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Aberration retrieval 
by incorporating customized priors 
for estimating Zernike coefficients
Bin Wang1,2,3, Xiaofei Wang1* & Qichang An2

Zernike expansion is an important tool for aberration retrieval in the optical field. The Zernike 
coefficients in the expansion can be solved in a linear system from those focal region intensity images, 
which can be modeled by the extended Nijboer–Zernike approach. Here we point out that those 
coefficients usually follow from different prior distributions, and especially, their variances could be 
dramatically diverse. To incorporate the prior information, we further introduce customized penalties 
to those Zernike coefficients and adopt a global adaptive generative adjustment algorithm for 
estimating coefficients. Based on both simulated and real data, numerical experiments show that our 
method outperforms other conventional methods, and provides an estimate of Zernike coefficients 
with a low mean square error.

The aberration retrieval (AR) from the intensity point-spread function in the focal region is widely used in the 
optical field. It usually adopts the Zernike expansion to represent the aberration linearly. The phase retrieval1,2, 
phase diversity3,4 and curvature sensing5,6 are three classical methods for the AR. They solve inverse problems 
based on the optical mechanism and statistical parameter estimation. The work7 considered an extended Nij-
boer–Zernike (ENZ) diffraction from an analytic description of the focal field and realizable solutions for the 
aberration coefficients7–9. A further work10 suggested an ENZ AR method for identifying the imperfection of 
lens from the intensity point spread function (PSF) of the optical system. This ENZ AR method can be further 
applied to the high-resolution optical lithography11. The general pupil function can be represented by a linear 
function of Zernike coefficients in the Zernike expansion. Through further diffraction integrals, the light field 
on the focal plane also has an expansion:

in which the pair (r,ϕ) are polar coordinates on the image plane, the parameter f is the camera distance from 
the focus plane, {Vm

n (r, f )}n,m are contants relying on the optical system given r and f, and coefficients {βm
n } are 

extended Nijboer–Zernike coefficients.
In theory, the expansion considers infinite terms, but in practice, only the first Q terms are retained for 

the aberration retrieval. For example, Q = 91 was chosen to estimate those Zernike coefficients in the work12. 
Moreover, it illustrates that those coefficients could follow some prior distribution and introduce the penalty 
mechanism into the aberration retrieval in the optical field. Here we further study the prior distribution of the 
Zernike coefficients by decomposing the simulated pupil function. As discussed in the work12, atmospheric 
wavefronts can be simulated using the method13 to generate 1000 random phases. Furthermore, 1000 generalized 
pupil functions can be generated with those phases at constant amplitude. We consider the first 91 terms in the 
Zernike expansion of the generalized pupil function. Since the first term has a real coefficient, there are 181 real 
coefficients by separating the real and imaginary parts. We set the first coefficient to be one, and compute the 
other 180 coefficients. By decomposing 1000 simulated pupil functions, we obtain 1000 observations for each 
coefficient. The box plot on Zernike coefficients is shown in Fig. 1. This box plot illustrates that those coefficients 
follow from different prior distributions. Moreover, their standard deviation could be dramatically diverse as 
shown in Fig. 2. Inspired by these findings, we assume that Zernike coefficient βm

n  follows a customized prior 

(1)U(r,ϕ; f ) = 2
∑

n,m

imβm
n Vm

n (r, f ) exp(imϕ),
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distribution, which is Gaussian with mean zero and variance σ 2
n,m . The prior mentioned in our paper means 

a knowledge that the prior distributions for various model parameters could have diverse variances. Since we 
consider the Gaussian prior with zero mean, the prior distribution is determined only by its variance. The “cus-
tomized priors” mean the customized variances for model parameters.

For incorporating the prior information, we further introduce customized penalties for those Zernike coef-
ficients and adopt a global adaptive generative adjustment algorithm for estimating coefficients. The experiment 
results on the simulated and real data illustrate that our method, utilizing customized prior variances, provides 
an estimate with a lower mean squared error compared to other ENZ aberration retrieval methods.

