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Abstract: This paper addresses the lack of robustness of feature selection algorithms for fuzzy
clustering segmentation with the Gaussian mixture model. Assuming that the neighbourhood pixels
and the centre pixels obey the same distribution, a Markov method is introduced to construct the prior
probability distribution and achieve the membership degree regularisation constraint for clustering
sample points. Then, a noise smoothing factor is introduced to optimise the prior probability
constraint. Second, a power index is constructed by combining the classification membership degree
and prior probability since the Kullback–Leibler (KL) divergence of the noise smoothing factor is
used to supervise the prior probability; this probability is embedded into Fuzzy Superpixels Fuzzy
C-means (FSFCM) as a regular factor. This paper proposes a fuzzy clustering image segmentation
algorithm based on an adaptive feature selection Gaussian mixture model with neighbourhood
information constraints. To verify the segmentation performance and anti-noise robustness of
the improved algorithm, the fuzzy C-means clustering algorithm Fuzzy C-means (FCM), FSFCM,
Spatially Variant Finite Mixture Model (SVFMM), EGFMM, extended Gaussian mixture model
(EGMM), adaptive feature selection robust fuzzy clustering segmentation algorithm (AFSFCM),
fast and robust spatially constrained Gaussian mixture model (GMM) for image segmentation
(FRSCGMM), and improve method are used to segment grey images containing Gaussian noise,
salt-and-pepper noise, multiplicative noise and mixed noise. The peak signal-to-noise ratio (PSNR)
and the error rate (MCR) are used as the theoretical basis for assessing the segmentation results.
The improved algorithm indicators proposed in this paper are optimised. The improved algorithm
yields increases of 0.1272–12.9803 dB, 1.5501–13.4396 dB, 1.9113–11.2613 dB and 1.0233–10.2804 dB
over the other methods, and the Misclassification rate (MSR) decreases by 0.32–37.32%, 5.02–41.05%,
0.3–21.79% and 0.9–30.95% compared to that with the other algorithms. It is verified that the
segmentation results of the improved algorithm have good regional consistency and strong anti-noise
robustness, and they meet the needs of noisy image segmentation.

Keywords: embedded neighbourhood information; Gaussian mixture model; fuzzy clustering;
image segmentation

1. Introduction

Scientific research shows that 70–80% of information in daily life is obtained through the human
visual system, and images are an important medium for humans to understand the world and perceive
things through. Therefore, images play a very important role in people’s daily lives. For an image,
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people are generally only interested in some of the content. It is usually necessary to extract the
region of interest in an image from the image so that people can best observe this area; then, follow-up
processes can be implemented. In short, image segmentation is a process of region division for a given
image and the extraction of the target region of interest.

1.1. Development Status of Clustering Image Segmentation Algorithms

Among the many region segmentation algorithms, cluster segmentation, as a typical unsupervised
segmentation method, has attracted the attention of many scholars and has been widely used and
studied in many fields.

Clustering algorithms can be divided into hard partitioning clustering algorithms and soft
partitioning clustering algorithms [1,2]. First, an image can be segmented using a hard partition
clustering algorithm. The principle is that the image is similarly partitioned based on pixel values of
factors such as the greyscale, colour, texture, etc.; then, the optimal solution or partition is obtained
by minimising the objective function, including by methods such as the H-means algorithm, global
K-means algorithm, K-means algorithm and others. Among them, K-means clustering is a fast
segmentation clustering algorithm with a clear structure and good usability, but in the process of
optimising the segmentation process, it can also easily fall to a local minimum [3,4].

A soft partitioning clustering algorithm uses the pixel attributes or probability to indirectly divide
similar pixels [5], and the optimal decomposition is explored in the process of minimising the objective
function or maximising the likelihood function of the parameters, as reported by Dunn in 1947. In 2001,
the fuzzy C-means clustering algorithm (FCM) was proposed. Then, in 1981 [6], Bezdek verified metric
theory by comparing mean clustering and fuzzy mean clustering. The convergence of the fuzzy mean
clustering algorithm was validated, fuzzy clustering theory was established, and the development of
the fuzzy clustering algorithm was promoted, thus making the fuzzy mean clustering algorithm an
important branch of fuzzy theory. Introducing this theory into the clustering algorithm improved the
adaptability of the algorithm, and this approach is currently widely used [7,8].

An image segmentation method based on subspace clustering was proposed in [9,10]. They
defined the search strategies and evaluation criteria to filter out the features that are effective for
clustering; then, they clustered the original data set in different subspaces and reduced the storage and
calculation requirements.

The existing supervised feature selection methods [11,12] can reduce the problem dimensions,
but the operating efficiency decreases. Therefore, adaptive feature selection is often used to achieve
clustering segmentation. A similarity measurement method for high-dimensional data was proposed in
the literature considering the correlations among high-dimensional spatial features, and this approach
effectively avoids “dimensional disasters”. The impact of high-dimensional data has been addressed,
but there is still a lack of theoretical guidance on how to select the criteria for similarity measures.
To avoid a combined search [13], which is only suitable for unsupervised learning, the concept of
feature saliency was proposed; the related approach considers the influence of different features
on the clustering effect and uses a Gaussian mixture model for clustering analysis to improve the
algorithm’s performance.

