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Abstract: The transverse resolution of optical coherence tomography is decreased by aberra-
tions introduced from optical components and the tested samples. In this paper, an automated
fast computational aberration correction method based on a stochastic parallel gradient descent
(SPGD) algorithm is proposed for aberration-corrected imaging without adopting extra adap-
tive optics hardware components. A virtual phase filter constructed through combination of
Zernike polynomials is adopted to eliminate the wavefront aberration, and their coefficients
are stochastically estimated in parallel through the optimization of the image metrics. The
feasibility of the proposed method is validated by a simulated resolution target image, in which
the introduced aberration wavefront is estimated accurately and with fast convergence. The
computation time for the aberration correction of a 512× 512 pixel image from 7 terms to 12
terms requires little change, from 2.13 s to 2.35 s. The proposed method is then applied for
samples with different scattering properties including a particle-based phantom, ex-vivo rabbit
adipose tissue, and in-vivo human retina photoreceptors, respectively. Results indicate that
diffraction-limited optical performance is recovered, and the maximum intensity increased nearly
3-fold for out-of-focus plane in particle-based tissue phantom. The SPGD algorithm shows great
potential for aberration correction and improved run-time performance compared to our previous
Resilient backpropagation (Rprop) algorithm when correcting for complex wavefront distortions.
The fast computational aberration correction suggests that after further optimization our method
can be integrated for future applications in real-time clinical imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography [1] (OCT) is a non-invasive imaging technique based on low
coherence interferometry. The continued development of OCT over the past three decades
has enabled real-time in-vivo high resolution tomography, with applications in ophthalmology,
dermatology, and oncology, among many others [2–5].
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In ophthalmology applications, different eye structures and the inevitable movement will
introduce unknown aberrations, because the wavefront will be distorted differently when the light
passes different paths through the eyes. These unknown aberrations change dramatically leading
to blurred or distorted OCT images and reduction in signal-to-noise ratio (SNR). Therefore, like
incoherent imaging systems such as scanning laser ophthalmoscopy (SLO) [6], adaptive optics
(AO) hardware and systems [7] are necessary for correcting the aberrations and obtaining a high
resolution image. A widely used AO aberration correction method is based on hardware systems
that employ a Shack-Hartmann wavefront sensor to measure the wavefront distortion introduced
by the human eye and correct the measured aberrations by deformable mirrors (DM). This
hardware-based AO (HAO) can correct the aberration dynamically in the imaging process due to
the high-speed control of the DM using parallel schemes [8], but these systems are complex and
costly.
In contrast to hardware-based wavefront sensing and correction, computational approaches

that are based on phase-stable OCT systems have been developed to correct aberrations digitally
[9–13]. In these systems, the original interference signal is obtained and post-processed by a
numerical algorithm to remove aberrations and obtain high resolution images, which is similar to
numerical aberration correction in digital holography [14,15]. Compared with more traditional
HAO, computational AO (CAO) [9] is a simple and effective technique implemented without
the need to employ any extra expensive optics or increase the sample exposure time. The
three common methods for CAO in OCT systems include sub-aperture correlation [16,17], the
guide-star method [18], and incorporating the use of image metrics for determining the aberration
correction filter [19]. For the sub-aperture correlation method, the cross-correlation accuracy
depends on the sub-aperture size and the scattering property of the sample, and unsuccessful
correction may occur for more highly scattering samples due to the insufficiently resolved images.
The iterative sub-aperture correlation method [17] was recently proposed for retina imaging, but it
still suffers from the trade-off between sub-aperture size and correlation accuracy. For the guide-
star method, a suitable point-like structure in the object is necessary, but often unavailable in real
biological or clinical imaging scenarios. Among these three methods, image-metrics-based CAO
is the most extensive due to its correction ability and wide applicability. This method is similar
to sensor-less AO [20,21], by optimizing the image quality metrics such as sharpness, Shannon
entropy, spatial frequency content, and maximum intensity, among many others [9,22,23], the
wavefront aberrations modeled as a linear combination of Zernike polynomials can be estimated.
But instead of adjusting DM or other wavefront correctors, this method updates and the pupil
function computationally for aberration correction. Therefore, the key issue to computational
aberration-corrected imaging is to estimate the coefficients of Zernike polynomials both rapidly
and accurately.
Grid searching (GS) is the simplest method for one-dimensional searching of Zernike

