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Abstract 

In order to compensate for the visual defect of the low-light-level image and combine the 

saliency features of the infrared image, this paper proposes an infrared and low-light-level image 

fusion model based on ℓ2-energy minimization and mixed-ℓ1-gradient regularization. First, this 

novel model uses the non-subsampled shearlet transform (NSST) as a multi-scale decomposition 

tool to capture the low and high-frequency components of the source images. Because the NSST 

has good localization characteristics, excellent directional selectivity, parabolic edge 

characteristics, and translation invariance, it is more suitable for image decomposition and 

reconstruction. Secondly, for the low-frequency components that reflect the energy information, an 

optimization model based on ℓ2-energy minimization is adopted as its fusion rule. This new rule 

allows the fused image to have similar pixel intensities to the given infrared image, thus 

improving the visual observation of the fused image and reducing the influence of the brightness 

defect under weak light. Thirdly, considering that the ℓ1-norm encourages the sparseness of the 

gradients, this paper uses the ℓ1-gradient regularization to guide the fusion of high-frequency 

components. This method can greatly restore the gradient features hidden in the source images to 

the fused image so that the fused image will have clearer edge details. In order to verify the 

effectiveness of the proposed algorithm, we adopted 6 × 6 independent fusion experiments. The 

final experimental results show that the proposed algorithm has better visual effects in the fusion 

problem of low-light-level environment, and the performance of objective evaluation is also good, 

which is better than other existing typical methods. 

Keywords: image fusion; low-light-level image; NSST; ℓ2-energy minimization; 

mixed-ℓ1-gradient regularization;  

 

1. Introduction 

Image fusion technology combines images from multiple sensors into a new image that contains 

multiple types of information features to more accurately describe and understand the scene or 

target information within the image [1]. At present, image fusion has a wide range of applications 

in both the civil and defense fields. Among them, the fusion of visible light (VL) and infrared (IR) 

images is currently the most applied in relation. Under poor light conditions, the image quality of 

the visible light image is hardly satisfying, and the target is easily concealed [2]. However, the IR 

image generates an image according to the radiation of the object itself and can actively acquire 

the target information in the scene, so the hidden hot targets can be well displayed. Through the 

effective combination of these two kinds of images, we can overcome the natural defects of the 

visual characteristics of the human eyes under the weak light in a certain situation and extend the 

visual band range of the human eyes [3]. 

Various fusion approaches have been proposed recently, especially those aiming at pixel 

level-based image fusion, which can be roughly divided into the following two categories: the 

space domain-based method [4], and the transform domain-based method [5]. The spatial domain 

method directly processes the spatial pixel elements of the image, and the representative methods 

such as sparse decomposition (SR) [6-8], pulse-coupled neural network (PCNN) [9-11], 

multi-scale top hat transformation (MTH) [12-14], structure tensor [15-17] have been successfully 
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used to deal with the issue of image fusion. Since the spectra of IR and VL image have different 

wavelengths, the spectral difference between these two kinds of images is large. When the two 

source images are directly fused by the above methods, the large spectral differences of the pixel 

elements cannot be compensated, so the fusion images often have a problem of low contrast ratio. 

Different from the space domain-based method, the multi-scale geometric analysis (MGA) [18-23] 

is used as the principal research tool in the transform domain method. It is worth mentioning that 

the non-subsampled shearlet transform (NSST) has the best fusion effect among these MGA tools. 

Because of its simple mathematical structure, good direction selectivity and anisotropy, and 

removing the sampling operation during the decomposition process, it has received extensive 

attention from scholars [24]. In view of its various advantages, this paper uses NSST as an image 

multi-scale decomposition tool. The NSST can decompose a source image into a series of 

sub-band images with different scales and frequencies, thereby laying the foundation for 

subsequent fusion rules. The most direct method for applying to fusion rules is the 

weighted-average method [25], which simply spatially superimposes the brightness of the source 

image, leading to a decrease in the resolution of the final fused image and losing a number of 

texture details information. In order to obtain better fusion effects, scholars [26-28] have 

successively utilized some spatial domain methods as the fusion rules for NSST to compensate for 

the defects of the weighted average method. Therefore, it is very meaningful to study fusion 

algorithms based on the NSST method. 

