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ABSTRACT Object detection is a challenging task in the field of remote sensing applications due to the
complex backgrounds and uncertain orientation of targets. Compared with the horizontal bounding box,
the oriented bounding box can provide orientation information while retaining the true size. Most existing
oriented object detection methods are based on Faster-RCNN and the other one-stage methods that can
achieve real-time speed but have shortcomings in localization and detection accuracy. To further enhance
the performance of one-stage methods, we propose an oriented object detection framework that is based on
the single shot detector, namely, single shot anchor refinement network (S2ARN). The S2ARN obtains the
accurate detection results by performing two consecutive regressions. More precisely, the multilevel features
of the backbone are used to regress the coordinate offsets between the predefined rotated anchors and the
ground-truth boxes to generate the refined anchors. The classification and regression subnetworks assigned
to the output features are used to perform the second regression to determine the class labels and further adjust
the location of the refined anchors. In addition, receptive field amplification modules (RFAMs) are inserted
to enlarge the receptive field and extract more discriminative features. Furthermore, in the anchor matching
step, angle-related Intersection over Union (ArIoU) is used to calculate the Intersection over Union (IoU)
score instead of the traditional method. Benefiting from the multiple regressions and the insensitivity of the
ArIoU score to the angle deviation, the angle sampling interval of the rotated anchor can be reduced. The
experimental results for the two public datasets, HRSC2016 and UCAS-AOD, demonstrate the effectiveness
of the proposed network.

INDEX TERMS Convolutional neural network (CNN), remote sensing, oriented object detection, anchor
refinement.

I. INTRODUCTION
In recent years, we have witnessed the remarkable progress
of convolutional neural networks (CNNs) in many computer
vision tasks such as image classification [1], [2], object
detection [3]–[5], image segmentation [6] and medical image
processing [7], [8]. Existing generic object detection methods
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are primarily divided into two-stage region-proposal-based
methods [3], [9]–[12] and one-stage regression-based meth-
ods [4], [5], [13], [14]. Region-proposal-based methods, such
as Faster-RCNN [3] and Mask-RCNN [12], generate a series
of proposals by learning a Region Proposal Network (RPN).
A region wise classifier is used to determine the object class
label and fine-tune the location of detection bounding box.
Regression-based methods extract high-level semantic fea-
tures that are directly applied to bounding box regression
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and class label determination. The Single Shot multibox
Detector (SSD) [4] and YOLOv2 [14] algorithms utilize the
anchor mechanism in RPN which predefines a series of prior
boxes (anchors) with different scales and aspect ratios at
each spatial location of the feature maps. By calculating the
Intersection over Union (IoU) scores between these anchors
and the ground-truth boxes, positive and negative samples are
separated to train the model. Due to the full convolutional
structure, the region of interest (ROI) features do not have
to be separately discriminated. Thus, the regression-based
methods have a high detection efficiency. However, the detec-
tion accuracy is usually lower than that of the two-stage
approaches.

In the field of remote sensing, many researchers have
applied the generic object detection methods to remote
sensing image object detection [15]–[18]. These methods
use the same horizontal bounding boxes to detect targets.
However, unlike natural images, remote sensing images are
always taken in top views, which implies that the objects in
remote sensing images are arbitrarily oriented. This orienta-
tion causes a misalignment between the objects and detec-
tion bounding boxes. In Fig. 1, for slender objects, such as
ships, the bounding box of an incline ship contains redun-
dant backgrounds. The ship occupies only a small part of
the bounding box area, and a large overlap area between
the bounding boxes of adjacent ships exists. Thus, the ship
with lower confidence score will be suppressed during the
non-maximum suppression (NMS) procedure, which causes
a missed detection. In addition, a horizontal bounding box
loses the shape information of the target, whereas an oriented
bounding box can wrap the target in a tighter way, and the
real size of the target can be preserved.

FIGURE 1. Comparison of horizontal bounding boxes and rotated
bounding boxes. (a) Slender targets are detected using horizontal
bounding boxes. For two adjacent ships, the horizontal bounding boxes,
A1 and B1, have a large overlap area, and the box with a lower
confidence score will be suppressed during the NMS procedure. (b) The
oriented bounding boxes A2 and B2 wrap targets more tightly.