coefficients to obtain the best image quality [24]. Although GS is an effective approach for
low-order aberration correction, one-dimensional searching is not suitable for more complex
multi-dimensional optimization for high-order aberrations [25,26]. Furthermore, searching orders
of Zernike polynomials is inconclusive for different applications [24,27,28] and its accuracy and
efficiency are greatly affected by the searching boundary and step for each coefficient. Meanwhile,
a variety of methods for aberration estimation have been reported, such as by using neural network
methods [19] and genetic algorithms [29]. However, in complex imaging systems with high-order
aberrations, more degrees of freedom are needed for aberration correction. The aforementioned
methods will result in slow convergence due to the computing complexity of those algorithms.
The gradient descent (GD) method [30] can also be employed to recover high quality images. An
incremental adjustment of control parameters is estimated by calculating the gradient components
from the entire dataset, which is time-consuming. To solve this problem, stochastic gradient
descent (SGD) [31] was proposed by replacing the actual gradient from the entire dataset with
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a simplified gradient calculated from a randomly selected data subset. The critical issue for
both GD and SGD is that the relationship between image metrics and Zernike coefficients is
complicated for OCT systems, which will increase the computational complexity for the actual
gradient needed in typical gradient searching methods. Although a computationally efficient,
closed-form expression for the gradient [22] has been proposed to make efficient search algorithms
for image optimization, the computational efficiency will be decreased dramatically for high-order
aberrations with numerous Zernike terms. To overcome this problem, we introduced stochastic
parallel gradient descent (SPGD) that can provide multichannel parallel signal processing for
fast CAO aberration correction. SPGD is an optimization algorithm which was originally
proposed for model-free supervised learning [32] and is now widely used for DM control in HAO
systems [8,33,34]. Stochastic perturbation in each step will circumvent the predetermination of
Zernike terms in order to give the optimum in multidimensional space. Parallel-perturbations are
simultaneously applied to all selected optimization channels. This technique can be regarded as
a parallel analog implementation of the conventional gradient-descent method [22,30,31,35],
while the computing of gradients is simplified by replacing the true gradient with the numerical
calculation of a stochastic approximation. Due to the parallel optimization, the convergence
of the SPGD adaption process is almost independent of the number of control channels [36].
Therefore, this feature of the SPGD algorithm is a clear advantage for high-order aberration
correction with many degrees of the freedom in CAO. The SPGD algorithm is leveraged in this
paper to correct complex aberrations.

In our SPGD-based algorithm, considering the multiple modes of high-order aberrations, the
number and order of Zernike terms are chosen randomly in each iteration to find the optimal
solution for complex aberrations. In addition, high-order aberration correction of samples with
different scattering properties can be achieved at fast convergence speeds due to the parallel
optimization, which suggests its potential use for real-time clinical applications.

2. Principle of CAO and SPGD algorithm

2.1. Principle of CAO

In Fourier-domain OCT, the depth-resolved spectral data obtained by the spectrometer is first
pre-processed by a conventional OCT signal processing procedure [37] with the DC offset
elimination, numerical dispersion compensation, and Fourier transform to obtain the complex
en-face images of the sample at different depths. From coherent imaging theory, the en-face
image g(x, y) at a specific depth can be expressed as

g(x, y) = o(x, y) ⊗ h(x, y), (1)

where o(x, y) is the ideal geometric image, h(x, y) is the point spread function (PSF) of the system,
⊗ represents convolution, and (x, y) are the cartesian coordinates of the image plane.
The convolution theorem can be utilized to rewrite Eq. (1) in the pupil plane as

G(u, v) = O(u, v)H(u, v), (2)

where G(u, v) and O(u, v) are the Fourier transform of g(x, y) and o(x, y), respectively. H(u, v) is
the coherent transfer function (CTF), and (u, v) are the coordinates of the pupil plane.
For the aberration-free system, the PSF h(x, y) is the inverse Fourier transform of the pupil

function p(u, v). So, the CTF can be described as

H(u, v) = F [h(x, y)] = F
{
F −1[p(u, v)]

}
= p(u, v). (3)

For systems with aberration, we assume that the phase difference between the real wavefront
and the ideal wavefront in the pupil plane can be expressed as ϕa(u, v), then the generalized pupil
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function P(u, v) is shown as