An iterative, structured, low-rank optimisation method for multiview spectral clustering was
proposed [14]. Unlike existing methods, this method can effectively encode the local data manifold
structure from each view-dependent feature space and achieve multiview agreement in an iterative
fashion while preserving the flexible nonlinear manifold structure of all views. A clustered low-rank
representation of structured matrix factorisation for multiview spectral clustering was proposed [15].
Unlike the existing methods, in this approach, an iterative strategy for intuitively achieving multiview
spectral clustering agreement by minimising the between-view divergence in terms of the factorised
latent data cluster representation for each view is implemented.
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1.2. Feature Selection Algorithm with a Fuzzy Gaussian Mixture Model and the Related Limitations

The FCM uses the squared Euclidean distance to characterise the difference between the samples
and the clustering centre, but this approach is only suitable for clustering data samples that have
different sizes, variances and classes.

Therefore, a fuzzy Gaussian mixture mode (FGMMS) is proposed [16]. The Gaussian mixture
model is used as a distance measure to replace the Euclidean distance in the fuzzy C-means algorithm.
The distance is replaced by the results of the Gaussian mixture model, which can fit multi-peak data
more accurately than the traditional approach and better segment noise-free, complex images. The
traditional fuzzy C-means clustering analysis treats the different features of samples as clusters and
ignores the important effects of key features on the clustering results; therefore, the clustering results
are far from the real classification results. According to feature selection theory, we can use the concept
of feature saliency, assume that the sample saliency obeys a probability distribution, and conduct
cluster analysis using the Gaussian mixture model.

Online feature selection based on fuzzy clustering and its applications was proposed
(OFSBFCM) [17,18]. This algorithm introduces feature selection using the fuzzy Gaussian mixture
model and obtains a new fuzzy clustering method. A fuzzy C-means clustering method that combines
feature selection with the Gaussian mixture model using Kullback–Leibler (KL) divergence was
proposed as a type of Gaussian mixture model (GMM) with Markov random fields; this approach has
become a research hotspot in the field of image segmentation [19,20]. When a GMM is directly applied
for image segmentation, it is easily disturbed by noise. Many scholars have introduced the spatial
information from neighbouring pixels into the prior probability distribution of the GMM to reduce the
sensitivity of the algorithm to noise.

A spatial constraint method for the Gaussian mixture model was proposed [21] based on the
extended Gaussian mixture model (EGMM), which is used to construct the neighbourhood information
weight function with the prior probability to constrain the pixel space and improve the noise robustness
of the GMM.

A fast and robust spatially constrained GMM was proposed [20] (fast and robust spatially
constrained GMM for image segmentation, FRSCGMM), but this algorithm does not consider the impact
of different features on clustering, and it still has limitations in high-noise-region segmentation [22].

Since the fuzzy local information C-means (FLICM) segmentation algorithm cannot consider the
effects of different features on the clustering segmentation results, a local fuzzy clustering segmentation
algorithm based on a feature selection GMM is proposed. First, the membership degree is introduced
into the local constraint information of the FLICM algorithm. Considering the influence of features
on clustering, the feature saliency is then introduced into the objective function of the algorithm.
Finally, the neighbourhood weighting function is constructed using the classification membership
degree, and the membership degree is processed to obtain the feature-based membership. The local
fuzzy clustering algorithm is selected. The improved algorithm was compared with the existing
robust clustering segmentation algorithms in a clustering segmentation test with noisy images. The
segmentation results were objectively compared based on the peak signal-to-noise ratio (PSNR) and
error rate, which verified the effectiveness and practicability of the proposed algorithm [23].

When the Feature selection Gaussian mixture model (FSGMM) is applied for greyscale image
segmentation, it has difficulties suppressing the influence of noise on the image segmentation result.
Notably, the algorithm does not consider the fact that any pixel in the image is closely related to its
neighbouring pixels [24,25].

The problems of the fuzzy clustering algorithm based on the feature selection GMM are as follows:

1. The parameters need to be adjusted to increase the run time of the algorithm [26,27].
2. As in the FCM algorithm, the FSGMM only clusters single pixels without considering the influence

of the spatial neighbourhood pixels on each central pixel. For images with different types of noise
interference, the algorithm does not have good noise robustness [28,29].
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3. The fuzzy clustering algorithm in the FSGMM does not take the neighbourhood space information
into account, so it is difficult to limit the influence of noise on image segmentation, resulting in
noise sensitivity [30].