To overcome the drawbacks of horizontal bounding boxes,
many researchers have proposed methods that use ori-
ented bounding boxes for object detection in remote sens-
ing images [19]–[28], most methods are based on Faster
R-CNN. Jiang et al. proposed R2CNN [19] for text detec-
tion, which combines multisize pooled features and has
been reimplemented for object detection in remote sensing
images by a third-party research group; Liu et al. [20] and

Zhang et al. [28] introduced multiangle anchors in RPN,
and extracted Rotated ROI (RROI) features by Rotate ROI
pooling. Koo et al. [23] extracted Diagonal ROI (DROI) and
connected it to the RROI feature, which introduced contextual
information and improved the robustness of the algorithm.
Azimi et al. [21] and Yang et al. [25] used more complex
backbones to improve the accuracy; however, it reduced
detection efficiency. Ding et al. [22] employed a subnetwork
with a fully connected layer to regress the transformation
parameters from horizontal ROIs to rotated ROIs, which
reduces the number of anchors and further improves the effi-
ciency by using a light-head R-CNN. These methods, which
are based on Faster-RCNN, inherit its defects in computation
speed and storage space.

One-stage detection methods are also applied to oriented
object detection [29]–[32]. DRBox [29], which is a variant
of SSD, sets multiangle anchors to better match ground-
truth boxes. In the training phase, Angle-related IoU (ArIoU)
was utilized to calculate the IoU between rotated boxes to
accurately guide the network in regressing angle deviation.
DRBox achieved a detection speed of nearly 60 fps on an
input size of 300 × 300 pixels. However, since only the
feature map of a single layer was employed, the detection
accuracy is limited by the feature representation and the
small receptive field. In addition, the performance of the
SSD-based methods is susceptible to the threshold settings,
thus, acquiring high recall and precision simultaneously is
difficult. Liu et al. [30] implemented an arbitrary-oriented
ship detection method that is based on YOLOv2. Multiple
feature maps with different resolutions were reorganized and
concatenated, which introduced fine-grained features and
improved the recall of small targets. However, the detection
performance was limited by the lower angle regression accu-
racy. Although these one-stage methods can detect targets at
a high speed, improvements in the detection and localization
accuracy are still needed.

To solve these problems, we propose a high-accuracy
one-stage oriented object detection framework named Single
Shot Anchor Refinement Network (S2ARN) while main-
taining a real-time speed. The entire network is based on
a Feature Pyramid Network (FPN) [33] structure with a
ResNet [2] backbone. Through three efforts, we improve the
localization and detection accuracy. First, Anchor Refine-
ment Branches (ARBs) are introduced to provide high qual-
ity refined anchors for Object Detection Branches (ODBs)
which further adjust the coordinates of the refined anchors
for more accurate bounding boxes. The increased thresholds
of two consecutive regressions alleviate the sensitivity of
the threshold setting of SSD-based method, and better bal-
ance precision and recall. Second, considering that objects in
remote sensing images have a variety of scales, a multibranch
convolutional structure, namely, Receptive Field Amplifica-
tion Modules (RFAMs) are designed to expand the effective
receptive field of the detection layer and extract more dis-
criminative features. Last, a rotated anchor matching strategy
is carefully designed, thus, the targets with various aspect
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FIGURE 2. Overall structure of the single shot anchor refinement network (S2ARN).

ratios can match a sufficient number of anchors to ensure the
recall.

The experimental results based on two public datasets,
the HRSC2016 and UCAS-AOD datasets, show the effective-
ness of the proposed method. The remainder of this paper is
organized as follows. Section II details the proposed method.
Section III presents the datasets and evaluation indicators.
Section IV presents comparative experiments to verify the
validity of the proposed method. Section V concludes this
paper.

II. PROPOSED METHOD
In this section, we detail the proposed S2ARN. Fig. 2 depicts
the total structure of the network. S2ARN is designed based
on an FPN architecture. A 3x3 dilated conv layer with a dila-
tion rate of 2 is appended to C5 to produce C6 which has the
same resolution as C5 but larger receptive field size. C6 has
rich deep semantic information and is adopted for large object
detection. To begin with, the number of channels for the
multilevel feature maps {C6, C5, C4, C3} is compressed to
256 by 1 × 1 conv layers. The output feature maps are input
into four RFAMs to further expand the effective receptive
field to extract more discriminative features. In this study,
we refer to {C6, C5, C4, C3} as ‘‘refiners’’, which are utilized
to regress the offsets between the ground-truth boxes and the
original predefined anchors. This process is performed by an
additional 3× 3 conv-layer named theARB. Then, we decode
the offset with the original anchor to obtain the refined
anchors. {C6, C5, C4, C3} have strides of {32, 32, 16, 8},
respectively, and a dense to 8 pixels spatial sampling interval
ensures that small targets can match enough anchors. The
final feature pyramid {P6, P5, P4, P3}, namely, ‘‘predictors’’,

are obtained by a top-down pathway and lateral connections.
Similar to the SSD, a detection head referred to as the ODB
is assigned to each predictor for classification and bounding
box regression. The regression subnet of ODB further adjusts
the locations of the refined anchors generated by ARB to
better fit the ground-truth boxes. At last, confidence threshold
screening and NMS are used to eliminate background and
redundant detection boxes to obtain the detection results.