In general, when the existing spatial domain methods are used as the fusion rules for the NSST 

method, most of their applicable scenarios are directed to the visible light environment with 

moderate illumination. However, for the special fusion of low-light-level (LL) and infrared (IR) 

images, the existing research methods are relatively few. First, the IR image is a kind of image that 

reflects the energy distribution and does not change greatly as the brightness of the external light 

changes. Therefore, when a LL image is fused with an IR image, the brightness of the final fused 

image is generally greatly reduced, which affects the visual perception. In order to solve the low 

brightness disadvantage brought by LL image, the fused image should have similar pixel 

intensities with the given IR image. In addition, the gradient distribution in the two kinds of source 

images should be also transferred into the fused image. As we all know, the low-frequency 

sub-image contains the energy information, and its fusion rules also determine the final fusion 

visual effect. In order to make use of the brightness advantage of the IR image to make up for the 

visual defect under the weak light, this paper proposes an optimization model based on ℓ2-energy 

minimization as the fusion rule of low-frequency sub-image. This optimization model uses the 

ℓ2-norm [29] to characterize the energy information of the source image, which ensures to a 

certain degree that the fused image can meet the sensitive observation range of human eyes. In 

addition, the high-frequency components of the image highlight the feature of texture gradient, so 

this paper proposes an optimization model based on the ℓ1-gradient regularization as its fusion rule 

for high-frequency sub-images. The model uses ℓ1-norm [30] to encourage the sparseness of the 

gradients, so the gradient information of the source image is restored to the fused image. The 

above two new fusion rules will be discussed in detail in the third chapter. 

On the basis of the preceding review, this paper proposes a fusion model based on ℓ2-energy 

minimization and mixed-ℓ1-gradient regularization for the fusion of low-light-level and infrared 

images. Firstly, the NSST is adopted as the MGA tool for the decomposition of infrared and 

low-light-level images. Secondly, we use the ℓ2-energy minimization and the ℓ1-gradient 

regularization as the fusion rules of the low-frequency and high-frequency sub-image, respectively. 

In short, the fusion rules are turned into optimization problems, namely energy minimization and 

gradient regularization. Because this model contains only one regularization term parameter, it has 

better self-adaptability. As far as we know, such a fusion method has not been studied yet. 

The rest of the proposed paper is structured as follows. The relevant theory of the NSST and 

gradient descent is shown in Chapter 2. The proposed algorithm based on the new fusion rule is 



  

presented in Chapter 3. The part of experimental results and analysis is shown in Chapter 4. The 

summary of this paper is given in Chapter 5. 

2. Relevant Theory 

2.1. Non-subsampled shearlet transform [31-32] 

When the dimension is n=2, the shearlet system function with discrete parameters is as follows: 
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, the following system is generated as the shearlet system:
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where a denotes any positive real number, s denotes any real number, k is the number set of any 

real square, and yask (x) is the shearlet. 

The traditional shearlet transform has a down-sampling operation, so the Gibbs effect is easily 

generated during image fusion, which affects the final fusion effect. To this end, the 

non-subsampled shearlet transform (NSST) is proposed on the basis of shearlet transform, which 

is mainly divided into two steps: 

Multi-scale decomposition: Since there is no down-sampling operation in the NSST, the image 

f is decomposed by a non-sampling pyramid (NSP), and finally k+1 sub-band images of the same 

size as f are obtained. 

Directional localization: The NSST uses shearlet filters to realize the directional localization of 

high-frequency images, and the specific implementation process is as follows: 

1) Mapping the pseudo-polarization coordinates to the Cartesian coordinates. 

2) Generating the shearlet filter by using the "Meyer" window function. 

3) Convolution operation is performed on the k band-pass sub-band images and the "Meyer" 

window function. The decomposition framework NSST is shown in Fig. 1. 

 
Fig. 1. The decomposition framework of NSST   

2.2. Gradient Descent 

The gradient descent method [33] was used to solve the unconstrained optimization problem. 