P(u, v) = p(u, v)exp[iϕa(u, v)]. (4)

From Eq. (4), the CTF Ha(u, v) for systems with aberration can be modeled as

Ha(u, v) = P(u, v) = p(u, v)exp[iϕa(u, v)]. (5)

Compared with the aberration-free system, the effect of aberration is evident by introducing
the wavefront distortion in the frequency band pass, which decreases the imaging quality. By
combining Eq. (2) with Eq. (5), the aberrated image Ga(u, v) in the pupil plane can be expressed
as

Ga(u, v) = O(u, v)p(u, v)exp[iϕa(u, v)]. (6)

Ideally, if ϕa(u, v) is estimated, the aberration can be eliminated, and the high resolution image
Gc(u, v) can be recovered according to the principle of phase conjugation modeled as

Gc(u, v) = Ga(u, v)exp[−iϕa(u, v)]. (7)

Therefore, the aberration-corrected image gc(x, y) in the image plane is given by

gc(x, y) = F −1[Gc(u, v)]. (8)

The wavefront distortion ϕa(u, v) is usually represented by a sum of weighted Zernike
polynomials

ϕa(u, v) =
N∑

n=1
anZn(u, v) = AZ(u, v), (9)

whereA = [a1, a2, . . . , aN] is the coefficient matrix of wavefront distortion, Z = [Z1, Z2, . . . , ZN]
T

are the Zernike polynomials, and N is the number of Zernike terms.
To estimate the coefficient matrix A, the image entropy E is chosen as the evaluation function

of wavefront distortion correction. For a normalized intensity image in(x, y), the image entropy is
modeled as:

E[in(x, y)] = −
∑
x,y

in(x, y)login(x, y). (10)

When the entropy reaches the minimum, the phase aberration is accurately estimated, and
the computational aberration correction of the en-face image is achieved. Therefore, the CAO
process can be converted into the optimization of [a1, a2, . . . , aN] = argmin(E).
A representative schematic of CAO aberration correction based on the SPGD algorithm is

shown in Fig. 1.

2.2. Aberration correction with SPGD algorithm

The SPGD algorithm is a model-free optimization technique suitable for complex systems with
multiple variables because of its superior optimization ability and fast convergence. In this
paper, the SPGD algorithm is used to estimate wavefront distortion, and then the aberrations are
corrected directly by updating the general pupil function computationally.
The first step is to initialize the coefficient matrix A of wavefront distortion, and then the

random perturbation σ and the gain coefficient γ are set. These two values empirically are
determined to obtain the highest image quality. According to Vorontsov’s derivation [36], the
coefficient matrix in the (m + 1) th iteration is determined by

A(m+1) = A(m) + γδE(m)δA(m),m = 1, 2, . . .M, (11)

where M is the number of iterations. The term δA(m) is the stochastic parallel-perturbation
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Fig. 1. Schematic of the SPGD algorithm-based computational adaptive optics.

obeying the Bernoulli distribution (p = 0.5) to ensure that the number and type of Zernike
terms are chosen randomly at each iteration. If the n-th Zernike term is picked, δA(m)(n) = σ,
otherwise, δA(m)(n) = 0. The term δE(m) is the entropy variation caused by δA(m), which can be
expressed as

δE(m) = E+ − E− = E(A(m) + δA(m)) − E(A(m) − δA(m)). (12)

Initialization of Zernike coefficients 

matrix 𝑨(𝒎), m=0; Set values of random 

perturbation σ and update gain γ

Bernoulli stochastic 

perturbation generator randomly 
selects Zernike terms: 𝜹𝑨(𝒎)

Calculate positive image 

entropy:

𝑬+ = 𝑬(𝑨 𝒎 + 𝜹𝑨 𝒎 )

Calculate negative image 

entropy:

𝑬− = 𝑬(𝑨(𝒎) − 𝜹𝑨(𝒎))

Reach terminal 

condition?