A. ARB
The SSD divides the positive and negative anchors based
on the IoU scores between ground-truth boxes and anchors,
which causes the selection of the IoU threshold to have a
significant impact on the performance of the detector. A loose
IoU threshold encourages more anchors to be classified into
the foreground, which introduces more close false positives
and lower precision, whereas, a tight IoU threshold substan-
tially reduces the number of positive anchors, and the training
process is overwhelmed by the negative anchors. Although
the Focal Loss [34] can alleviate the problem of foreground-
background class imbalance, an insufficient number of posi-
tive samples can easily cause overfitting. Therefore, obtaining
accurate detection results by a single regression is difficult.

Kong et al. [35] observed that the misalignment between
the optimization target and the inference configuration is an
important factor that hinders the performance improvement
of the SSD-based methods. In Fig. 3, as in [9] and [35],
we plot the IoU values of the ground-truth boxes with their
nearby anchors before and after regression to study the regres-
sion performance of the SSD-based algorithm. The SSD with
ResNet50 backbone is adopted. We use {C5, C4, C3} as
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FIGURE 3. Regression performance of the SSD with ResNet50 backbone.

predictors and train on the HRSC2016 dataset for oriented
object detection. The IoU scores between ground-truth boxes
and their nearby anchors are calculated as input IoU scores.
The Output IoU scores are calculated from the predicted
boxes and the ground-truth boxes. We apply two kinds of
IoU metrics to measure the overlap between two rotated
bounding boxes, namely, the SkewIoU [30] metric and the
ArIoU [29] metric, which will be described in Section 2.3.
We can observe that the IoU value between the ground-truth
box and the refined anchor has considerably improved after
the regression regardless of which IoU metric is applied.
Some anchors that are assigned as negatives may also match
ground-truth boxes after the regression. In the training phase,
the classification subnetwork classifies the predefined anchor
into one of M object categories, if the IoU score related to
any ground-truth box is greater than the threshold. During
the inference phase, the predicted probability is assigned
to the corresponding refined anchor which has a distinctly
higher IoU score than the predefined anchor. As a result,
the localization performance of the refined anchor does not
match the classification score.

To solve these problems, S2ARN uses two consecutive
regressions to improve the detection accuracy. For the first
regression, the positive and negative anchors are divided
by a lower IoU threshold (0.4) to ensure the recall rate,
and the offsets between the positive predefined anchors and
ground-truth boxes are regressed by ARB. This process
focuses only on the coordinate regression, and does not
involve the object category determination, therefore classifi-
cation loss is not calculated. In the second regression, a strict
threshold (0.75) is employed as the criteria for selecting the
positives, and the offsets between the refined anchors and
the ground-truth boxes are further regressed. This process is
beneficial for improving the precision rate and localization
accuracy. Similar to the SSD, multitask learning is utilized
to determine the bounding box coordinates and class label.
A higher threshold encourages the refined anchors with a
high localization accuracy to be predicted as foreground

categories, which renders the localization ability and confi-
dence score of the box more consistent and alleviates the mis-
alignment between the optimization target and the inference
configuration. As shown in Fig. 3, some predefined anchors
have low IoU scores with ground-truth boxes. After the first
regression, the scores have substantially improved. There-
fore, when using a tight threshold such as 0.75, a large number
of positive refined anchors still exist, which will not cause
overfitting problems. Unlike RetinaNet [34], the detection
head of each predictor in S2ARN does not share parameters.
Because each predictor has different scale features, separate
use of the parameters facilitates the full use of these features.

B. RFAM
The Receptive Field (RF) in CNNs is the region of the input
space that affects a particular output unit of the network.
As pointed out in [36], the pixels in RF do not equally con-
tributes to the final output; only a fraction of the area has an
effective influence on the output unit. These pixels constitute
the Effective Receptive Field (ERF), which linearly increases
with respect to 1/

√
N , where N is the number of convolution

layers. Using a dilated conv layer or a conv layer with a
large stride can efficiently increase the ERF size instead of
expanding the network.