For a binary function u(x, y), consider the extremum problem of its functional analysis, the 



  

expression is as follows: 

 [ ( , )] ( , , ( , ), ( , ), ( , ))x y

D

J u x y F x y u x y u x y u x y dxdy   (4) 

where J [u(x, y)] is called the energy functional of u(x, y), F is a function of three-differentiated, 

and u(x, y) requires a second-order continuous partial derivative within the closed area D of the 

plane. Perform variational operations on J [u(x, y)], and we can get the following expression: 

 

0( ( , , )) ( )

, , .

x y

x y

u u x u y

D

u u u

x y

J J u x y F u F u F u dxdy

F F F
F F F

u u u

    





    


     

   


. (5) 

due to: 

 

( ) ( )

( ) ( )

x x x

y y y

u u x u

u u y u

F u F u F u
x x

F u F u F u
y y

  

  

 
  


 

  
 

. (6) 

put the Eq. (6) into the Eq. (5), and we can get that: 
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use the Green formula: 
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because of the δu=0 at the boundary, Eq. (7) becomes as the following: 
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the necessary condition for the extreme value of the energy functional is δJ=0, and due to the 

arbitrariness of δu, the following formula can be obtained: 
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where the Eq. (10) is the Euler-Lagrange equation. From the above analysis, we can see that the 

unconstrained optimization problem is usually converted into the Euler equation solution problem. 

However, it is very difficult to directly solve Euler equations, and the most commonly used 

method is the Gradient Descent.  

The basic idea of the Gradient Descent method is to start from the initial value u0 and finally 

reach the local minimum point of J (u) along the opposite direction of the gradient direction. Eq. 

(10) can be viewed as the gradient of Eq. (4), which is expressed as follows: 
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where the time auxiliary parameter t is introduced in the Eq. (11) to represent the evolution of 

convex optimization equation. The parameter t represents the process of the continuous 

approximation of the function u(x, y). When ∂u/∂t=0, the Euler equation solution to the 

unconstrained optimization problem is obtained. Proceeding from the initial function u0(x, y), we 

iterate the calculation of Eq. (11) until the steady state is achieved. The termination condition of 

the iteration can be determined if the number of iterations exceeds a certain set value or the 

condition below is satisfied: 
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where n and n+1 denote the t and t+1 moments respectively, ε is a small positive number, and 

M×N is the size of the original image. If the above conditions are satisfied, it means that the 

iteration reaches a steady state, so the iterative process can be ended. 

3. Fusion Rules 

The fusion rules for the low and high-frequency components of the image will be discussed in 

detail in Section 3.1 to Section 3.3, and the innovations of this paper are summarized as follows: 

1. This paper combines the idea of image feature optimization with multi-scale decomposition 

to propose the IR and LL image fusion based on hybrid-norm optimization and NSST. 

2. In order to improve the overall brightness of the fused image and compensate for the 

brightness defect of the LL image, the low-frequency component of the image adopts an 

optimization model based on the ℓ2-energy minimization as its fusion rule. 

3. The high-frequency components of the image are guided by an optimization model based on 

ℓ1-gradient regularization, which can greatly restore the gradient features inside the two kinds of 

source images. 

Through the combination of the above two optimization models, the feature components 

contained in the source images can be transferred to the final fused image. The Schematic of the 

proposed fusion model is shown in Fig. 2. 

 
Fig.2. The Schematic of the proposed fusion model 

3.1. Fusion rule of low-frequency sub-images  

In order to take advantage of the brightness advantages of the IR image to compensate for 

visual imperfections under the weak light, we hope that the fused image should have similar pixel 

intensities as the given IR source image. Since the ℓ2-norm can represent the energy information of 

the image, this paper proposes an optimization model based on the ℓ2-energy minimization, and its 

expression is shown as follows: 
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where C
IR

l,k (i, j), C
LL

l,k (i, j) and Cl,k (i, j) denote the low-frequency coefficients of the IR image, LL 

image, and fusion image, respectively, l represents the decomposition number, and k represents the 

direction of decomposition of each layer. In addition, λ represents the regularization parameter, 

and || ||2 denotes the ℓ2-norm. The first term of the model represents the data fidelity, which 

ensures that the low-frequency components of the fused image are maximally close to the 

low-frequency components of the IR image. At the same time, the low-frequency coefficients of 



  

the low-light-level image are added to the regularization terms of this model, which ensures to a 

certain degree that the fused image can meet the sensitive observation range of human eyes. The 

Euler-Lagrange equation of Eq. (13) can be calculated by Eq. (10): 