Output corrected 

image

No

Yes

Update coefficients matrix:

𝑨(𝒎+𝟏) = 𝑨(𝒎) + 𝜸𝜹𝑬(𝒎)𝜹𝑨(𝒎)

Fig. 2. Flowchart for the stochastic parallel gradient descent (SPGD) algorithm.
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The searching direction is determined by the sign symbol (positive or negative) of γ. When γ>0,
the optimization goal is to find the maximum of image entropy E, while γ<0 implies that the
searching direction is the minimum of E. In this paper, the aberration correction is achieved when
E reaches the minimum, so we choose γ<0 here. As shown in Fig. 2, the optimization process of
the SPGD algorithm can be described as follows.
First, the coefficient matrix A is initialized, and the random perturbation σ as well as the

gain coefficient γ is set. Next, the Bernoulli stochastic perturbation generator is employed to
randomly select Zernike terms and assign δA(m) for each iteration. Then, image entropies E+ =
E(A(m)+δA(m)) and E− = E(A(m)−δA(m))with positive and negative perturbations are calculated,
respectively. After that, the coefficient matrix is updated by A(m+1) = A(m) + γδE(m)δA(m), and
the optimization stops when the terminal condition is satisfied. With the decreasing entropy,
the aberration reduces and the image quality improves. Meanwhile, the convergence of entropy
indicates that the aberration has been corrected. Finally, the image after CAO correction is
obtained.

3. Numerical simulation

3.1. Correction performance for low-order aberration

In order to demonstrate the feasibility of the SPGD algorithm for CAO, we carried out simulation
analysis on a simulated resolution target image. Gaussian noise and speckle noise, with variance
0.005 and 0.1, respectively, were added to the simulated resolution chart to simulate a noisy image.
We calculated the 2D Fourier transform of the noise-added image to propagate it to the pupil
plane. Aberrations were introduced by adding wavefront distortion ϕa(u, v) in the pupil plane,
which were expressed by a weighted sum of 3rd-order Noll Zernike polynomials corresponding
to 7 terms [38]. Here piston, tip and tilt were ignored because they were considered only as
misalignment errors but not aberrations. The simulated aberrated image is shown in Fig. 3(a).
Aberrations lead to image deterioration and loss of fine details, such as the central groups in
the resolution target (group 8-9 in Fig. 3(c)). The image after aberration correction is shown
in Fig. 3(b) and 3(d), where the random perturbation σ and the gain coefficient γ was 4 and 1,
respectively. The entropy during the iterative correction progress is given in Fig. 3(g). Compared
with the aberrated image, the entropy of the corrected image has been greatly decreased, and the
lateral resolution enhanced significantly. The image entropy reached the minimum after about
20 iterations. The estimated coefficients of all Zernike terms are shown in Fig. 3(h) illustrated
by the orange bars, which correspond highly with the introduced coefficients indicated by the
blue-colored bars. The phase map of the introduced 3rd-order aberration is shown in Fig. 3(e).
According to the Zernike coefficients calculated from the proposed method, the residual wavefront
between the introduced phase and the SPGD estimated phase is shown in Fig. 3(f). The root
mean square (RMS) value of the residual wavefront is 2.7 × 10−3 µm, corresponding to 0.32% of
the original wavefront distortion, which also demonstrates that SPGD-based CAO can accurately
estimate the wavefront distortion.

3.2. Robustness of the SPGD-based CAO

For every run of the proposed algorithm, the permutation of Zernike terms is different in each
iteration step, corresponding to the stochastic optimization progress. To simulate the effect of this
randomness on the final correction result, we executed the SPGD-based CAO aberration correction
algorithm 500 separate times. The difference between the calculated Zernike coefficients and
the introduced coefficients during these 500 random operations is shown in Fig. 4(a). For all
500 operations, the final coefficients are highly consistent with the introduced ones. The ratios
of RMSresidual to RMSintroduced are shown in Fig. 4(b). Here RMSresidual is obtained from the
residual phase between the calculated and introduced wavefront distortion. The mean ratio of the
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Fig. 3. (a) Simulated aberrated USAF resolution target image with 3rd-order Zernike
polynomials. (b) Corrected image after SPGD-based CAO. (c) and (d) Zoomed-in images of
the central region illustrated by white squares in (a) and (b), respectively. (e) Phase map
of the introduced 3rd-order aberration distortion. (f) Phase deviation between recovered
and introduced wavefront aberration. (g) Image entropy during the correction process.
(h) Coefficients of introduced and computed Zernike polynomials.