In object detection task, the anchor size should match the
ERF size of the unit on the predictor. For remote sensing
images, targets are often confused in complex backgrounds.
Increasing the ERF size can provide more contextual infor-
mation for the classification subnetwork, which can render a
more robust and accurate classification [23]. Liu et al. [37]
proposed the Receptive Field Block (RFB) based on the
structure of the RFs in human visual systems. RFBs were not
only assigned to the light weight backbone as extra layers to
expand the entire network, but also cascaded after the shallow
predictors to increase the ERF size of the shallow feature
maps. The RFB is a multibranch convolutional block, and the
last layer of each branch is a dilated conv layer with different
dilation rates; thus, the previous layer has a variable sampling
center. The RFB expands the ERF size of the output unit, and
flexibly controls the eccentricity of the equivalent RF of the
entire block.

Inspired by this study, considering the shapes of the objects
in remote sensing images, the RFAMwas designed, as shown
in Fig. 4. The RFAM consists of a multibranch structure and
a shortcut path structure. In each branch, we use a 1× 1 con-
volution layer to compress the number of feature map chan-
nels. The sampling center of the intermediate convolution is
determined by the last dilated convolution, and its dilation
rate can adjust the RF eccentricity of the entire module. The
3 × 3 conv layer in branch1 concentrates on the most impor-
tant central area. In contrast to the RFB, considering that
targets such as ships and vehicles in remote sensing images
always have long rectangle shapes, branch2 and branch3 use
a 1 × 3 conv layer and 3 × 1 conv layer as the last layer,
respectively, each with a dilation rate of 3 to render the RF
suitable for these objects. To retain the diagonal information,
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FIGURE 4. Architecture of Receptive Field Amplification Module (RFAM).
RFAM uses dilated convolution to control the size and shape of the
receptive field.

branch4 uses a 3 × 3 conv layer with the same dilation rate
as the last layer. RFAMs are appended after the feature maps
{C6, C5, C4, C3} to extend the ERF of the ARB and ODB.

C. ARIOU AND ANCHOR SETTINGS
1) ARIOU
There are two cases that the IoU calculation is needed in
SSD: the first lies in the anchor matching step to distinguish
positive and negative anchors; the second is in the NMS pro-
cedure to filter out redundant detection boxes. For S2ARN,
another IoU calculation is added in the anchor refinement
step tomatch ground-truth boxeswith the predefined anchors.
The calculation method and the threshold setting of IoU are
crucial for SSD-based algorithms.

In the anchor matching step, in many of the oriented object
detectionmethods [22], [23], [26], [28], [30], [31], the convex
polygon overlapping area of two rotated boxes is calculated to
obtain the IoU, which is known as the SkewIoU metric [30],
as shown in Fig. 5(b). When the SkewIoU is applied to
a ground-truth box with a high aspect ratio, such as that
in Fig. 5(a), the SkewIoU score is sensitive to the change in
angle, and a slight angle shift causes a rapid decrease in the
IoU score, as shown in Fig. 5(d). Matching slender targets
with a sufficient number of anchors is difficult when selecting
positive anchors with a conventional positive threshold (such
as 0.5), which will decrease the recall rate. One method for
alleviating this problem is to reduce the pos-threshold, which
will decrease the precision rate of the detector. Another solu-
tion is to increase the sampling density of the anchor angle;
however, this approach increases the number of anchors and
increases the computational burden.

To solve these problems, we applied the angle-related IoU
(ArIoU) metric of [29] to calculate the IoU between the
oriented ground-truth box G and the rotated anchor box A,
instead of applying the SkewIoU metric. The rotated bound-
ing box is defined by the 5-tuple coordinate (x, y, w, h, θ ),
where (x, y) represents the geometric center coordinate of
the box; w and h are the lengths of the long side of the box
and the short side of the box, respectively. The orientation

FIGURE 5. Comparison of calculation approaches of SkewIoU metric and
angle-related IoU (ArIoU) metric. (a) Slender ground-truth G and a nearby
rotated anchor A. The orange crosses represent the centers of the
predefined anchors. (b) SkewIoU between G and A. (c) IoU of G and A∗.
(d) The SkewIoU and ArIoU scores of A and G vary with the angle
deviation.

parameter, θ , determining the rotation angle of the bounding
box, is defined as the angle between w and the positive x-axis
and ranges from 0 to π . The calculation method of the ArIoU
is expressed as follows:

ArIoU (G,A) =
area(G ∩ A∗)
area(G ∪ A∗)

|cos(θG − θA)| (1)

where, G (xg, yg, wg, hg, θg) is an oriented ground-truth
box and A (xa, ya, wa, ha, θa) is a nearby rotated anchor.
A∗ is the rotated box which keeps the same parameters as
A, with the exception that the angle parameter is θg, and is
not θa. The ArIoU(G, A) monotonically decreases to 0 while
the angle deviation increases from 0 degrees to 90 degrees,
which forces the anchor with a similar orientation to match
the ground-truth box. Compared with the SkewIoU score,
the ArIoU score gradually changes with the angle offset.
For instance, in Fig. 5(d), with a positive threshold of 0.5,
to match A to G, the angle offset of A and G should be less
than 10 degrees using the SkewIoU metric. When the ArIoU
metric is adopted, the value can be relaxed to 50 degrees,
which enables the ground-truth boxes to be matched with
more anchors and helps to improve the recall. The ArIoU
metric is more robust to a small angle deviation. Thus,
we can reduce the sampling interval of the anchor angle to
improve computational efficiency while ensuring that each
ground-truth boxmatches adequate anchors. In contrast to the
anchor interval of 30 degrees or 60 degrees in [21], [23], [28],
we set a rotated anchor every 90 degrees in the ARB.

The ArIoU and SkewIoUmetrics are employed in different
situations. For the anchor matching step in the training phase,
the ArIoU metric is utilized. In the NMS step, SkewIoU
scores are calculated to eliminate redundant detection
boxes.
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FIGURE 6. Angle settings of the rotated anchors.

2) ANCHOR SETTINGS
In the ARB, we use three parameters, scale, aspect ratio
and angle, to generate regular rotated anchors and effectively
cover the oriented ground-truth boxes of different shapes.
For each refiner {C6, C5, C4, C3}, we define the anchors
to have scales of {256, 128, 64, 32} pixels, respectively.
Benefiting from the insensitivity of the ArIoU score to small
angle offsets, we can set a sparse angle sampling interval
for the rotated anchors. We apply two angles {45◦, 135◦} to
control the orientation as shown in Fig. 6. The aspect ratios of
the anchors are determined by the shape of the detected target.
For ships in the HRSC2016 dataset, multiple aspect ratios
of {1:3, 1:5, 1:7} are adopted. For the UCAS-AOD dataset
which consists of aircrafts and vehicles, we set the aspect
ratios of the anchors to {1:1, 1:2}. For the HRSC2016 dataset,
each unit of the refiner has 6 anchors (1 × 2 × 3). For the
UCAS-AOD dataset, each unit has 4 anchors (1 × 2 × 2).
Although the multiangle anchor is set, the number of anchors
on each output unit increases only by one more than that in
RPN which has multiple aspect ratios of {2:1, 1:1, 1:2}.

D. ANCHOR MATCHING POLICY AND LOSS FUNCTION
To train the model, we need to distinguish between the posi-
tive samples and negative samples from all anchors. The pos-
itive anchor needs to satisfy the following conditions: (a) The
ArIoU score between the anchor and any ground-truth box is
greater than the pos-threshold, simultaneously, the absolute
value of the angle deviation should be less than the angle
threshold. (b) The anchor has the highest ArIoU score with
any ground-truth box. An anchor is assigned a negative label
when (a) the ArIoU score is lower than the neg-threshold for
all ground-truth boxes or (b) the ArIoU score is greater than
the pos-threshold, but the angle deviation is larger than the
angle threshold. Unlike RPN, when the ground-truth boxes
are associated with anchors, in addition to the IoU constraint,
we limited the angle deviation of the matched ground truth
and anchor, which enables the anchor with the smallest angle

offset to predict corresponding ground-truth. In the ARB,
pos-threshold = 0.4, neg-threshold = 0.3 and angle thresh-
old = π/4 are adopted. For the ODB, pos-threshold =
0.75, neg-threshold = 0.5 and ang threshold = π/8 are
adopted. The threshold setting in the ODB is stricter than
that in the ARB. After the first regression, the IoU score
between the refined anchor and ground-truth box is relatively
high, and the higher threshold encourages the refined anchor
with a high localization accuracy to participate in the training
process to fit the ground-truth, which is beneficial for sup-
pressing the close false positives and improving the precision
rate. Tiny targets are usually harder to match a sufficient
number of anchors, leading to low recall. Inspired by the
scale compensation anchor matching strategy in [38], for
objects whose equivalent scale is less than 40 pixels, we set
smaller values for the pos-threshold and neg-threshold. For
simplification, all IoU thresholds are reduced by 0.2 for tiny
objects.