    , , , ,( , ) ( , ) ( , ) ( , ) 0IR LL

l k l k l k l kC i j C i j C i j C i j     . (14) 

since there is no gradient operator inside the above equation, a corresponding linear solution can 

be obtained. In order to express the contribution of the source images to the fused image, we 

propose the following expression: 
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where ω1 and ω2 denote the weight parameters, which represent the contribution of the source 

images to the fused image. Combine the Eq. (14) with the Eq. (15), the solution to the Eq. (13) is 

that: 
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by the above method, the regularization parameter λ is put into the weight parameter and the final 

fusion effect can be determined by controlling the size of λ. When λ is a fixed constant, Eq. (13) is 

transformed into the weighted average method. Because this kind of fusion rule cannot take into 

account the difference of the two spectra, it will cause the contrast ratio of the fused image to be 

reduced to a certain extent and affect the final perception. This obviously contradicts the original 

intention of this paper. For this reason, λ should also be a function that can change according to the 

change in the gray value of the source image. At the same time, in view of the role of λ as a 

correction parameter, it can also characterize the spatial information distribution of the LL image, 

so that the subjective sense of the fused image is closer to the IR image, which makes up for the 

lack of brightness of the LL image. For this reason, this paper proposes a novel adaptive 

regularization parameter, and its expression is shown as follows: 
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where LL (i, j) represents the intensity of the pixel (i, j) in the LL original image, the value of LLp 

is in the range of [0, 255], p represents the pixel intensity, that is LLp = p, Mp represents the 

number of pixels whose gray-value is equal to LLp, and L is the number of gray levels (in this 

paper it is 256). 

An example of the visual effect of λ is shown in Fig. 3, where Fig. 3(a) is the original LL image 

and Fig. 3(b) is the corresponding effect diagram. λ is changed from the originally fixed constant 

to an adaptive function, which solves the problem of an adaptive setting of peripheral parameters 

to some extent. At the same time, λ can extract the area that is relatively more important or 

sensitive to human eyes in an image and compensates for the data fidelity term of ℓ2-energy 

minimization. 

 
                               (a)                         (b) 

Fig. 3. The visual effect of the adaptive regularization parameter 

3.2. Fusion rule of high-pass sub-images 

The high-frequency components of the image reflect the edge and texture features, and its 



  

fusion rules determine the final level of detail. In view of the fact that the ℓ1-norm encourages the 

sparseness of the gradients, this paper proposes a fusion rule based on mixed-ℓ1-gradient 

regularization, and its expression is as follows: 
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where D
IR

l,k (i, j), D
LL

l,k (i, j) and Dl,k (i, j) are the representative of the high-frequency 

sub-coefficients of the IR image, LL image, and fusion image, respectively, l represents the 

decomposition number, k represents the direction of decomposition of each layer, α and β 

represent the regularization parameter, || ||2 denotes the ℓ2-norm, || ||1 denotes the ℓ1-norm and ∇  is 

the gradient operator. In addition, we call the parameter p as the gradient factor, which measures 

the importance of the two high-frequency components in spatial distribution. Its expression is as 

follows: 
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where p=1 means that at the pixel (i, j), the high-frequency sub-coefficients of the LL image can 

highlight the final gradient feature of the fused image. For this reason, the high-frequency sub- 

coefficients of the IR image should play a corrective and supplemental role, so it is placed in the 

regularization term of the model. Then, the Euler-Lagrange equation of Eq. (18) is changed into: 
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where div represents the divergence operator. Since the direct solution of the above equation is 

very difficult, we use the gradient descent method mentioned in section 2.2 to solve it. The process 

is as follows: 

Step 1: Introduce the time variable parameter t, and the gradient descending flow corresponding 

to the Eq. (20) is that: 
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Step 2: Set the initialization of the equation parameters and use edge repeat expansion 

processing for the boundary conditions: 
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where n is the number of iterations, and Δt is the time step. 

Step 3: Bring the Eq. (23) into the Eq. (24). The stationary solution of Dl,k (i, j) is obtained by 

time difference iteration: 
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Step 4: when p=0, it indicates that the IR image contains more gradient information at this time. 

Repeat step 1 to step 3, then the stationary solution of Dl,k (i, j) will be changed into: 
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Step 5: Combine the Eq. (28) with the Eq. (29) and introduce the gradient factor p to obtain the 

final fused high-frequency sub-coefficients Dl,k (i, j) as: 
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Step 6: Use the Eq. (12) as the termination criterion of the iteration together with the constraint 

of iteration number, and its expression is as follows: 
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3.3. The acquisition of fused images 

Through the construction of Section 3.1 to Section 3.2, we finally obtain the fused 

low-frequency and high-frequency sub-coefficients Cl,k (i, j) and Dl,k (i, j) of the image. Then, these 

two kinds of coefficients are reconstructed by inverse NSST, and the fused image will be obtained. 

