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Inorganic semiconductor plays a key role for today’s tech-
nological progress [1–4]. Comparing with other organic
semiconductors [5,6] and two-dimensional (2D) metal sul-
fides [7–10], III-nitrides as direct bandgap semiconductors
have achieved enormous success in commercial applications.
Owing to their excellent physical properties and adjustable
bandgap from ultraviolet to near-infrared range by compo-
sition design in their family [11–13], III-nitrides have shown
great potential in many fields including but not limited to
ultraviolet (UV) light-emitting diodes (LEDs) and photo-
detectors. Due to the deficiency of suitable substrate, III-
nitrides are usually epitaxial on foreign substrates by metal-
organic chemical vapor deposition (MOCVD) [14,15]. The
intrinsic difference between epitaxy layer and substrate in
lattice constant and thermal expansion coefficient induces
large residual stress and high defect density, and therefore
degrading the performance of III-nitride based devices [16].
In spite of great achievement in reducing defect density in
III-nitrides, further requirement for improvement in crystal
quality is still remained. In addition, the strong covalent bond
between substrate and epitaxy layer makes it difficult to
exfoliate III-nitride films from substrate for further fabrica-
tion in flexible and wearable devices.
Recently, a novel method termed as “van der Waals (vdW)

epitaxy” provides promise to solve both above-mentioned
difficulties. By introducing 2D materials between substrate
and epitaxy layer, the crystal quality could be improved due

to the 2D buffer layer and the release of epitaxy layer is facile
by the mechanical exfoliation owing to the weak vdW in-
teraction. Among 2D material family, graphene is the most
extensively investigated material for vdW epitaxy.
Figure 1(a) shows ZnO-coated graphene as seed layer to

grow GaN epilayer and subsequent LEDs structure, which
could be easily transferred onto other foreign substrates [17].
The thin layer graphene could not screen the strong potential
field of some substrate like GaAs and the growth of epilayer
is still controlled by the underneath homoepitaxial substrate
[18]. High-quality GaN and AlN grown on graphene-coated
sapphire and amorphous silicon oxide have been realized by
vdW epitaxial process [19–21]. Thanks to the weak vdW
interaction between III-nitrides and graphene, epilayer suf-
fers bare restriction from the underneath substrates then
realizes low defect density and relaxed stress. As pristine
graphene is an integrated 2D flat structure which lacks of
dangling bonds, resulting in low nucleation density of III-
nitrides and three-dimensional island growth mode. The N2

plasma or NH3 treatment (in MOCVD system) are in-
troduced for pristine graphene to create C-N bonding as III-
nitride nucleation sites (Figure 1(b)).
In addition to graphene, hBN has also been experimentally

applied as buffer layer to grow stress-free and transferable
III-nitrides epilayer [22]. According to recent reports, the
crystal quality of III-nitrides vdW epitaxy on hBN is inferior
to that grown on graphene [23,24].
To explore efficient vdWepitaxy strategy, the construction

of 2D materials’ substrates matched with III-nitrides vdW
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epitaxy is crucial. Lots of materials in 2D family are still
remained to be explored. In our recent work, we have pro-
posed five existing 2D materials for vdW epitaxy of III-
nitrides, including graphene, hBN, MoS2, gC3N, and gC3N4

(Figure 1(c)), providing the physical insights by first-prin-
ciple calculations [25]. The calculated results indicate that
MoS2 and gC3N are better candidates than graphene and hBN
for vdW epitaxy because of their suitable binding strength
and diffusion barrier. This finding is helpful to obtain high-
quality III-nitrides and develop new criterions to discover
effective 2D materials for vdW epitaxy.
Although vdW epitaxy of III-nitrides on 2D materials has

achieved apparent progress in lower defect density, released
stress and transferable devices, the inherent nucleation me-
chanism and specific growth kinetics process are still un-
clear. III-nitrides grown on N-doped graphene which needs
bonding between Ga/Al and N is more likely quasi-vdW
heteroepitaxy, complete vdW epitaxy is only achieved on
homoepitaxial substrates. Further systemic research should
be carried out to definite its kinetics process and answer
these question properly. Otherwise, 2D materials for vdW
epitaxy have been limited to graphene and hBN, metal sul-
fides/selenides with low temperature stability are not suc-
cessfully applied in actual MOCVD condition. The III-
nitrides vdW epitaxy on these substrates also needs more
attention, aiming at enlarging the feasibility of vdW epitax-
yon various 2D substrates.
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