We use the multitask loss to minimize the objective func-
tion, which is defined as (2). Since the ARB is only used
to adjust the predefined anchors, and the object category is
determined by the ODB, therefore, the classification loss of
the ARB is not adopted.

L = Larreg + L
od
cls + L

od
reg

=
1
N ar
reg

∑
i∈pos

Lreg(tari , v
∗
i )

+
1

N od
cls

∑
j

Lcls(codj , p
†
j )

+
1
N od
reg

∑
j∈pos

Lreg(todj , v
†
j ) (2)

Lcls(c, p) =
∑
k

−pk log(ck ) (3)

Lreg(t, v) =
∑

m∈{x,y,w,h,θ}

smoothL1(tm − vm) (4)

smoothL1(x) =
{

0.5x2 |x| < 1
|x| − 0.5 otherwise

}
(5)

where i and j are the indexes of a predefined anchor and
a refined anchor in the ARB and ODB, respectively, and
k is the category index for the background class and all
objects categories. codj represents the predicted probability
distribution calculated by the softmax function for the refined
anchor j, and p†j is the class label of the ground-truth that
match with j. The predicted five-tuple parameterized offsets
(tx , ty, tw, th, tθ ) of anchor i and refined anchor j are defined
as tari and todj . The ground truth coordinate offsets v∗i and

v†j are encoded by the matched anchors i and j, respectively.
The classification loss Lcls and the regression loss Lreg are
defined by (3) and (4). After the anchor matching step, most
of anchors are negative, which will overwhelm the training
process. We apply hard negative mining to reduce the num-
ber of negative samples, which is similar to SSD. The ratio
between the negatives and positives is 3:1. The regression loss
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Lreg is calculated on all positive samples, whereas the classi-
fication loss Lcls is calculated on the positive samples and the
selected negative samples.N ar

reg andN
od
reg represent the number

of positive anchors in ARB and ODB, respectively, and N od
cls

is the sum of the positive anchors and the selected negative
anchors in ODB. These parameters are used to normalize the
corresponding term in the loss function. The hyperparameter
λ controls the balance between the classification task and the
regression task and is set to 3. In addition, the ground-truth
offset (vx , vy, vw, vh, vθ ) is encoded by (6):

vx = (x − xa)/wa, vy = (y− ya) / ha,

vw = log(w/wa), vh = log(h/ha), vθ = tan(θ − θa) (6)

The coordinate representation of the ground-truth box, (x, y,
h, w, θ), denotes the center coordinates, the width, the height
and the angle between the width and positive x-axis, respec-
tively. Similarly, (xa, ya, wa, ha, θa) denotes the parameter-
ized coordinates for a matched rotated anchor or a refined
anchor.

III. DATASETS AND EVALUATION INDICATORS
A. DATASETS
We conducted comparative experiments on two public
datasets with oriented bounding box annotations, known as
the UCAS-AOD [39] and HRSC2016 [40] datasets.

UCAS-AOD. The UCAS-AOD dataset consists of two
categories of aircraft and vehicles, each with 1000 and
610 images. These images have two sizes: 1280 pixels ×
659 pixels and 1714 pixels × 1176 pixels. All images are
collected from Google Earth. The split ratios of the training
dataset, validation dataset and test datasets were 50%, 25%
and 25%, respectively. The original images were cropped into
squares according to the length of the short side with a 50%
overlap and resized to 600 pixels × 600 pixels to conserve
memory. In addition, we randomly applied the following data
augmentation methods during the training phase: horizontal
and vertical flipping, random rotation in (0, 90, 180 and
270 degrees) and random translation (within 32 pixels).

HRSC2016. The HRSC2016 dataset is a challenging
dataset for ship detection. All images were collected from
Google Earth. HRSC2016 contains 1061 labeled images.
The image sizes range from 300 pixels × 300 pixels to
1500 pixels × 900 pixels, and most of the sizes are larger
than 1000 pixels× 600 pixels. The training dataset, validation
dataset and test datasets include 436 images, 181 images and
444images, respectively. We also cropped the images into
squares based on the length of the short side and resized
them to 600 pixels× 600 pixels. The same data augmentation
operations were applied.

B. EVALUATION INDICATORS
To quantitatively evaluate the performance of various object
detectors, we utilized the evaluation indicators of recall,
precision, and average precision (AP) as well as the

precision-recall curve (PRC). To further evaluate the posi-
tioning accuracy, we calculated the average IoU (AIoU)
scores between the true positive predictions and the matched
ground-truth boxes.