4. Experimental Results and Analysis 

To verify the superiority of the proposed method, our method is compared with the following 

methods: NSST[34], GFF[35], HMSD[36], IFE[37], GTF[38]. To show the adaptivity of the 

algorithm, we tested it on six different picture groups presented in Fig. 4(a)-(f). The first group 

shows soldiers guns, the second group depicts the street at night, the third shows a bunker under 

the dark light, the fourth shows a soldier hidden behind the smoke, the fifth depicts a figure in the 

gully, and the last group depicts a pedestrian in the forest. The visible light images of the above six 

groups of experiments are all under low-light-level conditions, which are slightly different from 

the applicable scenes of the traditional infrared and visible light image fusion algorithms. The 

original image sizes of the six groups are 917×678, 632×496, 768×576, 768×576, 768×576, 

360×270。The experimental parameters of each algorithm are set as follows: 

In the NSST method, the level of multi-scale decompositions is [2, 4, 4]. The size of the 

shearing window is set to be 3. Δ and Vθ are set to be 0.01 and 10, respectively. Wijkl is [0.1035, 

0.1465, 0.1035; 0.1465, 0.0000, 0.1465; 0.1035, 0.1465, 0.1035].  

In the GFF method, the default parameters are set as: r1=45, eps1=0.3, r2=7, eps2=10
-6

. 

In the HMSD method, we use a four-level decomposition of the hybrid-MSD, in which we set 

σs, 0=2, σr, 0=0.1, λ=30.  

In the IFE method, we set the parameters as: QuadNormDim = 512; QuadMinDim = 32; 

GaussScale = 9; MaxRatio = 0.001; StdRatio = 0.5. 

In the GTE method, we fix λ to 4 as an empirical value. 

Our method takes “maxflat” as the pyramid filter of NSST. The number of decomposition layers 

is four, that is, [2, 2, 3, 3], and the window size of the shearlet filter is [15, 15, 15, 15]. With the 

above empirical parameters setting, the NSST can often obtain better decomposition effect. In 

addition, we adopt α=β=0.6, ε=5×10
-4

, and Δt=5×10
-3

. The source images of each group of 

infrared and low-light-level are strictly registered, and they can be downloaded from the site: 



  

https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029.All experiments are conducted 

with MATLAB 2012a programming using a PC with Intel Core i7/3.4 GHz/4G processor.  

 
(a)             (b)             (c)              (d)             (e)              (f)       

Fig. 4. Source images 

4.1. Subjective evaluation 

The NSST, GFF, HMSD, IFE, GTF methods, and the proposed method are shown from Figs. 

5(a) ~ 5(f) to Fig. 10(a) ~ 10(f). We magnify the details of each picture so that it is easier for 

observers to compare the visual effects between the above algorithms. In the first group of 

experiments, the brightness of all fused images basically reach the human eye's observation range, 

so these fusion algorithms can compensate for the weakness of the low light to some extent. 

However, after zooming in on the details, the NSST method has artifact noise in the cloud, 

resulting in an unnatural transition of the image gray-value. The cloud details of the GFF, HMSD, 

IFE, and GTF methods are smoothed obviously, which are far less clear than the proposed 

algorithm. This is partly due to the mixed-ℓ1-gradient regularization, which can restore the 

gradient features of the source images to the greatest extent. 

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 5. The first group of fusion experiment. 

In the second set of experiments, we directly compared the enlarged details. The fusion details 

of the NSST and GTF methods are dim and the fonts are vague, which are difficult to distinguish. 

The fusion image of the IFE method is too bright and exceeds the optimal viewing range of human 

eyes. The fusion details of the GFF method are similar to those in Fig. 6(h), but the font outline of 

the proposed algorithm seems clearer. The overall brightness of the HMSD method is not as good 

as other algorithms, and its details appear uneven black noise at the bottom. Overall, the proposed 

algorithm has a better visual perception while the edge texture is still clear. 

https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029


  

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 6. The second group of fusion experiment. 

