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Experimental system for the spectral measurement of the oils with different viscosity values
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Table 1 Dynamic viscosity values of experimental samples
/ /
/C (Pa-+s) /°C (Pa -+ s)
1 40 45 8 40 100
2 40 10 9 40 120
3 40 19 10 40 180
4 40 30 11 40 360
5 40 50 12 40 500
6 40 60 13 40 930
7 40 73
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Fig 2 Vis-NIR absorbance spectra (a) and first derivation
spectra (b) of lubricant with different Kinematic Vis-
cosity values
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Fig 4 Evolutionary process of quantum genetic algorithm
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Table 2 Prediction parameters by different models 3
R? RMSEC R? RMSEC - QGA-BPNN
BPNN 0. 890 3 0. 157 2 0. 850 4 0. 345 5 o
QGA-BPNN 1 1. 956 310> 0. 979 9 0. 029 4 R BP
QGA-BPNN . (R 0.979 9,

2.2 QGA-BPNN

BPNN
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Abstract Dynamic viscosity is one of the most important quality factors of lubricating oil. For the safety of high-speed railway,
it is necessary to develop a real-time, fast and non-destructive method to monitor the status of the gearbox. Here we propose a
new method that utilizes the quantum geneticneural network algorithm to quantitatively analyze the visible and near-infrared
spectra of lubricant acquired by a micro-spectrometer module. The method not only realizes non-destructive rapid real-time detec-
tion of the dynamic viscosity of high-speed railway transmission lubricating oil, but also further improves the prediction accuracy
of the lubricating oil dynamic viscosity. Thanks to its excellent performance and small size, the miniature spectrometer has been
widely used as a portable and nondestructive device. Here, two kinds of micro-spectral modules with visible/short-wave-infrared
and near-infrared waveguide gratings are coupled with optical fibers and obtain a wide spectral range from 330 to 1 700 nm. Here
the integrated waveguide and propagating makes the spectrometer compact and small. In experiment, a total of 78 lubricant sam-
ples with 13 different viscosity lubricants were prepared for spectral measurement by the micro-spectrometer. The raw spectral
data was pre-processed using the Savitzky-Golay convolution smoothing and the first-order differentiation to eliminate the base-
line drift and background noise. Next, principal component analysis and Mahalanobis distance algorithm were used to identify the
samples outside the concentration boundary, and three out-of-bound samples were excluded. Finally, the BP neural network and
the quantum genetic neural network methods were employed for quantitative analyses and the results are compared, respectively.
The quantum genetic algorithm is a probabilistic evolutionary algorithm that combines the advantages of quantum computing and
genetic algorithm. It uses the form of quantum chromosomes and quantum logic gates for global searching. Therefore, the quan-
tum genetic algorithm can be used to optimize the weight and the threshold of neural network, and the modeling efficiency and
accuracy can be improved significantly. In this paper, BP neural network algorithm and quantum genetic neural network algo-
rithm were modeled and simulated respectively. Ten samples were randomly selected from 75 samples as prediction sets, and the

remaining 65 were as modeling sets. In the quantum genetic algorithm, the population number was set to 40 and the termination
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algebra was 200. The optimization results showed that the algorithm could obtain the optimal solution quickly after training of
only 81 generations. A comparison of the predicted results showed that the quantum genetic algorithm was much better than the
BP neural network, the root mean square error of the prediction was significantly reduced from 0. 345 5 to 0. 029 4, and the coef-
ficient of determination was increased from 0. 850 4 to 0. 979 9. This work has developed an effective method for compact, non-
destructive, rapid and real-time detection of the dynamic viscosity of the lubricant and would find potential uses for the safety

monitoring of high-speed trains.
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