500 operations is 0.08%, which indicates that the distortion phase estimated from the proposed
method is highly consistent with the introduced one. The final distribution of the corrected image
entropy is shown in Fig. 4(c). We find that the PV of the entropy for all 500 operations is 0.0524,
standard deviation is 1.05%. Figure 4(d)-(f) show three example images selected from 500
random runs. The entropies for them are 3.7767, 3.801 and 3.8291 respectively, corresponding
to the minimum, mean, and maximum of entropy. Figure 4(g) is the zoomed-in image of the
central group marked by red square in Fig. 4(e). The profile of elements in group #9 of Fig. 4(e)
is shown in Fig. 4(h) illustrated by blue solid line. The profile difference of group #9 between
Fig. 4(d) and (e) is illustrated by orange solid line while the orange dotted line represents the
profile difference between Fig. 4(f) and (e). There are only slight differences in the profiles
and all these images are almost with the same resolution, which means that the small entropy
variance of 500 random runs is immaterial to the final aberration correction performance. This
demonstrated that although the permutation of Zernike terms differs for each correction event,
the algorithm still produces well corrected image each time. This simulation result demonstrates
that the proposed algorithm is reproducible for computational aberration correction.

3.3. Convergence for high-order aberration correction

To demonstrate the fast convergence of our method for high-order degree aberration correction,
we expand the introduced aberration from 3rd-order to 4th-order, corresponding to 12 Zernike
terms. The correction results are shown in Fig. 5. The blurred image shown in Fig. 5(a) includes
the aberration expressed by 12 Zernike terms, and the corrected image after applying the proposed
algorithm is illustrated in Fig. 5(b). The patterns on the resolution target become more clearly
identifiable, making it possible to visualize the high-resolution groups. Figure 5(c) shows the
change of the entropy during the process of aberration correction. The entropy converges after
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Fig. 4. Correction results of 500 random operations of the proposed algorithm. (a)
Differences between the calculated and introduced coefficients of Zernike terms in each
stochastic run. (b) Ratios of RMSresidual to RMSintroduced . (c) Distribution of the entropy
for the corrected images. (d)-(f) Representative corrected images with different entropies.
(g) Zoomed-in image of the central group marked by red square in (e). (h) Profile of elements
in group #9 after correction in (e) (illustrated by blue solid line); profile differences between
(d) and (e) (illustrated by orange solid line) and between (f) and (e) (illustrated by orange
dotted line).

about 35 iterations. As shown in Fig. 5(f), the estimated coefficients of the Zernike terms
illustrated by orange bars are correspond highly with the introduced coefficients shown by the
blue bars. The phase map of the introduced 4th-order aberration distortion is shown in Fig. 5(d),
and the residual phase difference between the introduced aberration and the computed one is
shown in Fig. 5(e). The RMS value of the residual phase is 6.5 × 10−3 µm, corresponding to
0.67% of the introduced wavefront distortion, which verifies the high-order aberration correction
ability of the proposed method.
As shown in Fig. 5(g), a comparison of the computing time for different numbers of Zernike

terms is performed between the proposed method and our previous Rprop algorithm [19]. The
implementation of Rprop was stochastic, but not paralleled like SPGD. The histogram shows that
when we operate high-order degree aberration correction, the computing time for the proposed
algorithm only increased from 2.13 s to 2.35 s, while the Rprop algorithm increases from 19.7 s
to 79.5 s. The fast convergence speed of the proposed method is therefore demonstrated from this
comparison, verifying that the proposed method has a much better run-time performance even
for high-order aberration correction. The correction process was operated using MATLAB on a
Windows desktop with an Intel Core i7 2.9 GHz and 16 GB RAM, and the size of the simulated
resolution target image is 512 × 512 pixel.
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Fig. 5. Simulated aberrated USAF resolution target image with 4th-order Zernike polyno-
mials. (b) Corrected image after SPGD-based CAO. (c) Image entropy during the correction
process. (d) Phase map of the introduced 4th-order aberration distortion. (e) Phase deviation
between recovered and introduced wavefront aberration. (f) Coefficients of introduced and
computed Zernike polynomials. (g) Comparison of the computing time of different number
of Zernike terms between the proposed SPGD method and the Rprop algorithm.