In the third group of experiments, the image brightness of the GFF and HMSD methods are still 

low, so these fusion algorithms do not compensate for the disadvantages of the low-light-level 

image. The brightness of the IFE and GTF methods is indeed very high, but maybe overexposed, 

resulting in blurred texture details of the background. The NSST method has a similar look and 

feel to the method in this paper, but the gradient characteristics of the trees are far less clear as 

shown in Fig. 7(h). 

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 7. The third group of fusion experiment 

In the fourth group of experiments, the soldiers' edges of the NSST and GTF methods are more 

pronounced, but the smoke information of the LL image is lost. Although this still achieves the 

effect of target recognition, it does not match the idea of fusion. The IFE method does not show 

overexposure in this group of experiments, but compared to the remaining three contrast 

algorithms, the soldier's outline is unclear and the texture is lost. The GFF and HMSD methods 

have a similar look and feel to the Fig. 8(h), indicating that the above two fusion methods are 

excellent and feasible in this kind of scene. However, comparing the tree textures of the image 

background, the trees of the proposed algorithm are still relatively dense. 



  

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 8. The fourth group of fusion experiment. 

In the fifth group of experiments, the visibility of the GFF and HMSD methods is lower, 

indicating that the low-light-level disadvantage of the fused image still exists. The figure in the 

GTF-fused image is vague and difficult to distinguish. The fused image brightness of the NSST 

and IFE methods is moderate, but their perception is too close to the IR source image, thus losing 

the texture detail information in the LL image. In contrast, the figure in Fig. 9(h) is the most 

legible and the gradient features are also most pronounced. 

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 9. The fifth group of fusion experiment. 

In the sixth group of experiments, the fusion images of the GFF and HMSD methods are lower 

in brightness than other images. Although they also accord with the human eyes’ perception, they 

do not exert the maximum brightness advantage of the IR source image. The Figs. 10(a), (e)-(h) 

have similar look and feel with the fusion image of the proposed algorithm. But after zooming in 

on the details, it is found that the bright point of Fig. 10(h) is the clearest, and there is no 

shortcoming of brightness overexposure. 



  

 
(a) NSST                        (b) GFF                        (c) HMSD 

 
(e) IFE                          (f) GTF                       (h) Proposed 

Fig. 10. The sixth group of fusion experiment. 

In summary, the above comparison algorithms can better deal with the fusion problem and have 

achieved certain academic attainments. However, for these special images fusion of the 

low-light-level and infrared spectrums, the fusion visual effect of the proposed algorithm seems to 

be more in line with the human eyes. The "ℓ2-energy minimization" that we take at low-frequency 

components will maximize the brightness of the fused image while avoiding overexposure defects; 

at the same time, the mixed ℓ1-gradient regularization can more comprehensively add the gradient 

features inside the source image to the fused images. Therefore, the brightness of the final fused 

image is in line with the human vision and has finer texture detail information. Through the above 

description, the new fusion method proposed in this paper has less peripheral parameters, 

moderate brightness, high contrast, and best subjective perception. 

4.2. Objective evaluation 

In general, the performance of image fusion results can be evaluated in a subjective and 

objective way. In most cases, the difference between the fusion results is small, and it is difficult to 

correctly evaluate the fusion results in a subjective way. Therefore, it is necessary to evaluate the 

fusion effect on the basis of objective quality evaluation. This paper selects the following eight 

objective quality indicators as the evaluation criteria: 

1. Average Gradient (AVG) [39]: The AVG value reflects the clarity of the image. 

2. Information Entropy (IE) [40]: The IE value reflects the richness of the information in the 

image. 

3. Edge Information Preservation Value (Q
AB/F

) [41]: The Q
AB/F

 value is used to describe the 

fused image to preserve the visually important edge intensity information and direction 

information in each source image. 

4. Spatial Frequency (SF) [42]: The SF value is used to reflect the overall activity of the image 

in the spatial domain. 

5. Standard Deviation (SD) [43]: The SD value is used to reflect the distribution of pixel 

gray-values. 

6. Gradient-based fusion metric (Q
G
) [44]: The Q

G
 value evaluates the amount of gradient 

information transferred from LL and IR images to the fused images. 

7. Mutual Information (MI) [45]: The MI value of an image reflects the degree of correlation 

between the two images. 

