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Abstract 

In the traditional background correction algorithm based on the wavelet transform, 

approximation coefficients considered as frequency responses of background signal are 

usually set to zero. However, there are many meaningless negative values generated in the 

background corrected spectrum because of the calibration errors of this algorithm. Intensities 

of some weak peaks even become negative and these peaks will disappear after the 

calibration of negative values. To solve these problems for the background correction of 

Raman spectrum, an improved intelligent algorithm which utilizes a suppression coefficient 

to modify approximation coefficients is proposed in this paper. A series of simulation 

analyses, as well as experimental investigations, are made to test the performance of this 

algorithm. It is proved that the usage of suppression coefficient could increase the 

background correction accuracy and decrease the number of meaningless negative values in 

the reconstructed spectra, which will prevent the disappearance of weak Raman peaks after 

the calibration of negative values and increase the sensitivity of Raman spectral analysis. 

Keywords: Raman spectroscopy, background correction, signal processing, wavelet 

transform 

 

Introduction 

Raman spectroscopy has attracted increasing attention in bio-imaging in which biological 
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components can be differentiated due to the differences in the position of peaks in Raman 

spectra as well as their relative intensities.1–4 However, Raman spectroscopy, especially for 

biological samples, is often obscured by the background due to fluorescence from organic 

molecules and contaminations.5 The intensity of the background is usually much larger than 

that of the weak Raman signal. In order to simplify the interpretations of Raman spectrum, it 

is essential to implement proper background correction before spectral analysis. 

 Some experimental techniques can be used to remove the background signal. Excited 

between 220 and 250 nm, Raman emission occurs within a fluorescence-free region of the 

spectrum, eliminating the obscuration of weak Raman signals by fluorescence from target or 

surrounding materials.6 In order to reduce the magnitude of fluorescence, Pelletier and 

Altkorn7 used liquid-core optical fiber waveguides to collect Raman signals. However, these 

experimental methods are expensive and complicated to implement. Significant efforts have 

been directed towards removing the background by signal processing with high accuracy. 

Signal processing algorithms for background correction in Raman spectroscopy can be 

categorized into two groups. The first group is mainly based on polynomial fitting8–9 and 

utilizes information about background shape, position, and signal-to-noise ratio (SNR) of the 

signal. The manual polynomial fitting is not so effective and its accuracy depends on the 

user’s experience.8 The performance of automatic polynomial fitting is poor when the SNR of 

the spectrum is low.9 Moreover, a major limitation with this group of methods is that the 

noise in the signal makes de-noising and smoothing an inevitable process before background 

correction.  

 The second group of methods relies on the difference in frequency response of 

background compared with characteristic peaks. Wavelet transform (WT) 10–12 which can 

provide multiresolution analysis is a powerful tool for these methods. After wavelet 

transform, the signal can be decomposed into localized contributions characterized by 

approximation coefficients and detail coefficients. Each contribution corresponds to a single 

frequency component. The background can be seen as low-frequency components of the 

signal while the noise and spectral peaks correspond to high-frequency components. The pure 
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spectral signal can be reconstructed through wavelet inverse transform by setting the 

approximation coefficients which correspond to low-frequency components to zero. This 

method requires no prior knowledge about the spectrum and no mathematical assumption of 

the background distribution.13–16 However, there are significant spectral intensity decrease 

and a lot of meaningless negative values in the reconstructed spectrum. Even intensities of 

some weak peaks become negative. Generally, negative values are substituted by zero in the 

reconstructed signal.16 Unfortunately, we found that these weak peaks would disappear after 

background correction using this method. In the background correction for Raman spectrum, 

the intensity of which is usually much weaker than the background signal, an improved 

algorithm is needed to deal with the negative values and preserve the weak peaks. 

In this paper, an improved intelligent algorithm which can decrease the number of negative 

values and calibrate the intensity errors in the reconstructed spectrum is proposed. In this 

algorithm, original spectrum is decomposed based on WT and a suppression coefficient used 

to modify approximation coefficients is calculated based on spectral energy analysis. 

Simulated spectra with different kinds of background are used to validate the performance of 

the proposed algorithm. This algorithm is also successfully applied in the background 

correction of an experimental Raman spectrum of rat’s liver cell. The results show that weak 

Raman peaks are well preserved in the removal of the background signal using this improved 

algorithm. Additionally, no prior knowledge about the spectral background distribution and 

smoothing step are needed in this background correction algorithm which makes this 

algorithm a powerful and intelligent tool for Raman spectroscopy. 