Methods
Extended Nijboer–Zernike diffraction.  In this study, we assume that the optical system is monochro-
matic and its aperture is circular and unobstructed. The generalized pupil function is usually expressed as14

where A(ρ, θ) and φ(ρ, θ) are the amplitude and phase of the pupil plane, respectively. i =
√
−1 and (ρ, θ) are 

polar coordinates, ρ ∈ [0, 1] , θ ∈ [0, 2π] . The phase can be linearly expressed by Frits Zernike expansion14

where {Zk(ρ, θ)}K−1
k=0  are Frits Zernike basis functions, and {α}K−1

k=0  are the coefficients of the Zernike basis. From 
the work15, the generalized pupil function can be decomposed by using Zernike coefficients {βm

n } as

where m and n are integers such that n ≥ 0 and n− |m| is even. And R|m|
n (ρ) is the radial polynomial. The first 

Zernike coefficient β0
0 is real, and the others {βm

n } are complex for m  = 0, n  = 0 . In the simulation, we generated 
random phases {α}K−1

k=0  using the method13. Thus we also obtained the phase function φ(ρ, θ) by (3). Furthermore, 

(2)Pupil(ρ, θ) = A(ρ, θ) exp(iφ(ρ, θ))

(3)φ(ρ, θ) =
K−1
∑

k=0

αkZk(ρ, θ)

(4)Pupil(ρ, θ) =
∑

n,m

βm
n R|m|

n (ρ) exp(imθ),

Figure 1.   The box plot for 90 Zernike coefficients. (a) Real part of coefficients. (b) Imaginary part of coefficient.

Figure 2.   The standard deviation for 90 Zernike coefficients. (a) Real part of coefficients. (b) Imaginary part of 
coefficient.
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we computed the generalized pupil function by (2) at constant amplitude. Finally, we consider the first 91 
terms in the Zernike expansion (4) of the generalized pupil function.We denote all the Zernike coefficients by 
a coefficient vector β . Thus the pupil function is a linear function on the vector β , which is to be estimated as 
aberration retrieval.

From works11,15, the radial polynomials in (4) can be expressed as

Hence R|m|
n (ρ) can be constructed before aberration retrieval for a specific choice of m, n, and ρ.

In the work8, the light field on the focal plane is expressed as

where the parameter f is the camera distance from the focus plane, and (r,ϕ) are polar coordinates on the image 
plane. From the work7, the Bessel series has the form

where Jm is a Bessel function of the first kind with order m, and

where q = n+|m|
2  , p = n−|m|

2  , and l = 1, 2, . . . ; j = 0, . . . , p.

Aberration retrieval model using the ENZ approach.  Using the formula (1), the PSF intensity in the 
focal region can be expressed as

where

is the sum of the remaining second order cross terms. In the summand, symbol ′  means the omission of n = 0 
terms in the summand, and symbol ′′ means the omission of n1 = m1 = 0 or n2 = m2 = 0 terms. Re() and Im() 
denote the real and imaginary parts of a complex number. Symbol ∗ denote the complex conjugate.

The PSF intensity with an additive detector readout noise ε forms an aberration retrieval model:

where the noise ε(r,ϕ; f ) ∼ N(0, σ 2) . The intensity Ib(r,ϕ; f ) can be collected to estimate coefficients {βm
n } using 

(8), as shown in Fig. 3.
This aberration retrieval process, previously proposed in works10,16–19, has four main steps: 

(1)	 Input the collected PSFs Ib . Set the maximum iteration step K, I(0) = Ib , C(0) = 0 and k = 0.
(2)	 Assumes that I(k) can be described as linear combinations of the entrance pupil aberrations with coefficients 

{βm
n } . This is equivalent to omitting the cross terms of (8). And then compute {βm

n }(k).
(3)	 Calculate C(k+1) using (9) by {βm

n }(k).
(4)	 Set I(k+1) = Ib − C(k+1) , k = k + 1 . If k > K , exit. Otherwise, go to step (2).

Notice that due to phase wrapping effects occurring in the reconstructed pupil distribution, this retrieval pro-
cess may fail in case that the aberration magnitude is beyond some large range. So we only considered a small 

(5)R|m|
n (ρ) =

n−|m|
2

∑

s=0

(−1)s
(n− s)!

s!( n+|m|
2 − s)!( n−|m|

2 − s)!
ρn−2s .

