 24.895 23.676
8 24.984 23.776
10 24.910 23.696
12 24.790 23.572
16 24.621 23.402
original threshold 24.727 23.500
Israel 7 25.775 24.654
8 25.834 24.750
10 25.703 24.646
12 25.550 24.509
16 25.364 24.345
20 25.274 24.268
original threshold 25.476 24.430
London 7 24.722 23.480
8 24.832 23.593
10 24.808 23.540
12 24.712 23.427
16 24.566 23.269
20 24.483 23.186
original threshold 24.418 23.142

30 40 50 60 80 100

18.56 16.06 14.12 12.54 10.04 8.14

22.761 21.365 20.334 19.490 18.162 17.091
22.890 21.560 20.616 19.864 18.708 17.806
22.830 21.557 20.675 19.998 18.970 18.225
22.710 21.461 20.595 19.948 18.953 18.261
22.554 21.332 20.478 19.850 18.874 18.187
22.581 21.216 20.435 19.866 19.012 18.396
23.783 22.479 21.513 20.703 19.414 18.372
23.920 22.741 21.908 21.237 20.220 19.414
23.858 22.788 22.067 21.51 20.750 20.185
23.746 22.725 22.045 21.531 20.842 20.346
23.608 22.637 21.988 21.506 20.846 20.388
23.545 22.595 21.962 21.485 20.839 20.377
23.700 22.553 21.965 21.553 20.948 20.487
22.471 20.986 19.923 19.078 17.812 16.848
22.584 21.144 20.127 19.357 18.276 17.488
22.523 21.106 20.145 19.438 18.501 17.878
22.410 21.002 20.064 19.386 18.512 17.947
22.263 20.872 19.956 19.306 18.480 17.948
22.184 20.807 19.907 19.267 18.458 17.942
22175 20.685 19.858 19.295 18.532 18.050

Numbers in bold mean their corresponding X is an optimised value under the current noise level and current image and the numbers in ifalic are the best PSNR compared with the

original hard thresholding (partial).

Table 5 Optimised X under different Gaussian noise levels
c <40 40 50 60 80 100
z 8 10 10 10 12 16

the images containing a large amount of detail, BM3D-GT&AD
shows the best result. This can be explained by the fact that once
the image patches were built into a 3D block according to their
similarity, despite the fact that they are not ordered in any
meaningful way, there exist detail-overlapping between each patch
along the z-direction because of the similarity of the useful detail,
which will generate higher amplitudes of low-frequency
components, whereas noise in each patch has no similarity, which
will contribute very faint components in high-frequency region.

In summary, the BM3D-GT&AD is suitable for images with a
large amount of detail, AWGN level at 30 < 6 < 80. On that
condition, the proposed algorithm can surpass the original BM3D
by 0.1-0.4 dB.

Fig. 11 shows the comparison on image detail; it can be found
that the when applying original BM3D on noisy images, it
inevitably loses a lot of details, causing the region that supposed to
have a lot of detail to be smoothed into a flat piece. However, when
applying BM3D-GT&AD, more detail is retained.

4.3 Comparing with other methods

In this section, we will compare our algorithm with three other
methods (original BM3D, WNNM and DnCNN) on the BSD68
image set; their dimensions are all 321 x 481 or 481 x 321.

Since the performance of our method depends on the amount of
detail, the images in BSD68 set should be categorised according to
their amounts of detail before comparison. After calculating their
NQHFs, we then categorise them into three categories, as shown in
Table 6. Their NQHF range is: NQHF < 5.48 x 10" for small
amount of detail, 5.48 x 10" < NQHF < 6.60 x 10" for medium
amount of detail and NQHF > 6.60 x 10* for large amount of
detail.

Apply four algorithms (original BM3D, WNNM, DnCNN and
BM3D-GT&AD) to these images, we get experimental results
shown in Table 7.
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As can be seen from Table 7, when comparing the performances
in PSNR, the WNNM method achieves compelling denoising
performance at the cost of huge computation time because of its
multiple iterations, and the time of iteration depends on the noise
level. Moreover, the WNNM algorithm is generally having lower
structural similarity index (SSIM) than the other methods.
Although our method is not suitable for all images, but with the
images containing a large amount of detail, our method is generally
better than the original BM3D, and has competitive results with
DnCNN, especially in SSIM.

5 Conclusion

In this paper, we first give a brief introduction of the development
of image denoising algorithm including the key research on the
original BM3D algorithm. This paper analyses the limitation of the
original BM3D, especially the influence of noise on high-
frequency information. With this basis, we propose an improved
BM3D algorithm with the following improvements: adopt the
Gaussian function kernel as a threshold and the normalised AD as a
measure of similarity when grouping 3D blocks. Meanwhile,
theoretical analysis is made to explain the rationality of those
improvements. Experiments are carried out to compare the PSNR
of basic estimates by using different images under different levels
of noises. The standard deviation X of GT and CGT is then
determined with its reasonal value of X in the range of 8-16, and
we decided to choose BM3D-GT&AD as our method after
comparing the four kinds of BM3Ds. Moreover, we compared our
method with the other three classical methods (original BM3D,
WNNM and DnCNN) on dataset BSD68. Finally, we give the
experimental results of the original BM3D and the proposed
algorithm. It shows that for the images containing a large amount
of detail with a noise level at ¢ < 60, BM3D-GT&AD shows a
better denoising performance than original BM3D by 0.1-0.4 dB in
PSNR while maintaining the same computational efficiency of the
original BM3D, and has the best results in SSIM compared with
the other three methods.
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Fig. 11 Comparison on image detail: from the first row to the last row: image of Washington, Israel and London; from the first column to the last column:
clean images, noisy image (noise level at ¢ = 35), denoised by original BM3D and denoised by BM3D-GT&AD