1.3. Main Contributions of This Paper

In this paper, the FSGMM fuzzy clustering algorithm does not consider the neighbourhood space
information; therefore, it is difficult to limit the influence of noise on image segmentation, resulting in
a noise sensitivity problem. In this paper, an adaptive feature selection algorithm based on embedded
neighbourhood information constraints is proposed. The definition of the prior probability of the
Markov random field is established. The Markov random field is constructed by creating a new
spatial neighbourhood information function, which is embedded in the FSGMM fuzzy clustering
algorithm; then, the noise smoothing factor is introduced to further improve the anti-noise robustness
of the algorithm. Through the improved algorithm, remote sensing images with noise and simulated
images are divided into two categories, and multiple experiments are conducted to analyse the
performance of the algorithm. Compared with several typical clustering algorithms, the improved
algorithm has good regional consistency and strong noise robustness, and it meets the needs of noisy
image segmentation. The peak signal-to-noise ratio (PSNR) and the error rate (MCR) are used as
the theoretical basis for the segmentation results. For the anti-Gaussian noise, the PSNRs of the
algorithm in this paper are 16.0013, 25.5661, 16.4271, 13.5148 and 27.2172, and the MCRs are 10.12,
1.78, 1.96, 3.87 and 1.96. For salt-and-pepper noise, the PSNRs of the algorithm in this paper are
12.9512, 17.2612, 22.7521, 21.7545 and 23.7612, and the MCRs are 13.17, 6.12, 2.51, 3.14 and 4.23. For
multiplicative noise, the PSNRs of the algorithm in this paper are 22.4898, 15.2874, 23.5412 and 13.7645,
and the MCRs are 2.18, 2.58, 2.12 and 1.45. For mixed noise, the PSNRs of the algorithm in this
paper are 15.4321. 16.7235, 18.5821, 14.2123 and 13.2356, and the MCRs are 11.21, 5.21, 3.61, 2.31 and
3.21. Compared with other algorithms, the proposed algorithm yields increases of 0.1272–12.9803 dB,
1.5501–13.4396 dB, 1.9113–11.2613 dB and 1.0233–10.2804 dB, and the MSR decreases by 0.32–37.32%,
5.02–41.05%, 0.3–21.79% and 0.9–30.95%. Notably, the improved algorithm yields the best indicators in
all cases.

2. Algorithm Analysis

In the process of clustering segmentation, considering the important influence of the key features
of samples of the clustering results, clustering analyses of feature selection based on the concept of
weighting have been widely studied and performed. In addition, to improve the anti-noise robustness
of this kind of algorithm, GMMs have been fused with Markov random fields—a research hotspot in
the field of image segmentation.

2.1. FSGMM Fuzzy Clustering Algorithm

When the FSGMM clustering algorithm is applied in greyscale image segmentation, it has
difficulties suppressing the influence of noise on the image segmentation result. The fundamental
reason is that the algorithm does not take into account any pixels in the image that are closely related to
the surrounding pixels [31]. Thus, in the extended GMM, we assume that the neighbouring pixels and
the central pixel follow the same distribution; that is, they have the same distribution parameters (mean
and covariance). Then, the sum of the probability that the neighbouring pixels are of various types is
weighted by the exponential power. To construct a Markov random field, the spatial neighbourhood
information function is expressed as follows [32–34].

πi j =
D∑

l=1

h jl

C∑
k=1

hkl

(1)
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where h jl = {
∑
t∈Ni

Φi j (Φ(xil

∣∣∣∣µ jl, σ
2
jl)}

2
(2)

Φ jl(xil|µ jl, σ
2
jl) =

1√
2πσ2

jl

exp{−
(xil − µ jl)

2

2σ2
jl

} (3)

The neighbourhood information function is used as the a priori probability in the FSGMM fuzzy
clustering algorithm, and an adaptive feature selection robust fuzzy clustering segmentation algorithm
(AFSFCM) is proposed. The objective function of the algorithm is

minL(Θ) =
N∑

i=1

C∑
j=1

zi jdi j + λ
N∑

i=1

C∑
j=1

(zi j log
zi j

πi j
) + γ

N∑
i=1

C∑
j=1

D∑
l=1

zi j(si jl log
si jl

ρl
+ (1− si jl) log

1− si jl

1− ρl
)

(4)
where πi j is the prior probability that pixel xi belongs to category j, and Φi j(xtl|µ jl,σ

2
jl) represents the

probability that the l-dimensional feature attribute value corresponding to the neighbouring pixel xt of
the centre pixel xi belongs to category j.

xtl(t ∈ Ni) represents the l-dimensional feature attribute value corresponding to pixel xi in the
square neighbourhood window, where the centre pixel is xi; h jl represents the probability that the
l-dimensional feature attribute value corresponding to the neighbourhood pixel xt of the centre pixel xi
belongs to class j; α represents the weight; and the constant K = 14 is generally used. We need to solve
the segmentation model to obtain the zi j,µ jl, si jl,σ

2
jl-dependent iteration expression corresponding to

the iterative solution to the problem. First, we find the partial derivative of si jl using Equation (4)

∂J
∂si jl

= zi j(− log Φ(xil|µ jl, σ
2
jl) + log Φ(xil|εl, ν

2
l ) + γ log

si jl

ρl
− γ log

1− si jl

1− ρl
(5)

Let ∂J
∂si jl

= 0. The B iteration expression is

si jl =
ρlΦ jl(x jl|µ jl, σ2

jl)
1/γ

ρlΦ(xil|µ jl, σ2
jl + (1− ρl)Φ(xil|εl, ν2

l )
1/γ

(6)

Using the Lagrangian multiplier method for solving constrained optimisation problems, we obtain
the partial derivative of z jl.