1) PRC
The PRC reflects the detection accuracy of the detector at
different recall rates. Recall and precision are calculated from
the true positive (TP), false positive (FP) and false negative
(FN). In object detection task, if a predicted bounding box
has an IoU score greater than the threshold (here we chose
0.5) with a ground-truth box of the same category, then it is
classified as a TP; otherwise, it is considered to be an FP.
Additionally, the redundant predicted boxes that match the
same ground-truth box also belong to FP. The ground-truth
boxes with nomatched predicted boxes constitute FNs. Based
on these three components, recall and precision are defined as
follows:

recall = TP/(TP+ FN ) (7)

precision = TP/(TP+ FP) (8)

2) AP
The AP metric is an evaluation metric that combines recall
and precision, which reflects the global performance. AP is
the integral of the area under the PRC and the mean average
precision (mAP) is the mean of APs across all object classes.

3) AIOU
The Average IoU (AIoU) calculated across all posi-
tive predicted bounding boxes and matched ground-truth
boxes reflects the localization performance of the detector.
We employed the SkewIoU metric to calculate the AIoU
score.

IV. EXPERIMENT AND RESULTS
A. IMPLEMENTATION DETAILS
The proposed S2ARNwas implemented using the deep learn-
ing framework Pytorch 1.0.0 on an Ubuntu 16.04 com-
puter with an Intel R© CoreTM i7-6850K CPU and a Nvidia
GeForce Titan XP GPU with 12 GB of memory.

We utilized ResNet50 [2] as the backbone. Since the object
detection task requires a considerable amount of memory,
in our experiment, the GPU holds 16 training images, as indi-
cated in [41], the performance of the batch normalize (BN)
layer is influenced by the size of mini-batch. Therefore,
we replaced all BN layers in the backbonewith group normal-
ize (GN) layers, which behaved more stably. The pretraining
weights are provided on the GitHub page of Detectron [42].
The Xavier [43] initialization method was used to initialize
the other extra layers. For both datasets, we trained the pro-
posed network for a total of 50k iterations, with a learning
rate of 0.001 for the first 30k iterations which decayed to
2e-4 and 4e-5 at 40k iterations and 45k iterations, respec-
tively. The chosen optimizer was the Adam optimizer [44]
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TABLE 1. Comparison of the performance of the multiple oriented target detection method for the UCAS-AOD and HRSC2016 validation and test datasets.
The bold numbers indicate the highest indicator values for all methods.

with a momentum of 0.9, and the batch size was 16 during
the training phase.

We performed a series of experiments using the validation
and test datasets of the UCAS-AOD and HRSC2016 datasets.
The confidence score threshold was set to 0.4 to filter out
the background predictions. The SkewIoU metric was used
to calculate the IoU score in the NMS procedure and per-
formance evaluation, and the chosen IoU thresholds were
0.2 and 0.5, respectively, due to the small overlap area
between rotated bounding boxes. The ResNet-FPN-based
SSD without the ARB and RFAM was used as the baseline
method, and the ‘‘Baseline + ARB + RFEB’’ architecture
represents the proposed S2ARN. For methods without ARBs,
the anchor matching thresholds were pos-threshold = 0.5,
neg-threshold = 0.3 and angle threshold = π/4, and the
remaining settings retained the same as those of the S2ARN.
Two one-stage methods DRBox [29] and the YOLOv2-

based method [30], and a two-stage detector Rotation Dense
Feature Pyramid Network (R-DFPN) [26] were adopted for
comparative experiments. To ensure the fairness of the exper-
iments, the training parameter settings and the dataset of
all methods were consistent. For convenient observation,
we combine three categories of objects from the two datasets.

B. RESULTS
As shown in Table 1, our method achieved the best AP per-
formance: 88.1%, 97.6% and 92.2% for the three categories
of ship, plane, and vehicle, respectively, while a real-time
processing speed was achieved.

After adding RFAMs, mAP increased by 1.4%, which
primarily derived from the improved recall from the ship and
vehicle categories. Ships docked at ports are easily confused
with containers, buildings and wharfs, etc. Similarly, distin-
guishing cars that are parked on the side of road from shadows
and roof vents is difficult. RFAMs increase the effective
receptive field of the detection heads of the network, and
provide more comprehensive contextual information for the
classification subnetwork; thus, the foreground objects are
better differentiated, which leads to improved APs.