For the above seven indicators, the larger the value, the better the performance of the fusion 

algorithm, and the larger the value, the more the fused image contains the source images 

information. However, when the brightness of the image is overexposed or there is artifact noise, 



  

these parameters will be artificially high and become unreal. Therefore, the objective parameters 

also need to be evaluated together with subjective perception. The detailed quantitative evaluation 

of Figs. 5-10 is demonstrated in Tables 1-3. The values in boldface represent the best results. 

Group Fusion 

methods 

 Evaluation index    

  AVG IE Q
AB/F SF SD Q

G MI Time/s 

1 NSST 2.8004 7.4459 0.3632 6.3537 49.1421 0.0646 5.4140 105.8 

 GFF 2.4423 7.2676 0.3124 5.9182 43.2459 0.6723 3.7476 6.34 

 HMSD 2.5168 6.7592 0.4671 5.7548 30.4111 0.5517 1.5337 14.48 

 IFE 2.4734 7.3563 0.3081 5.8852 45.4516 0.6721 5.7207 0.77 

 GTF 2.2992 7.5368 0.3150 6.1268 38.0316 0.2805 4.6863 15.55 

 Proposed 3.0443 7.5396 0.5083 6.7040 49.6053 0.6883 5.0234 11.75 

2 NSST 4.4854 6.7408 0.3947 12.2818 33.9181 0.5975 4.1492 53.15 

 GFF 4.1166 6.5331 0.3250 12.1622 32.4020 0.6690 1.1995 3.50 

 HMSD 4.5604 6.4007 0.4141 13.1399 33.4755 0.5920 1.1573 9.26 

 IFE 4.0015 6.7250 0.3037 11.0240 36.8924 0.6800 6.3218 0.19 

 GTF 3.4195 6.6624 0.4017 8.5376 32.9902 0.3706 2.7908 7.96 

 Proposed 5.3176 6.6728 0.4936 14.3709 33.4962 0.7001 2.6782 6.02 

Table 1 Objective evaluation results of the first two groups of fused images. 

Group Fusion 

methods 

 Evaluation index    

  AVG IE Q
AB/F SF SD Q

G MI Time/s 

3 NSST 4.7297 6.6296 0.4610 9.2349 30.4771 0.3087 1.9014 75.62 

 GFF 4.8164 6.8550 0.3733 9.2982 29.1646 0.6180 2.9697 4.74 

 HMSD 5.4068 6.9079 0.5146 10.4805 30.0983 0.4876 2.4668 11.70 

 IFE 4.1919 6.5826 0.4846 8.0533 28.4200 0.4595 3.0663 0.41 

 GTF 2.6488 6.5386 0.4390 5.7551 29.8855 0.4133 1.3486 13.22 

 Proposed 5.9604 6.7091 0.6559 11.6891 29.3733 0.6261 3.1145 8.18 

4 NSST 4.0823 6.7336 0.5724 8.0539 30.6569 0.4026 2.5955 75.15 

 GFF 3.5122 6.5458 0.5922 7.5658 25.7660 0.4010 1.6022 4.75 

 HMSD 4.2453 6.7088 0.5526 8.6093 29.3511 0.4444 1.6590 11.22 

 IFE 3.5143 6.7961 0.5478 6.4459 29.7513 0.4283 2.3118 0.40 

 GTF 2.9368 6.7144 0.3990 5.2216 30.4435 0.3815 1.7595 14.25 

 Proposed 4.6509 6.7142 0.6222 8.9115 28.8217 0.4705 2.6522 8.18 

Table 2 Objective evaluation results of the middle two groups of fused images. 

Group Fusion 

methods 

 Evaluation index    

  AVG IE Q
AB/F SF SD Q

G MI Time/s 

5 NSST 4.8621 6.0796 0.4392 10.1306 20.7228 0.5644 1.7982 75.70 

 GFF 4.6467 6.7834 0.2747 10.0294 29.4084 0.7459 3.6741 4.67 

 HMSD 4.8185 6.6081 0.3158 10.2921 26.2318 0.7098 3.2535 11.60 

 IFE 2.9955 6.2046 0.5158 7.1281 21.4265 0.4446 3.9178 0.21 

 GTF 1.1509 5.8292 0.6143 3.2977 18.7667 0.6184 1.6860 11.70 

 Proposed 5.2458 7.0054 0.4574 10.6800 29.4313 0.6513 3.2867 8.12 

6 NSST 3.1173 7.4812 0.6000 5.7239 55.5390 0.3772 3.4720 39.52 

 GFF 2.8302 6.4602 0.4703 5.3966 25.3406 0.5445 1.9612 2.78 

 HMSD 3.3878 6.6189 0.5422 6.4034 32.0218 0.4781 1.7390 6.95 

 IFE 2.4378 7.2408 0.4867 4.8878 53.6844 0.4718 3.3544 0.36 

 GTF 2.1225 7.3043 0.4825 4.3037 54.7586 0.4666 3.1219 6.62 



  