∂
∂zi j

[J −
N∑

i=1

ηi(
C∑

j=1

zi j − 1)] = 0 (7)

From Equation (7), the iterative membership function can be derived as follows:

ti j = −γ
D∑

l=1

(ρΦ (xil

∣∣∣∣µ jl, σ
2
jl)

1/γ
+ (1− ρ)Φ (xil

∣∣∣εl, ν
2
l )

1/γ
(8)

The partial derivatives of µi j and σ2
jl give

∂J
∂µ jl

=
N∑

i=1

zi jsi jlσ
−2
jl (µ jl − xil) (9)

∂J
∂σ2

jl

=
1
2

N∑
i=1

zi jsi jl(σ
−2
jl − σ

−4
jl (xil − µ jl)

2) (10)
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Let ∂J
∂σ2

jl
= 0 and ∂J

∂µ jl
= 0. The iteration formulas of µ jl and σ2

jl can be obtained as

µ jl =
1

M jl

N∑
i=1

zi jsi jlxil (11)

σ2
jl =

1
M jl

N∑
i=1

zi jlsi jl(xil − µ jl)
2 (12)

∂J
∂εl

=
N∑

i=1

N∑
j=1

zi j(1− si jl)ν
−2
l (εl − xil) (13)

∂J
∂ν2

l

=
N∑

i=1

C∑
j=1

zi j(1− si jl)(ν
−2
jl − ν

−4
jl (xil − εl)

2) (14)

Let ∂J
∂εl

= 0 and ∂J
∂ν2

l
= 0. It can be concluded that the iterative expressions of εl and ν2

l are

εl =
1

M jl

N∑
i=1

C∑
j=1

zi j(1− si jl)xil (15)

ν2
l =

1
Fl

N∑
i=1

C∑
j=1

zi j(1− si jl)(xil − εl)
2 (16)

where M jl =
N∑

i=1

zi jsi jlxil (17)

Next, we calculate the partial derivative of ρl to obtain

∂
∂ρl

[J − ν(
C∑

j=1

ρl − 1)] = 0 (18)

The iterative expression of ρl is

ρl =
1
N

N∑
i=1

C∑
j=1

zi jsi jl (19)

This equation is the GMM algorithm for feature selection and image segmentation with the
neighbourhood information constraint.

2.2. Adaptive FSMM Fuzzy Clustering Image Segmentation Algorithm Based on the Embedded Neighbourhood
Information Constraint

To further improve the anti-noise robustness of the algorithm, the noise smoothing factor is
embedded in the adaptive feature selection robust fuzzy clustering segmentation algorithm, and a new
Gaussian hybrid algorithm for neighbourhood information feature selection is obtained [35–37].

minJ(Θ) =
N∑

i=1

C∑
j=1

zi jdi j + λ
N∑

i=1

C∑
j=1

(zi j log
zi j
πi j

+ Gi j log
Gi j
πi j

)

+γ
N∑

i=1

C∑
j=1

D∑
l=1

zi j(si jl log
s jl
ρl
+ (1− si jl) log

1−si jl
1−ρl

)

(20)



Sensors 2020, 20, 3722 7 of 31

Here, πi j means that after adding the noise smoothing factor, each sample xi j corresponds to the
a priori probability that the l-dimensional feature belongs to category j. Gi j is the noise smoothing
factor, which is defined as a power function of the sum of the neighbourhood information weight
function (prior probability) hi j and the membership degree zi j (post probability), and the expression is
as follows:

Gi j = exp(
β

2Ni

∑
t∈Ni

[zt j + ht j]) (21)

In the above formula, the weight coefficient β is used to adjust the influence of the neighbourhood
mean on the central pixel and control the ability to smooth noise. In this paper, β = 12 is used. Ni
is the number of pixels in the surrounding neighbourhood, and Ni = 25 is selected. zt j represents
pixel xil, the neighbouring pixel belongs to the membership degree of the j class, and hi j is the weight
function of neighbourhood information. In this paper, the Gaussian distribution of the neighbourhood

information is used, and the Gaussian normal weight coefficient Φi j(xil

∣∣∣∣µi j, σ2
jl) of the neighbourhood

information is normalised to obtain a new neighbourhood information weight function. α represents
the weight. The test results show that a satisfactory segmentation effect can be obtained when α = 14.

The optimal expression for the objective function is solved to obtain the si jl, zi j, µ jl and σ2
jl

corresponding to the iterative solution to the problem. The expressions are the same as those in
Equations (6)–(18). The improved algorithm adds a noise smoothing factor, and the improved
neighbour domain information weight prior probability πi j is obtained. Using the Lagrange multiplier
method [38–40], the unconstrained objective function optimisation expression is

minL =
N∑

i=1

ηi(
C∑

j=1

πi j − 1) (22)

The above formula is used to find the partial derivative of the prior probability πi j and make the
partial derivative 0. The solution is

πi j =
zi j + Gi j

C∑
k=1

zik + Gik

(23)

By combining Equations (6)–(23), the specific steps in the improved adaptive feature selection and
robust fuzzy clustering segmentation algorithm are described as follows.

1. Initialise the feature attribute weight coefficient ρ = 1/D(l = 1, . . . . . . , D) and the prior probability
π j = 1/C( j = 1, . . . , C) of the given category. Set the regularisation parameter as λ = 150 and
feature parameter as γ = 15.

2. Use FCM clustering. The sample classification class centre vector is µ j = (µ j1, . . . ,µ jD), σ2
j =

(σ2
j1, . . . , σ2

jD) is a class variance matrix, the sample classification membership is zi j, the sample

feature mean vector is ε = (ε1, . . . , εD), and the feature variance matrix is ν2 = (ν2
1, . . . ν2

D).