 

Theory 

Similar to the Fourier transform (FT) which uses sine and cosine as the basis function, WT 

utilizes a family of basis functions which have a zero-mean oscillation behavior. Considered 

as the convolution between the signal and a wavelet function, WT decomposes a signal into 

localized contributions (approximations and details) labeled by scale and shifting parameters. 

A mother wavelet could produce families of wavelets through Eq. 1: 
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𝜓𝑎𝑏(𝑇) =
1

√𝑎
ψ (

𝑡−𝑏

𝑎
)(1) 

where ψ(t) is the mother wavelet, a is the scale parameter, b is the shifting parameter or the 

position of the scale window, and ψab(t) is the scaled and shifted wavelet. The wavelet 

coefficient W(a,b) which corresponds to the localized contributions of the signal f(t) is 

defined as 

𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡)ψ𝑎,𝑏(𝑡)𝑑𝑡
−∞

+∞
 (2) 

 As shown in Eq. 2, the wavelet coefficient can be considered as a weighted sum of the 

original signal at corresponding scale. The multiresolution wavelet transform algorithm by 

Mallat,17 which is usually performed for discrete wavelet transform, makes the signal pass 

through a low-pass filter to implement large scale analysis and pass through a high-pass filter 

to implement small scale analysis as shown in Figure 1a. Then we can get a group of 

approximation coefficients (CAn) that represent the estimation of the signal at large scale and 

a group of detail coefficients (CDn) that contain the detail information of the signal. The 

group of approximation coefficients can be further decomposed to form a new group of 

approximation coefficients and a new group of detail coefficients. Then the original signal is 

decomposed into orthogonal components at different scales. The features of the signal are 

captured by detail coefficients at proper decomposition level, and the smooth components of 

the signal are mainly captured by approximation coefficients. Thus the wavelet transform can 

be used to separate the pure spectral signal from the background in Raman spectrum and 

implement the background correction. Generally, the approximation coefficients at proper 

decomposition level are directly set to zero (c=0) and then the spectrum is reconstructed just 

using detail coefficients to remove the background signal in the spectrum. However, in this 

approach, the intensity of the reconstructed spectrum will decrease and there are a lot of 

negative values generated in the reconstructed spectrum. 

 In our opinion, just setting approximation coefficients to zero will lead to the over-

treatment of the original signal. The approximation coefficient is calculated via the inner 

product of the original signal and the scale function, and it can be seen as a weighted 

estimation of the whole signal at the large scale which is determined by the decomposition 
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level. Though the detail feature of the spectrum is smoothed out when the background signal 

is reconstructed just using the approximation coefficients, it does not mean that the detail 

features of the signal have no contribution to this reconstructed signal as well as the 

approximation coefficients. As shown in Figure1b, the simulated spectrum with a curved 

simulated background is decomposed based on wavelet transform and then the reconstructed 

background signal can be obtained by just using the approximation coefficients in the wavelet 

inverse transform. The intensity of the reconstructed background is larger than that of the 

original simulated background though the two curves are similar. This proves that the detail 

features of the original spectrum indeed contribute to the approximation coefficient and part 

of the approximation coefficient is essential for the reconstruction of the pure spectral signal. 

In addition, though the detail features of the spectrum will be reserved, the background 

correction by discarding the approximation coefficients and just using the detail coefficients 

to reconstruct the spectrum through wavelet inverse transform will cause an overestimation of 

the background and the intensity at each pixel of the reconstructed spectrum will decrease.  

A simulated illustration is made as shown in Figure 2. All the simulation and experiment 

computation in the current study were carried out utilizing Matlab (The MathWorks Inc.)  

for Microsoft Windows, v.7.9 (R2009b). In this study, the simulated spectrum is the sum of 

background, Raman signals and random noise. The pure Raman signal p(x) is composed of 

six narrow Gaussian peaks, which can be mathematically described as follows: 

𝑝(𝑥) = 40𝑒
−

(𝑥−200)2

2×202 + 5𝑒
−

(𝑥−500)2

2×82 + 27𝑒
−

(𝑥−800)2

2×302 + 100𝑒
−

(𝑥−1300)2

2×82 + 3𝑒
−

(𝑥−1500)2

2×122 +

50𝑒
−

(𝑥−1800)2

2×82 (3) 

 White Gaussian noise was added to pure Raman signal p(x) using the Matlab function 

AWGN(p(x), b), where b is the SNR of the Raman signal with random noise. The SNR is 

defined as the ratio of signal power to the noise power, often expressed in dB as shown in Eq. 