4. Experimental results and discussions

With the feasibility of aberration correction using the proposed SPGD algorithm being demon-
strated, we next apply this approach with a spectral-domain optical coherence microscopy
(SD-OCM) system. This system is described in detail in previous work [39]. Briefly, a superlumi-
nescent diode (SLD) centered at 860 nm with a bandwidth of 80 nm full-width-at-half-maximum
(FWHM) was used as the light source. To show the aberration correction ability of the SPGD
algorithm, we first carried out imaging of a low scattering tissue phantom. Subsequently, to
demonstrate the potential for clinical application, we used this algorithm for correcting images
from ex-vivo rabbit adipose tissue and in-vivo human photoreceptors in the retina.

4.1. Particle phantom

To demonstrate the proposed algorithm for point-like objects, it was first tested using a low-
scattering phantom consisting of copper zinc iron oxide nanoparticles (mean diameter <100 nm)
in PDMS. The complex en-face image, shown in Fig. 6(a), was extracted from a 3D dataset
located 15.8 µm above the focal plane, which corresponds to 4.2 Rayleigh ranges. The image was
blurred and the SNR drops due to the existence of aberrations. Figure 6(b) shows the image after
applying the 3rd-order aberration correction (σ = 20, γ = 3), where the point-like nanoparticles
can now be clearly resolved. Figure 6(c) and the (d) are the zoomed-in images of the areas
indicated by the blue and yellow squares in Fig. 6(a) and (b), respectively. The intensity of
the particle becomes more concentrated after aberration correction and the maximum intensity
increases about 3 times (From 7.7 × 10−5 to 3.1 × 10−4). The line-profiles of this particle are
shown in Fig. 6(e), before and after applying the correction, showing a significant improvement
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in the PSF. The FWHM of the PSF is 0.8 µm, which is consistent with the diffraction limit of
the OCM system. The evolution of Shannon entropy during the correction process is illustrated
in Fig. 6(f), where the entropy converges to its minimum value after about 20 iterations (see
Visualization 1).

Fig. 6. En-face images of a nanoparticle phantom (a) before and (b) after CAO. (e) 2D
line-profiles of the particle indicated by the blue and yellow zoomed-in images (c) and (d).
(f) Image entropy during the correction process. See Visualization 1.

4.2. Ex-vivo rabbit adipose tissue

Figure 7 shows the aberration correction results from imaging ex-vivo rabbit adipose tissue. The
en-face image located at about 43.6 µm (about 11.6 Rayleigh ranges) above the focal plane is
shown in Fig. 7(a). From the aberrated image, the structure of the adipose is difficult to recognize.
After the CAO 3rd-order aberration correction (σ = 20, γ = 3), shown in Fig. 7(b), structural
information was recovered across the field-of-view (FOV). The cell membrane boundaries appear
sharper and the honeycomb structures are clearly reconstructed. It can be clearly seen that
boundaries of the adipocytes become distinct and thinner in comparison with the original OCM
image. Highly-scattering regions indicated by arrows become more focused and brighter after
aberration correction. This demonstrates that the CAO aberration correction could improve the
resolution for cellular-level OCM imaging.

4.3. In-vivo human retina photoreceptors

Finally, in-vivo imaging of human retina photoreceptors was performed under Institutional Review
Board protocols approved by the University of Illinois at Urbana-Champaign. Subject was a
28-year-old male volunteer with no known retinal pathologies. The cones between the perifoveal
and parafoveal region (3.5◦ to 4.7◦ from the fovea) were imaged by the high-speed en-face OCT
system introduced in [40]. The original en-face image is shown in Fig. 8(a), and Fig. 8(c) is
the zoomed-in image of the region marked by the white square. The photoreceptors are clearly

https://doi.org/10.6084/m9.figshare.12550214
https://doi.org/10.6084/m9.figshare.12550214
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Fig. 7. Normalized en-face images of rabbit adipose tissue and individual adipocytes
(a) before and (b) after 3rd-order Zernike polynomial CAO. (c) Image entropy during the
correction process.

blurred by the aberrations not only from the OCT system but also from the tested human eye. It
is difficult to recognize each photoreceptor from the zoomed-in image. Due to the high-order
aberration introduced by the subject’s eye, 4th-order Zernike polynomials, up to 12 degrees of
freedom, were applied for the aberration correction. Figure 8(b) and 8(d) are the reconstruction
results after CAO aberration correction (σ = 0.3, γ = 3). The 2D profiles of the photoreceptors
illustrated by the green dashed lines in Fig. 8(b) and (d) are shown in Fig. 8(f). The phase