3. Use Equation (19) to update the smoothing factor Gi j.
4. Use Equation (22) to update the prior probability πi j.
5. Use Equation (7) to calculate the degree of membership of the characteristic attribute si jl.

6. Use Equation (9) to calculate the classification membership zi j.
7. Use Equations (12)–(19) to update the clustering centre vector µi, class variance matrix σ2

j , feature

mean vector ε and feature variance matrix ν2.
8. If the maximum number of iterations is reached or the convergence condition {|L(Θ)(t+1)

−

L(Θ)(t)|} < δ is satisfied, stop the iteration; otherwise, return to Step 3, and continue the iteration.
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3. Experimental Results and Analysis

To verify the segmentation performance and anti-noise robustness of the improved algorithm,
the FSFCM, SVFMM, EGFMM, EGMM, AFSFCM and FRSCGMM were used for comparison. We
compared greyscale images with different noise levels, as shown in Figure 1. The peak signal noise
was used. The ratio and error rate were used as the theoretical basis for assessing the segmentation
result. The testing platform is as follows [41–43]: an Intel Core I7 computer with 8 GB of memory, the
Windows 10 system, and the MATLAB 2013a programming environment.

Before clustering data sets, the number of clusters C must be given; otherwise, the clustering
algorithm will not work. However, there is still no feasible standard for determining the number of
clusters, and this value is often selected based on experience. Therefore, the determination of the
number of clusters is the main difficulty with the mean clustering method. After many experiments,
C was chosen as 2, 3 and 4.

For the regularisation parameterλ in the optimal model of robust fuzzy clustering, the performance
and denoising ability of image clustering segmentation are quite different. If the pixel is an isolated
noise point, the greater the difference between the pixel and the neighbourhood pixels—that is, the
larger the weight—the more reasonable it is to replace the pixel with the mean or median of the
neighbourhood; on the contrary, the smaller the weight is, the lesser the influence of the neighbourhood
information on the current pixel. For this data set, the regularisation parameter is selected as λ= 150.

For a low level of noise, a 3× 3 window can be selected for segmentation; for a high level of noise,
to maintain a balance between the segmentation accuracy and segmentation time, a 5× 5 window is
more suitable for segmentation.

As the α control parameter increases, the clustering results are increasingly affected by the spatial
pixels; on the contrary, the influence of the neighbourhood pixels is reduced. If this value is too large,
the clustering process will rely excessively on the neighbourhood information, and the image details
will be blurred. The test results show that α= 14 and the segmentation effect is satisfactory.

γ, δ and Tmax are selected by the algorithm in this paper, and many experiments were performed
to select γ= 15, δ = 10−4 and Tmax= 400 for the image data set used.

We set the maximum number of iterations in the algorithm to 400; the number of clusters C is
selected as 2, 3 and 4; the regularisation parameter is set as λ = 150; the characteristic parameter is set
as γ = 15; the threshold is δ = 10−4; and the neighbourhood window size is set to 5× 5.

To quantitatively evaluate the anti-noise robustness of different algorithms, the PSNR for traditional
image quality evaluation is used. The PSNR is defined as:

MSE =
1

mn

N∑
i=1

C∑
j=1

‖I1(i, j) − I2(i, j)‖2 (24)

PSNR = 10 · log10(
MAX2
√

MSE
) (25)

where I1 represents the segmentation result of the clustering algorithm after adding noise to the
image; I2 represents the ideal segmentation result of the image without noise; MAX represents the
maximum grey level of the image, which is generally 255; and MSE is the mean square deviation of the
segmentation results, which reflects the destructive effect of noise on the image segmentation accuracy.
The PSNR reflects the anti-noise robustness of the image segmentation result after adding noise based
on the ratio of the square of the peak pixel value to the mean square deviation. The value of the PSNR
is directly proportional to the strength of the anti-noise performance. With an increase in the PSNR,
the anti-noise performance of the algorithm is also enhanced.
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Generally, the misclassification rate (MCR, misclassification rate) is used to quantitatively evaluate
the performance of a segmentation algorithm, and it is defined as [44–46]

MCR = [1− (
C∑

j=1

C j)
−1.(

C∑
j=1

A j ∩C j)] × 100% (26)

Here, A j represents the type- j sample point obtained from the image using a certain segmentation
algorithm, and C j represents the type- j sample point corresponding to the ideal segmentation result.
The smaller the value of the MCR calculation result, the better the segmentation performance of the
algorithm [47–49].
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3.1. Image Segmentation Test with Gaussian Noise

In the two greyscale images of Lena and the man-made objects, we add Gaussian noise with a
mean value of 0 and a mean squared error of 58 and Gaussian noise with a mean value of 0 and a mean
squared error of 85. Gaussian noise with a mean value of 0 and a mean square error of 140 is added to
the videographer and brain slice images for the segmentation test. We add Gaussian noise with a mean
value of 0 and a mean square deviation of 135 to remote sensing image 7. The numbers of clusters are
3, 4, 2 and 2, respectively. The segmentation results are shown in Figures 2–6, and the corresponding
PSNRs and error rates are shown in Tables 1 and 2, respectively.
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FCM, FSFCM and SVGMM algorithms are heavily influenced by Gaussian noise, and the EGMM 
algorithm has a certain ability to smooth noise. The improved AFSFCM algorithm contains a reduced 
noise point, and the FRCSGMM algorithm introduces a noise smoothing factor to suppress most of 
the noise. However, compared with the improved algorithm, the FRSCGMM algorithm still contains 
more noise points in the segmentation results, and the improved algorithm contains less noise; 
additionally, the edges are clear. Table 1 shows that the peak signal-to-noise ratio of the improved 
algorithm is at least 4 dB higher than the signal-to-noise ratio of the FCM algorithm, and the proposed 
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Table 1. Comparison of the anti-Gaussian noise peak signal-to-noise ratio (PSNR) (dB) of each algorithm.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved Algorithm

