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A simple rule for finding Dirac cone electronic states in solids is proposed, which is neglecting those lattice atoms
inert to particular electronic bands, and pursuing the two-dimensional (2D) graphene-like quasi-atom lattices with s- and p-
bindings by considering the equivalent atom groups in the unit cell as quasi-atoms. Taking CsPbBr3 and Cs3Bi2Br9 bilayers
as examples, we prove the effectiveness and generality of this rule with the density functional theory (DFT) calculations. We
demonstrate that both bilayers have Dirac cones around the Fermi level and reveal that their corresponding Fermi velocities
can reach as high as ∼ 0.2×106 m/s. This makes these new 2D layered materials very promising in making new ultra-fast
ionic electronic devices.
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1. Introduction
Dirac cone describes the gapless linear-dispersion of elec-

tronic bands and characterizes the superior ballistic massless
charge-carrier transport of solids, such as in graphene[1–3] or
on the surfaces of topological insulators.[4–6] Theoretically,
Dirac cones were predicted in 1947 in graphene, whose hon-
eycomb lattice of s–p bonding results in a conical band struc-
ture with the linearly dispersive valence and conduction bands
touching each other at the Dirac points (K or K′) of its hexag-
onal Brillouin zone.[1] Nevertheless, it was only after its first
isolation[7] that graphene has become a source of new sci-
ences, and aroused research upsurges again and again over
its novel electronic behaviors.[8–20] In fact, by energy-band
theory and symmetry analysis,[1] the normal Dirac cones as
presented in graphene will generally appear in those materi-
als, as long as they have a similar honeycomb bonding style
as graphene. However, among hundreds of two-dimensional
(2D) materials examined by now, only graphynes,[21] silicene
and germanene,[22] ionic boron,[23] and others[24] have been
identified to be the normal Dirac materials. Nevertheless, un-
like graphene, these 2D Dirac materials are made of some sort
of artificial lattices where the atoms do not bond together as
they do in their stable natural structural polymorphs. In this
paper, we propose that following a simple but effective rule,
more Dirac cone states can generally be found in the 2D ma-
terials with stable natural bonding structures.

Here, perovskites are selected to demonstrate the physics
behind the rule we have proposed for finding 2D Dirac ma-
terials. As shown in Fig. 1(a), normally, perovskites have

the well-known ABX3 lattice structure, where the 6-fold co-
ordinated B cation and its surrounded X anions form the BX6

octahedron, the BX6 octahedra share their X corners to form
the three-dimensional (3D) skeleton, and the A cations oc-
cupy each hole among the 8 BX6 octahedra. For a cubic
ABX3 lattice, if viewed from the [111] direction, it natively
presents hexagonal symmetry as shown in Fig. 1(b). While
the A cations stay isolated from the BX6 skeleton, their elec-
tronic states normally do not participate in forming the low-
energy bands dispersing near the Fermi level. For a selected
halide perovskite (CsPbBr3), figure 1(c) plots its gapped elec-
tronic band structure calculated with density functional the-
ory (DFT), together with the total and site-decomposed den-
sity of states (DOSs). It demonstrates clearly that the elec-
tronic orbitals of the A cations stay a few electronvolts away
from the valence band maximum (VBM) and the conduction
band minimum (CBM), thus playing no role in deciding the
low-energy electronic behaviors of a perovskite.[25,26] There-
fore, for those low energy charge carriers, regardless of elec-
trons or holes, propagating in a perovskite crystal, the effec-
tive lattice they see would be without A cations, as shown in
Fig. 1(d). For such a cubic lattice, if sliced out along the (111)
plane, two BX6 layers naturally construct the hexagonal hon-
eycomb lattice with two equivalent BX6 sublattices similar to
graphene, as shown in Fig. 1(e). If considering the BX6 octa-
hedron as a quasi-atom, such a BX6 bilayer transforms into a
buckled single quasi-atom layer with exactly the same struc-
ture as silicence,[22] as shown in Fig. 1(f).
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Fig. 1. (a) The crystal structure of a cubic ABX3 perovskite, where the green, gray, and brown balls represent the A cations, B cations, and the X
anions, respectively; (b) the crystal structure of a cubic perovskite viewed from its [111] direction; (c) the calculated electronic band structure
of bulk CsPbBr3, together with its total and site-decomposed DOS; (d) the effective crystal structure of a cubic ABX3 perovskite effectively
seen by its low energy charge carriers; (e) the top view of the crystal structure of a BX6 bilayer sliced out along the (111) plane of a cubic
perovskite, which constructs the hexagonal honeycomb lattice with two equivalent BX6 sublattices; and (f) the side view of the crystal structure
of a hexagonal BX6 bilayer, which indeed presents a buckled single quasi-atom (BX6) layer.