Fig. 8. Normalized in-vivo images of the cone photoreceptor mosaic in the human retina
(a) before and (b) after CAO. (c) and (d) are zoomed-in images of the regions indicated by
the white squares in (a) and (b), respectively. (e) Phase map of the computed aberration.
(f) 2D line profiles of the photoreceptors indicated by the green dashed lines in (c) and (d).
(g) Plots of the radial average power spectra of the original image before CAO (a) and the
corrected image after CAO (b). The black arrow indicates an enhanced spatial frequency
indicative of Yellott’s ring. The scale bar is 0.25◦.
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map of the estimated aberration is shown Fig. 8(e). We can find that after correction, the cone
photoreceptors are distinctly visualized in the whole FOV. The shape of the photoreceptor is
more clearly recognizable, and we can use this high resolution image for photoreceptor counting.
The improvement in image quality is also validated by the identification of Yellott’s ring [40].
The angularly averaged power spectrum in the polar coordinates of the photoreceptors is shown
in Fig. 8(g). A peak from the Yellott’s ring indicated by the black arrow manifests that the
increasement of the regularly arranged cone photoreceptors. Meanwhile, the amplitude of the
high spatial frequency content increases after correction as shown in Fig. 8(g), which also
demonstrates the improvement of the image resolution across the entire FOV. Therefore, high
quality imaging of human retina photoreceptors after CAO correction could provide valuable
image-based data for diagnoses of fundus oculi diseases, and potentially for the observation of
neuron activities. The size of the image is 340× 340 pixel, and the correction time for 12 degrees
of freedom is about 2 s. The computation time is mainly affected by the image size, and parallel
computing on FPGA can further significantly accelerate the correction process, which shows the
potential in clinical real-time imaging in the future.

4.4. Robustness for different samples

To demonstrate that the proposed aberration correction is robust for different samples, we ran the
algorithm 100 times for the three samples mentioned above. These images were acquired from
different samples at different time, or on different imaging systems. Thus, the aberrations and
noise in these images are different from each other. The entropy distributions after 100 runs for
these three samples are shown in Fig. 9. The entropies are highly concentrated and the standard
deviations are 8.9× 10−3, 2.1× 10−2, and 3.3× 10−3 for particle phantomn, ex-vivo rabbit adipose
tissue, and in-vivo human retina photoreceptors, respectively. These results proved that, even
for samples and systems with different aberrations and noise, the variance of entropy is kept at
a remarkably similar amount, which demonstrates that we can obtain very robust optimization
results for samples with different properties.

Fig. 9. Entropy distributions after 100 runs of the SPGD algorithm for (a) particle phantom,
(b) ex-vivo rabbit adipose tissue, and (c) in-vivo human retina photoreceptors.

5. Conclusions

In this paper, we present an automated fast CAO aberration correction algorithm based on the
SPGD method in optical coherence tomography. Aberration-corrected images can be obtained
by CAO through ordinary phase-stable OCT systems without the addition of any extra hardware
elements. The SPGD algorithm is a model-free method, and the convergence of the optimization
process is nearly independent of the number of variables. This enables complex high-order
aberration correction for dynamic samples. The SPGD-based CAO updates the phase filter in
each iteration by stochastically choosing the number and order of Zernike terms to keep the
image entropy decreasing until it converges. The performance of the proposed SPGD-based
CAO was first demonstrated by a simulated USAF resolution target image. The coefficients
of the Zernike terms estimated through our method were equally accurate for both low-order
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and high-order aberrations. Importantly, the computing time for 12 aberration modes will only
increase by about 10% compared to correction with 7 terms. The feasibility of SPGD algorithm
was demonstrated by correcting the images of samples with different scattering properties, we
conducted aberration correction experiments for a low-scatting particle phantom, ex-vivo rabbit
adipose tissue with individual adipocytes or cells, and in-vivo human retina photoreceptors. The
images after aberration correction all showed a significant improvement in contrast and signal-to
noise-ratio.
Compared to the Rprop algorithm, under the premise of good correction performance, the

proposed SPGD method shows better run-time performance due to the parallel computation.
Moreover, because of the low computing complexity for updating the gain coefficient matrix,
the correction time for high-order aberrations will increase only slightly. The proposed method,
therefore, shows great potential for future real-time aberration-corrected imaging in clinical
applications.
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