Lena image 10.973 9.3729 11.1786 13.5664 15.0928 15.8741 16.0013
Four types of

man-made objects 12.4832 11.6124 14.8312 15.8812 18.2512 24.2871 25.5661

Cameraman 9.8102 11.4171 9.8532 14.7561 15.2704 15.8812 16.4271
Brain slice 8.0573 12.6513 10.0012 12.6712 12.7812 13.9812 13.5148

Remote sensing image 7 14.2369 15.7231 17.2645 18.2651 19.8432 25.2813 27.2172

Table 2. Comparison of the anti-Gaussian noise misclassification rate (MCR) (%) of each algorithm.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved Algorithm

Lena image 41.31 44.01 36.39 21.13 14.1 12.31 10.12
Four types of

man-made objects 33.28 34.34 26.69 18.53 16.98 2.1 1.78

Cameraman 26.15 11.76 16.12 3.24 2.79 3.01 1.96
Brain slice 13.13 9.23 11.59 5.65 4.45 4.67 3.87

Remote sensing image 7 39.28 34.23 26.98 19.54 17.28 3.12 1.96

From the anti-Gaussian noise segmentation results in Figures 2–6, it can be observed that the FCM,
FSFCM and SVGMM algorithms are heavily influenced by Gaussian noise, and the EGMM algorithm
has a certain ability to smooth noise. The improved AFSFCM algorithm contains a reduced noise
point, and the FRCSGMM algorithm introduces a noise smoothing factor to suppress most of the noise.
However, compared with the improved algorithm, the FRSCGMM algorithm still contains more noise
points in the segmentation results, and the improved algorithm contains less noise; additionally, the
edges are clear. Table 1 shows that the peak signal-to-noise ratio of the improved algorithm is at least
4 dB higher than the signal-to-noise ratio of the FCM algorithm, and the proposed method has a higher
PSNR value than the other five algorithms, indicating that the improved algorithm is more resistant to
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Gaussian noise. Then, from the error rates of the segmentation results shown in Table 2, the MCR of
the segmentation result of the improved algorithm is much smaller than the MCRs of the other four
algorithms. The PSNR of the improved algorithm is 0.1272–12.9803 dB higher than that of the other
algorithms, and the MCR is 0.32–37.32% lower than that of the other algorithms. According to the
above analysis, the FRCSGMM and EGMM algorithms have a certain anti-noise robustness, but the
improved algorithm achieves better noise resistance and segmentation performance.

3.2. Image Segmentation Test for Salt-and-Pepper Noise

Salt-and-pepper noise (35%) is added to the Lena image and the four synthetic greyscale images,
and a higher level of salt-and-pepper noise (45%) is added to the CT slices of the brain tissue. Moreover,
40% salt-and-pepper noise is added to the cell image and remote sensing image 6. The results of the
segmentation test are shown in Figures 7–11. The PSNR and error rate of the segmentation results are
shown in Tables 3 and 4.
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Table 3. Comparison of the PSNRs (dB) of various algorithms with salt-and-pepper noise.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved Algorithm

Lena image 7.5615 11.2314 8.1516 8.9134 10.0712 10.3151 12.9512
Brain slice 7.0812 7.1212 6.4134 13.9215 14.0021 15.7121 17.2612

Four types of man-made objects 9.3125 9.1541 9.3123 16.4312 21.0141 17.2571 22.7521
Cell 10.2319 11.2589 9.2417 11.2913 12.2876 17.2871 21.7545

Remote sensing 6 12.2786 13.2684 14.1215 14.2651 17.2654 18.2561 23.7612

Table 4. Comparison of the anti-salt-and-pepper noise MCR (%) of each algorithm.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved Algorithm

Lena image 36.81 40.81 36.53 45.12 17.41 14.19 13.17
Brain slice 41.13 41.24 23.01 13.56 12.15 11.14 6.12

Four types of man-made objects 36.12 39.61 22.19 14.21 13.28 24.61 2.51
Cell 39.28 30.21 23.38 17.36 15.67 11.26 3.14