The ‘‘Baseline + ARB’’ architecture is designed to evalu-
ate the effect of the ARBwhich utilizes the anchor refinement

FIGURE 7. Comparison of the detection results of different detectors;
blue bounding boxes, red bounding boxes and orange bounding boxes
represent true positives, false positives and false negatives, respectively.
(a) Detector using rotatable bounding box (DRBox). (b) YOLOv2-based
method. (c) Rotation Dense Feature Pyramid Network (R-DFPN).
(d) Proposed method. DRBox identifies the shore buildings as ships. The
YOLOv2-based method simultaneously generates a false positive and
missed detection due to an inaccurate angle regression.

strategy by adding a 3 × 3 conv layer. The addition of
ARBs produced a 2.5% performance improvement, and the
AP improved in all categories. The ARB provides the ODB
with high-quality refined anchors, which renders the localiza-
tion performance of the refined anchors consistent with the
classification score and alleviates the misalignment between
training target and the inference configuration. Two consec-
utive regressions and the dual threshold setting enable the
detector to improve the precision while prevent the recall
from decreasing. Due to the prior adjustment of the prede-
fined anchors, the ‘‘Baseline + ARB’’ architecture improves
the localization accuracy, as shown in Table 2. The detection
bounding boxes that deviate from the ground-truth boxes due
to the inaccurate angles are substantially reduced. Compared
with the ‘‘Baseline’’ method, the additional computational
burden is only derived from the 3× 3 conv layer in eachARB,
which is negligible, and significant performance improve-
ments have been achieved.
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FIGURE 8. Precision-recall curves of different methods for each category. (a) Ship. (b) Plane. (c) Vehicle.

FIGURE 9. Visualization of the detection results of proposed S2ARN in HRSC2016 and UCAS-AOD datasets.

The DRBox is also an SSD-based method, as it uses
a VGG16 [45] backbone truncated to the conv4_3 layer,
and predicts with a single feature map, leading to a very
high detection speed. Due to the small size of the vehi-
cle and the absence of the scale compensation strategy,
DRBox has a lower recall rate in the vehicle category. In
HRSC2016 dataset, DRBox has a recall of 84.8%. As a

result of the limited receptive field, it is difficult to extract
sufficient features to effectively distinguish between ships
and buildings (as shown in Fig. 7(a)), which causes inferior
precision.

The YOLOv2-based method does not perform well on
HRSC2016 dataset. The main reason is that the method
directly regresses the angle by a sigmoid function, and an
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TABLE 2. Comparison of localization performance of the detectors. The Average IoU (AIoU) scores between true positives and the matched ground-truth
boxes were used to measure the localization accuracy.

TABLE 3. Inference time for each method tested on a Nvidia GeForce Titan Xp GPU with a batch size of 1. The size of the input images is 600 × 600 pixels.

inaccurate angle regression causes the predicted bounding
boxes to deviate from the correct direction, which generates
a low IoU score, as shown in Fig. 7(b). These predicitons
missed the ground-truth boxes and were determined to be
false positives, which further reduces the accuracy.

The R-FFPN is an improved version of Faster-RCNN for
rotated object detection. As a two-stage detector, R-FFPN
has a high precision, and the total performance is slightly
lower than that of S2ARN, which is primarily caused by a
lower recall. R-DFPN usedmultiple featuremaps of the dense
feature pyramid network to predict rotated proposals. The
highest resolution feature map has a stride of 4 pixels, and
the angle interval of the rotated anchors is 15 degrees, which
cover from −90 to 0 degrees. The high-resolution feature
maps and densely sampled anchors increase the computa-
tional time.

In Fig. 8, we plot the PRC of each method. S2ARN has
superior performance and achieves the best balance between
precision and recall, at the same time, S2ARN has the high-
est localization accuracy and provides more exact bounding
boxes as shown in Table 3. Part of the detection results are
shown in Fig. 9.

V. CONCLUTION
In this study, we proposed an SSD-based detectionmethod for
oriented objects detection in remote sensing images, which is
dedicated to improving the detection and localization accu-
racy with less extra computational cost. We improve the
performance of the detector through three efforts. First, since
the performance of the original SSD algorithm is affected
by the IoU threshold setting, which hinders the ability to
achieve a balance between the recall and precision by a single
regression, a two-step regression strategy with increased IoU
thresholds is proposed to preadjust the coordinates of the
predefined anchors to improve the detection and localization
accuracy. Second, considering the diversity of the object
scales in remote sensing images, the RFAM is introduced to
extract more discriminative features for large objects. Last,

we solve the problem that slender targets cannot easily match
a sufficient number of anchors by deploying ArIoU metric
in the anchor matching step, which has high tolerance to the
angle deviation and helps to reduce the angle sampling den-
sity of the rotated anchors. The experimental results demon-
strate the superior performance of the proposed framework
for oriented object detection in complex scenes.
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