 Proposed 3.6821 7.3438 0.6072 6.7685 50.3084 0.4817 3.6604 4.51 

Table 3 Objective evaluation results of the last two groups of fused images. 

In general, we can clearly see that the AVG, SF, Q
AB/F

, and Q
G
 values of the proposed algorithm 

are the highest in each group. Since the proposed low-frequency fusion rule can better target the 

low-light-level environment, the brightness of the fused image is in line with the human eyes and 

has the highest degree of clarity. In addition, the mixed-ℓ1-gradient regularization makes the edge 

information more comprehensive, so the amount of gradient information transferred to the fused 

image is more, and the edge of the image is clearer. In view of the sharpness of the image and the 

increase of the amount of edge information, the overall activity of the fusion algorithm is greatly 

improved. Unfortunately, the IE and MI values of the algorithm in this paper do not reach the 

highest in each group of experiments, and they were behind the IFE algorithm in the first, second, 

fourth, and fifth groups of experiments. Unfortunately, the IE and MI values of the algorithm in 

this paper do not reach the highest in each group of experiments, and they are behind the IFE 

algorithm in the first, second, fourth, and fifth groups of experiments. We find that the fusion 

images of the IFE algorithm seem to have the disadvantage of excessive brightness. Although this 

can make up for the disadvantage of LL images, the high saturation brightness will cause the 

richness of the image information increasing abnormally, and the above two evaluation values are 

not true. In addition, the SD value of the proposed algorithm is lower than the NSST algorithm in 

the 3rd, 4th, and 6th groups. Although our fused images have achieved good visual results in these 

sets of experiments, the algorithm in this paper needs to be improved in the distribution of pixel 

gray-values. 

We also simulated the running time of each algorithm and compared the timeliness of the 

algorithm by comparison. It is found that the timeliness of the IFE algorithm is the best and it is 

worthy of recognition. The NSST method uses the PCNN model as its fusion rule, and the running 

time is much larger than other comparison algorithms. The running time of the proposed algorithm 

is in the middle, slightly higher than the GFF method, which indicates that the timeliness of the 

algorithm needs to be improved. However, the good visual effects of the fusion algorithms often 

sacrifice certain timeliness, so the running time of the proposed algorithm is still acceptable. 

In summary, we find that the results of the objective evaluation are basically consistent with the 

subjective visual effects. Although some evaluation values are not the highest in some individual 

experiments, the contrast ratio of the fused images are better, the transition of gray-value is natural, 

and the impression is better. Therefore, for the fusion problem in the low-light-level environment, 

the proposed algorithm seems to be slightly better. 

5. Conclusion 

In this paper, we propose a novel model based on ℓ2-energy minimization and mixed-ℓ1-gradient 

regularization for the fusion of infrared and low-light-level images. The ℓ2-energy minimization 

can ensure that the brightness of the fused image is not affected by the low-light image, while the 

mixed-ℓ1-gradient regularization restores the gradient feature of the source images as much as 

possible. With the construction of two new fusion rules, the fused images enhance brightness and 

preserve richer image features, so they are more in line with human visual observation. In order to 

verify the superiority of the fusion performance, we used six different low-light-level scenes for 

fusion experiments, and each group of experiment used five different excellent fusion algorithms 

for comparison. Finally, in terms of visual effects and parameter evaluation, the proposed 

algorithm is superior to other comparison algorithms, so it can better solve the problem of fusion 

for low-light-level and infrared images. 
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 The NSST is a multi-scale analysis tool for efficiently decomposing and 

reconstructing images. 

 A fusion model based on image feature reconstruction and multi-scale 

decomposition is proposed in this paper.  

 An optimization model based on ℓ2-energy minimization is treated as the fusion 

rule for low-frequency sub-image.  

 The fusion of high-frequency components is guided by the ℓ1-gradient 

regularization. 
 