Remote sensing 6 45.28 40.21 38.12 25.23 16.19 12.15 4.23

From the anti-salt-and-pepper noise segmentation results in Figures 7–11, it can be observed
that the segmentation results for the FCM, FSFCM and SVFMM algorithms are seriously polluted.
The results of the AFSFCM algorithm proposed in this paper contain less noise than those of the EGMM.
The FRCSGMM algorithm can separate the background from the segmented target, but compared with
the segmentation result of the improved algorithm, the FRCSGMM result still contains some noise.
As shown in Figure 8, the results of the four artificial image segmentation algorithms indicate that the
FRCSGMM algorithm results in some misclassified regions in the results and cannot correctly classify
the number of categories. However, the improved algorithm yields complete segmentation results and
almost no noise, and it largely restores the original image information. Combined with the PSNR in
Table 3, it can be concluded that the AFSFCM algorithm has improved resistance to salt-and-pepper
noise compared to the EGMM. Compared with the FCM, FSFCM, SVFMM, AFSFCM and EGMM
algorithms, the improved method can better suppress salt-and-pepper noise interference. Table 4
shows that the improved algorithm has the lowest error rate, followed by the FRCSGMM algorithm.
The PSNR of the improved algorithm is 1.5501–13.4396 dB higher than that of the other algorithms,
and the MSC is 5.02–41.05% lower than that of the other algorithms. This finding verifies that the
improved algorithm has the best segmentation performance.

3.3. Image Segmentation Test with Multiplicative Noise

The remote sensing images of wheat fields, canyons and forests had multiplicative noise added
with a mean value of 0 and mean squared deviations of 90, 121 and 61, respectively [50–52]. The numbers
of clusters were 2, 2 and 3, respectively. Multiplicative noise with a mean value of 0 and a mean square
deviation of 70 was added to the synthetic image, and the number of clusters was 2. The results are
shown in Figures 12–15 and Tables 5 and 6.
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According to the results of remote sensing image segmentation in Figures 12–15, compared with the
improved algorithm, the FCM, FSFCM and SVFMM algorithms yield results that contain considerable
noise. Compared with the improved algorithm, the EGMM and FRSCGMM algorithms can basically
distinguish between forest, farmland and bare land; however, there are still some grasslands in the
forest area, resulting in the incomplete segmentation of the forest area. Furthermore, the segmentation
result of the improved algorithm is a more complete segmentation according to the type of feature,
and the edges are more continuous than those of the other methods. In the FRSCGMM algorithm, the
shape of the wheat field is incomplete. The AFSFCM algorithm can divide the wheat field completely.
Compared with in the result of the improved algorithm, the two types of wheat fields in the AFSFCM
result are more completely divided, and most of the noise is suppressed. According to the results of
synthetic image segmentation, there is considerable noise with the other algorithms. In this paper,
the algorithm can reduce noise well and segment the images completely and continuously. Based
on Tables 5 and 6, the PSNR of the improved algorithm is 1.9113–11.2613 dB higher than that of the
other algorithms, and the MSC is 0.3–21.79% lower than that of the other algorithms. In summary, the
improved algorithm has a stronger ability to resist multiplicative noise than the other methods, and
the segmentation performance is better.

3.4. Image Segmentation Test with Mixed Noise

Three remote sensing images, including a stadium, farmland and rivers, had Gaussian noise added
(mean value of 0 and mean squared error of 25) along with different intensities of salt-and-pepper
noise (6%, 15% and 35%). The images were obtained from a segmentation test. The numbers of clusters
were 2, 3 and 2. Gaussian noise with a mean value of 0 and a mean square error of 30%, 20% and
30% and salt-and-pepper noise were added to synthetic images 2 and 3, with 2 clusters each [53,54].
The segmentation results are shown in Figures 16–20.
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Figure 19. Mixed noise interfering with composite image (2) and the segmentation results. 
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The segmentation test results for the remote sensing images shown in Figures 16–20 indicate that 
the FCM and FFSCM algorithms have large numbers of noise points. The SVFMM algorithm 
considers the influence of the neighbourhood space, and it suppresses noise points. However, the 
ability of this algorithm is limited, and there are still many noise points in the segmentation results. 
From the farmland segmentation results in Figure 17, we see that the EGMM and FRSCGMM 
algorithm segmentations produce different degrees of misclassification, and these methods cannot 
identify the location of the farmland. In the stadium segmentation results in Figure 18, the EGMM 
and FRCSGMM algorithm results lack information for the stadiums, runways, houses and green 
spaces, and sample information cannot be effectively extracted from the remote sensing images [55]. 
The AFSFCM algorithm basically recognises and extracts the stadium information, but it yields more 
noise points than the improved algorithm. Regarding the results of the river segmentation test in 
Figure 18, the AFSFCM algorithm segmentation results contain less noise than the other results, and 
the improved algorithm segmentation results are almost noiseless. For artificial synthetic images 2 
and 3, most of the algorithms have much noise, and the improved algorithm has the least noise. The 
PSNR and the misclassification values for the remote sensing image segmentation results are shown 
in Tables 7 and 8. The PSNR of the improved algorithm is 1.0233–10.2804 dB higher than that of the 
other algorithms, and the MSC is 0.9–30.95% lower than that of the other algorithms. Compared with 
the other five algorithms, the improved algorithm is more suitable for image segmentation when salt-
and-pepper noise and Gaussian mixed noise interference exist. 
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The segmentation test results for the remote sensing images shown in Figures 16–20 indicate
that the FCM and FFSCM algorithms have large numbers of noise points. The SVFMM algorithm
considers the influence of the neighbourhood space, and it suppresses noise points. However, the
ability of this algorithm is limited, and there are still many noise points in the segmentation results.
From the farmland segmentation results in Figure 17, we see that the EGMM and FRSCGMM algorithm
segmentations produce different degrees of misclassification, and these methods cannot identify the
location of the farmland. In the stadium segmentation results in Figure 18, the EGMM and FRCSGMM
algorithm results lack information for the stadiums, runways, houses and green spaces, and sample
information cannot be effectively extracted from the remote sensing images [55]. The AFSFCM
algorithm basically recognises and extracts the stadium information, but it yields more noise points
than the improved algorithm. Regarding the results of the river segmentation test in Figure 18, the
AFSFCM algorithm segmentation results contain less noise than the other results, and the improved
algorithm segmentation results are almost noiseless. For artificial synthetic images 2 and 3, most of
the algorithms have much noise, and the improved algorithm has the least noise. The PSNR and the
misclassification values for the remote sensing image segmentation results are shown in Tables 7 and 8.
The PSNR of the improved algorithm is 1.0233–10.2804 dB higher than that of the other algorithms,
and the MSC is 0.9–30.95% lower than that of the other algorithms. Compared with the other five
algorithms, the improved algorithm is more suitable for image segmentation when salt-and-pepper
noise and Gaussian mixed noise interference exist.