Consequently, a hexagonal perovskite bilayer will natu-
rally present the Dirac-cone electronic states as the graphene
at its Dirac points of K and K′. This is a corollary
based on the honeycomb symmetry of BX6 sublattices and
the s- and p-binding characters of BX6 octahedra.[1] As a
verification example, the hexagonal CsPbBr3 bilayer is se-
lected to calculate its electronic band structures near the
Fermi level. Here, the DFT calculations are performed
within the Perdew–Burke–Ernzerhof (PBE) generalized gra-
dient approximation[27] and the projected augmented wave
(PAW) method,[28] as implemented by the Vienna ab initio
simulation package (VASP).[29–31] The cutoff energy for the
plane-wave basis set is 300 eV and the Brillouin zone is sam-
pled with the Monkhorst–Pack mesh of 6×6×6 for bulk and
6× 6× 1 for bilayer CsPbBr3. The lattice parameter of bulk
CsPbBr3 is set to its experimental value a0 = 5.874 Å.[32] For
the CsPbBr3 (111) bilayer, it has the lattice constant of 8.307 Å
(
√

2×5.874 Å) and the thickness of about 6.783 Å.
As expected, as shown in Fig. 2, its top valence and bot-

tom conduction bands disperse linearly and touch each other
at K and K′ points. Their orbital-decomposed DOS clearly
reveals the s- and p-orbital nature of both bands around the
Dirac points, and this is further evidenced by the insets of
Fig. 2 which plot the isosurfaces of VBM and CBM partial
charge densities. By fitting these two bands at 𝑘 =𝐾+𝑞 to
the expression vF ' E(𝑞)/h̄|𝑞|,[22] the Fermi velocity is es-
timated to be vF ∼ 0.2× 106 m/s, which is one fifth of vF

of graphene. While graphene has the intrinsic carrier mobil-

ity of 2× 105 cm2·V−1·s−1,[33] it is reasonable to infer that
the carrier mobility in such a CsPbBr3 bilayer may go around
4×104 cm2·V−1·s−1. This makes it rather superior in making
ultra-fast electronic devices in comparison with those conven-
tional semiconductors[34] which normally have mobilities less
than 104 cm2·V−1·s−1.
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Fig. 2. The calculated electronic band structure of a hexagonal CsPbBr3
bilayer (the insets plot the isosurfaces of VBM and CBM partial charge
densities), together with its orbital-decomposed DOS.

Moreover, the vacancy-order halide perovskites A3B2X9

(A: Cs; B: Fe, Sb, or Bi; X : Cl, Br, or I) are selected to
demonstrate the effectiveness of this rule to find the Dirac
electronic states away from the Fermi level. Naturally, the
A3B2X9 perovskites are stacked together by those bilayers of
linked BX6 octahedra. Figures 3(a) and 3(b) present the crys-
tal structure of Cs3Bi2Br9 as an example of the vacancy-order
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halide perovskites. If viewed from their natural hexagonal
axis, the A3B2X9 perovskites present the honeycomb lattice
of BX6 quasi-atoms, as shown in Fig. 3(c). Experimentally,
in 1977, the bulk Cs3Bi2Br9 crystals were successfully grown
by dissolving Bi(OH)3 and Cs2CO3 in a dilute HBr solution
by Lazarini et al.[35] This layered material exhibits trigonal
symmetry with a space group of P3̄m1 and lattice constants of
a= 7.972 Å and c= 9.867 Å.[35] As a stacking unit, its bilayer
is inherently stable as graphene to graphite or single-layer h-
BN to bulk h-BN. Based on the similar quasi-atom analysis
on the CsPbBr3 bilayer, the Cs3Bi2Br9 bilayer will certainly
present the Dirac electronic states as well.

Figure 3(d) shows the calculated electronic band struc-
ture of the Cs3Bi2Br9 bilayer. And as expected, it presents

the crossing Dirac bands as well. However, as Bi contributes
one more electron in Cs3Bi2Br9 than Pb does in CsPbBr3, its
Fermi level goes above the the Dirac bands for the Cs3Bi2Br9

bilayer. Its Fermi velocity at the crossing point is found
to be vF ∼ 0.2× 106 m/s, which equals the value of the
CsPbBr3 bilayer. Furthermore, as the layer interaction is
rather weak in bulk Cs3Bi2Br9, its electronic band structure
exhibits similar Dirac bands below the Fermi level, as shown
in Fig. 3(e). It is notable that the electronic band structures of
A3B2X9 perovskites have been previously calculated, such as
on Cs3Bi2Br9,[36] or on Cs3Sb2I9.[37] However, in these stud-
ies, the Dirac-band features of their band structures were nei-
ther noticed nor pointed out.

-2

0

2

4

Γ

E
n
e
rg
y
/
e
V

M K Γ

bilayer

Γ M K Γ

bulk

(a) (b) (c)

(d) (e)

Fig. 3. The crystal structures of Cs3Bi2Br9 (a) in its primitive cell, (b) from the side view, and (c) from the top view along its natural hexagonal
axis, and the calculated electronic band structures of (d) bilayer and (e) bulk Cs3Bi2Br9, where the insets zoom in their Dirac bands below the
Fermi level.

In conclusion, we propose a quasi-atom rule for searching
2D Dirac materials in the conventional solids with natural sta-
ble bonding lattices. With this rule, we demonstrate with DFT
calculations that hexagonal perovskite ABX3 bilayers, such as
the CsPbBr3 (111) bilayer, may have the Dirac band crossing
at the Fermi level. Similarly, taking Cs3Bi2Br9 as an exam-
ple, we further demonstrate that the hexagonal vacancy-order
halide perovskite A3B2X9 bilayers, together with their bulk

phases, will have the Dirac bands below the Fermi level. Both
CsPbBr3 and Cs3Bi2Br9 bilayers exhibit the Fermi velocity
of ∼ 0.2× 106 m/s, which makes them promising in making
ultra-fast electronic devices.
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