U(r,ϕ; f ) = 2
∑

n,m

imβm
n Vm

n (r, f ) exp(imϕ),

(6)Vm
n (r, f ) = exp(if )

∞
∑

l=1

(−2if )l−1

p
∑

j=0

vlj
J|m|+l+2j(2πr)

l(2πr)l
,

(7)vlj = (−1)
n−m
2 (|m| + l + 2j)

(

|m| + j + l − 1
l − 1

)(

j + l − 1
l − 1

)(

l − 1
p− j

)/(

q+ l + j
l

)

,

(8)

I(r,ϕ; f ) = |U(r,ϕ; f )|2

= 4|V0
0 (r, f )|2(β0

0 )
2 + 8β0

0

∑

n,m

′Re[βm
n imVm

n (r, f )V0∗
0 (r, f ) exp(imϕ)] + C(r,ϕ; f )

= 4|V0
0 (r, f )|2(β0

0 )
2 + 8β0

0

∑

n,m

′Re(βm
n )Re[imVm

n (r, f )V0∗
0 (r, f )] cos(mϕ)

− 8β0
0

∑

n,m

′Re(βm
n )Im[imVm

n (r, f )V0∗
0 (r, f )] sin(mϕ)

− 8β0
0

∑

n,m

′Im(βm
n )Re[imVm

n (r, f )V0∗
0 (r, f )] sin(mϕ)

− 8β0
0

∑

n,m

′Im(βm
n )Im[imVm

n (r, f )V0∗
0 (r, f )] cos(mϕ)+ C(r,ϕ; f ),

(9)C(r,ϕ; f ) = 4
∑

n1,m1;n2,m2

′′Re{βm1
n1

βm2∗
n2

im1−m2Vm1
n1

Vm2∗
n2

exp[iϕ(m1 −m2)]}

(10)Ib(r,ϕ; f ) = I(r,ϕ; f )+ ε(r,ϕ; f ),
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wavefront error (pv < 2π) in our experiment. From works10,12,16,17, we know that the intensity I(k) in Step (2) 
can be linearly transformed into a vector L(k) . We further get a classical linear model on the coefficient vector β:

where δ is a Gaussian random noise with zero mean. The specific forms of M , β , δ , L(k) can be referred to the 
work12.

Usually, the least square estimate:

is used to deal with this retrieval process10,16,17. Recently, considering the potential prior information, the work12 
further introduces the penalty mechanism

into the retrieval process, and propose a penalized ENZ AR algorithm.

Global adaptive generative adjustment for estimating coefficients.  As shown in the “Introduc-
tion” section, those Zernike coefficients follow from different prior distributions. Especially, their standard 
deviation could be dramatically diverse. So we assume that coefficient βj has a prior N(0, τ 2j ) and the standard 
deviation τj could be diverse. From the classical linear model, the observed response y is generated by a linear 
system Xβ + ǫ , where β = (β1, . . . ,βp)

T can be viewed as the true signal, the Gaussian noise ǫ ∼ N(0, σ 2I) and 
I is an identity matrix.

Considering the posterior distribution of coefficients, we further obtain an objective function

with multiple hyperparameters {bj} . These hyperparameters can be viewed as the prior information of model 
parameters {βj} . In (14), n is the sample size, p is the dimension of the vector β , and the hyperparameter bj , 
j = 1, . . . , p, provides a customized shrinkage on the coefficient βj.

(11)L(k) = Mβ + δ,

(12)β̂
(k) = argmin

β
�Mβ − L(k)�22 =

(

MTM
)−1

MTL(k).

(13)β̂
(k) = argmin

β
�Mβ − L(k)�22 + µ�β�1

(14)
1

2

�y − Xβ�2
σ 2

− n

2
log(σ 2)+ 1

2

p
∑

j=1

bjβj
2

Figure 3.   The generalized pupil and the through focus light field can be linearly expanded as a combination of 
coefficients {βm

n } . The measured through focus PSFs are inputs for estimating coefficients {βm
n }.
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We adopt a global adaptive generative adjustment (GAGA) algorithm to recover a true signal β . In Algo-
rithm 1, hyperparameters and the signal are alternatively updated by a data-driven method. The inputs of this 
algorithm are the response vector y , the design matrix X , the iteration number K. The output of this algorithm is 
the signal estimate β̂ = GAGA(y,X,K) . The convergency analysis of Algorithm 1 and the large sample properties 
of its output is discussed in the work20.

The following Algorithm 2 combines the ENZ AR process and the GAGA algorithm, which utilizes the cus-
tomized prior information and updates model parameters and hyperparameters alternatively.