Table 7. Comparison of the anti-mixed noise PSNR (dB) of each algorithm.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved
Algorithm

Stadium 9.3761 8.4231 9.6312 9.1671 14.2512 8.3851 15.4321
Farmland 8.8629 6.4431 9.2451 7.4512 14.8725 8.8136 16.7235

River 11.0791 11.0568 10.5571 12.4812 16.7891 14.7812 18.5821
Composite image (2) 7.2165 8.1678 9.2672 10.2640 13.2836 6.1234 14.2123
Composite image (3) 6.2123 7.4256 8.2367 10.2341 12.2123 5.2121 13.2356

Table 8. Comparison of the anti-mixed noise MCR (%) of each algorithm.

Split Image FCM FSFCM SVFMM EGMM AFSFCM FRSCGMM Improved
Algorithm

Stadium 35.12 45.87 34.91 42.16 14.21 42.65 11.21
Farmland 25.31 46.51 24.12 38.12 6.81 27.21 5.21

River 19.71 20.12 19.12 12.76 4.13 6.81 3.61
Composite image (2) 16.21 17.54 14.58 11.26 3.21 4.87 2.31
Composite image (3) 17.74 18.21 15.54 13.23 4.76 5.76 3.21
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3.5. The Limitations of the Algorithm Proposed in this Paper and Its Research Prospects

In this paper, the fuzzy C-means clustering algorithm is studied and improved, and feature
selection and Markov constraint algorithms are added to enhance the anti-noise robustness of the overall
algorithm. Although the anti-noise performance and segmentation performance of the algorithm
proposed in this paper are improved compared to those of traditional methods, the image segmentation
algorithm needs to be applied in different fields. Therefore, the algorithm proposed in this paper still
has some problems. Here are some of the key issues to be considered in the future:

1. This paper proposes a robust clustering algorithm for image segmentation with embedded
neighbourhood pixels and proposes a robust clustering method for greyscale images. This
paper only tests greyscale images, but there are many factors that need to be considered when
segmenting colour images. Therefore, further improving the segmentation performance for
colour images needs to be further studied. The next research direction will be improving the
segmentation performance for colour images.

2. The robust clustering segmentation algorithm based on feature selection studied in this paper
adds neighbourhood information constraints, and one of the difficulties with the algorithm is
selecting regular coefficients and fuzzy coefficients. In this paper, the algorithm for the manual
selection of parameters needs to be debugged. Further research is needed regarding the adaption
of the algorithm.

3. Because of the uncertainty and differences among images, improving the universality and
adaptability of the algorithm needs to be further studied. In image segmentation, the algorithm
proposed in this paper sets the corresponding number of clusters based on the specific image to
be segmented, and an automatic method of determining the number of clusters is lacking. The
selection of the number of clusters will directly affect the result of image segmentation. Therefore,
selecting the appropriate number of clusters adaptively should be considered in follow-up studies.

4. Conclusions

To overcome the insufficient robustness of the GMM clustering algorithm for feature selection, we
propose a feature selection embedded Gaussian mixture algorithm in the neighbourhood space that
considers the correlation of the pixel neighbourhood space and the Markov random space. Moreover,
the a priori probability is defined. This approach is combined with the FSGMM and embedded in the
regular fuzzy clustering algorithm with KL divergence to improve the noise resistance and robustness
of the algorithm. In addition, the results obtained by using traditional FCM clustering to segment
images are used as the initialisation parameters for the improved algorithm, and it is found that
the algorithm should be avoided since it is limited to the local optimal solution and cannot obtain
a good segmentation effect. Gaussian noise, salt-and-pepper noise, multiplicative noise and mixed
noise are added to different types of images, and after comparing the anti-noise PSNRs and MCRs of
various algorithms, it is verified that the improved algorithm yields good segmentation results with
high consistency and anti-noise robustness. The proposed method is effective and meets the needs of
noisy image segmentation. In future work, we plan to improve the algorithm in the following three
aspects: 1. improve the segmentation performance for colour images; 2. improve the self-adaptability
of the algorithm and select regular and fuzzy coefficients; and 3. select the appropriate number of
clusters adaptively.
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