Table 6 Three categories of images in BSD68

Small amount of detail (NQHF) Medium amount of detail (NQHF) Large amount of detail (NQHF)
‘test002.png’ ‘test003.png’ ‘test001.png’
‘test004.png’ ‘test005.png’ ‘test008.png’
‘test006.png’ ‘test007.png’ ‘test019.png’
‘test010.png’ ‘test009.png’ ‘test020.png’
‘test012.png’ ‘test011.png’ ‘test021.png’
‘test013.png’ ‘test015.png’ ‘test023.png’
‘test014.png’ ‘test016.png’ ‘test029.png’
‘test017.png’ ‘test022.png’ ‘test031.png’
‘test018.png’ ‘test024.png’ ‘test033.png’
‘test027.png’ ‘test025.png’ ‘test036.png’
‘test028.png’ ‘test026.png’ ‘test041.png’
‘test030.png’ ‘test032.png’ ‘test044.png’
‘test034.png’ ‘test035.png’ ‘test046.png’
‘test038.png’ ‘test037.png’ ‘test047.png’
‘test039.png’ ‘test040.png’ ‘test050.png’
‘test045.png’ ‘test042.png’ ‘test051.png’
‘test049.png’ ‘test043.png’ ‘test055.png’
‘test052.png’ ‘test048.png’ ‘test056.png’
‘test053.png’ ‘test054.png’ ‘test057.png’
‘test058.png’ ‘test059.png’ ‘test063.png’
‘test062.png’ ‘test060.png’ ‘test067.png’
‘test065.png’ ‘test061.png’ ‘test068.png’
‘test066.png’ ‘test064.png’ —
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Table 7 Denoising performance (average PSNR and SSIM) of four algorithms applied on each of the three categories of
images in BSD68: S/M/L denote the categories of images with a small/medium/large amount of detail, respectively

Noise level 20 25 30 35
Methods Index S M L S M L S M L S M L
BM3D PSNR 32.070 29.351 27.350 31.103 28.304 26.200 30.346 27.492 25.335 29.711 26.818 24.640
SSIM 0.858 0.832 0.811 0.834 0.801 0.768 0.813 0.774 0.730 0.795 0.751 0.697
WNNM PSNR 32.245 29.595 27.596 31.311 28.535 26.444 30.518 27.709 25.581 29.922 26.963 24.894
SSIM 0.498 0.603 0.649 0.456 0.558 0596 0.416 0.516  0.546 0.373 0.488 0.503
DnCNN PSNR 31.713 29.265 27.262 30.737 28.244 26.221 29.941 27.432 25.409 29.273 26.758 24.751
SSIM 0.837 0.825 0.803 0.807 0.792 0.763 0.779 0.762 0.726 0.754 0.734 0.693
ours PSNR 31.907 29.258 27.392 30.899 28.180 26.258 30.089 27.335 25.385 29.415 26.648 24.685
SSIM 0.849 0.828 0.819 0.821 0.793 0.775 0.795 0.762 0.736 0.772 0.734 0.701
Noise level 40 50 60 80
Methods Index S M L S M L S M L S M L
BM3D PSNR 29.114 26.184 24.006 28.305 25.313 23.143 27.629 24.647 22542 26.563 23.621 21.682
SSIM 0.777 0.727 0.666 0.754 0.692 0.612 0.731 0.663 0.576 0.695 0.616 0.522
WNNM PSNR 29.299 26.543 24.330 28477 25.553 23.467 27.756 24.837 22.789 26.724 23.788 21.872
SSIM 0.358 0.451 0.465 0.315 0.403 0.404 0.278 0.362 0.359 0.232 0.308 0.297
DnCNN PSNR 28.697 26.184 24.202 27.628 25204 23.320 26.446 24.276 22.560 23.115 21.883 20.706
SSIM 0.731 0.709 0.663 0.681 0.661 0.610 0.610 0.605 0.559 0.386 0.440 0.431
ours PSNR 28.978 26.212 24175 28.017 25.283 23.283 27.231 24.529 22.596 26.070 23.434 21.604
SSIM 0.759 0.717 0.673 0.721 0.675 0.619 0.687 0.637 0.574 0.639 0.587 0.509

Numbers in italic mean the best value in all four algorithms and the numbers in bold mean the performance of our algorithms (BM3D-GT&AD) is better than the original BM3D.
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