Results
We suggest a method adopting a global adaptive generative adjustment (GAGA) algorithm for estimating the 
ENZ coefficients. We call this method the GAGA ENZ AR. In a previos work12, the least absolute shrinkage 
and selection operator (Lasso) algorithm can also be applied to the aberration retrieval. So we compared the 
GAGA ENZ to the Lasso ENZ AR and the conventional ENZ AR17 in the simulation with synthesized data. The 
characteristics of the optical system are shown in Table 1.

The simulations were implemented in three steps: 

(1)	 We simulated three PSFs (images intra, in, and extra focus) from (8) with the first Q leading terms {βm
n } , 

where β0
0 = 1 . In this paper, we set Q = 91 in the AR process. We further added Gaussian white noise to 

PSFs and simulated four noise levels (40 dB, 35 dB, 30 dB, 25 dB) measured using Signal-Noise Ratio (SNR).
(2)	 Using the simulated images with noise, we estimated {βm

n } by ENZ AR, Lasso ENZ AR and GAGA ENZ 
AR separately.

(3)	 We divided the estimates {β̂m
n } by β̂0

0 to ensure that the first component of {β̂m
n } is 1, and then assessed the 

experimental results on the residual square error �β̂ − β�22 , where β was the true parameter vector, and β̂ 
was obtained by ENZ AR, Lasso ENZ AR and GAGA ENZ AR separately.

Different noise levels were chosen, and the above procedures were executed hundreds of time for each noise 
level. The empirical MSE of the true parameter β were calculated by (15):

where i means the ith test. N is the total number of test. The standard deviation of MSE can be further computed 
by:

(15)MSE = 1

N

N
∑

i=1

�β̂ i − β i�22,

Table 1.   Characteristics of the optical system.

Light source diameter (μm) 0.25

Numerical aperture 0.5

Wavelength (μm) 0.2

Polar angle sampling (°) 10

Polar radius sampling 4pix/(�F#)

Expected focus f (μm) − 1/0/1
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Random aberration examples.  We used the method13 to generate 100 random phases 
(pv < 2π , rms = 0.2π) by the first 21 terms of Frits Zernike expansion. Some of them are shown in Fig. 4. These 
phases at constant amplitude further generated 100 generalized pupils, which can be expressed by (4) for Q = 91 
in ENZ. Then we get 100 groups of {βm

n } as the true parameters in experiments. We compared the empirical 
MSE (15) for the output of ENZ AR, Lasso ENZ AR and GAGA ENZ AR. In Fig. 5 we show the error bar of the 
empirical MSE at each given SNR, where the length of the bar is two times the standard deviation STD (16). Our 
method GAGA ENZ AR produced superior parameter estimates at each noise level compared to ENZ AR and 
Lasso ENZ AR. Though our algorithm works well for a small wavefront error (pv < 2π) , it may fail to handle the 
AR for strong wavefront aberrations in the atmospheric disturbances.

(16)STD =

√

√

√

√

1

N − 1

N
∑

i=1

(

�β̂ i − β i�22 −MSE
)

.

Figure 4.   Some simulated random phases.

Figure 5.   The error bar of three methods at each noise levels.

Figure 6.   Phase of non-common path aberrations and NZ coefficients (representing the field with constant 
amplitude and the given phases). (a) Phases. (b) Real part of NZ coefficients. (c) Imaginary part of NZ 
coefficients.
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Real data example.  The phase shown in Fig. 6a was observed from the measurement of non-common 
path aberrations from a 1.23 m adaptive optics telescope in Changchun China. More detailed descriptions on 
this optics telescope can be found in these works21–23. The field with constant amplitude and phase (Fig. 6a, 
rms = 0.14π ) has NZ coefficients shown in Fig. 6b,c.

We repeated the simulation one hundred times and showed the error bar of the MSE in Fig. 7.
When the noise SNR is 40, the conventional ENZ AR performed marginally than LASSO ENZ AR. However, 

GAGA ENZ AR outperformed ENZ AR and LASSO ENZ AR at each noise level. Moreover, GAGA ENZ AR also 
kept the empirical MSE in a low value even at a high noise level.

Conclusion
We find that to represent an optical field, Zernike coefficients have their customized priors. For incorporating 
the customized prior information, we adopt a global adaptive generative adjustment method for estimating 
coefficients in the ENZ aberration retrieval. In the simulated and real data experiments, our algorithm provides 
better performance on the MSE compared to ENZ AR and LASSO ENZ AR.
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