4.  

𝑆𝑁𝑅𝑑𝐵 = 10log10
𝑃signal

𝑃noise
 (4) 

Psignal is average power of the pure Raman signal and Pnoise is average power of noise signal. 
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Curved background bc(x) can be mathematically described as follows: 

𝑏𝑐(𝑥) = 150𝑒
−

(𝑥−1100)2

2×12002 +100 (5) 

 Figure 2a shows the simulated pure Raman spectrum consisted of Gaussian peaks and 

random noise and its SNR is 150 dB. Figure 2b shows the simulated spectrum with curved 

background. When the spectrum is reconstructed just using the detail coefficients through 

wavelet inverse transform, a new baseline consisted of negative values will appear and the 

intensities of some weak peaks also become negative as shown in Figure 2c. As the negative 

value is meaningless in spectroscopy, it is usually substituted by zero. As shown in Figure 2d, 

the second and fifth peaks with low intensity disappear after the calibration of negative values 

in the reconstructed spectrum, which will cause the loss of useful spectral information and the 

sensitivity of subsequent spectral analysis. 

 In order to remove the negative values caused by the overestimate of the background, 

we introduce a new coefficient called suppression coefficient. The suppression coefficient is 

calculated based on spectral energy analysis. To accurately remove the background, it is 

necessary to keep part of the approximation coefficients contributed by the detail features of 

the pure spectrum in the background correction. Because of the orthogonality of the wavelet 

basis,10,18 the quadratic sum of the coefficients in the wavelet transform vector can be used to 

estimate the energy of the original signal as shown in Eq. 6. 

∑ |𝑊(𝑎, 𝑏)|2 = A ∫ 𝑑𝑡|𝑓(𝑡)|2
𝑎,𝑏  (6) 

A is a constant. The quadratic sum of the detail coefficients in the vector can be also used to 

estimate the energy of the pure spectral signal. Then the proportion of the energy of the pure 

spectral signal in the original signal can be obtained by the ratio of the above two quadratic 

sums. In order to increase the calibration accuracy, part of the approximation coefficients 

contributed by the pure spectral signal should be reserved when correct the background based 

on WT. Therefore, a suppression coefficient defined as the square root of the proportion of 

the energy of the pure spectral signal in the original signal is used in the improved algorithm. 

As shown in Figure 1a, the original spectrum is decomposed by wavelet transform at proper 

decomposition level. Then multiply each of the approximation coefficients by the calculated 
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suppression coefficient and the pure spectral signal will be reconstructed through wavelet 

inverse transform with high accuracy. The detailed procedure follows the steps described 

below. 

(i) Choose a wavelet and decomposition level L. Compute the wavelet decomposition of the 

original signal at Level L and get the vector of approximation coefficients (CAi) and the 

vector of detail coefficients (CDj). 

 

(ii) Calculate the suppression coefficient c using Eq. 7. 

𝑐 = √
∑ 𝐶𝐷𝑗

2
𝑗

∑ 𝐶𝐴𝑖
2

𝑖 +∑ 𝐶𝐴𝑗
2

𝑗
 (7)  

(iii) Multiply each of the approximation coefficients by the suppression coefficient. 

Reconstruct the spectral signal using the modified approximation coefficients and the original 

detail coefficients. In addition, some detail coefficients which correspond to the noise and are 

less than a proper threshold can be discarded after the calculation of the suppression 

coefficient,15,19 and then the de-noising and background correction of the original signal can 

be implemented at the same time just through one wavelet inverse transform. 

 

 The improved background correction algorithm is implemented to deal with the 

simulated spectrum with curved background shown in Figure 2b. The approximation 

coefficients after wavelet transform are multiplied by the calculated suppression coefficient 

as shown in Eq. 7. Then the reconstructed spectrum by the inverse wavelet transform is 

shown in Figure 2e and the corresponding negative value calibrated spectrum is shown in 

Figure 2f.Compared with the background corrected spectrum shown in Figure 2c, the usage 

of the suppression coefficient can increase the reconstruction accuracy of the peak intensity 

and prevent the reconstructed spectrum from the affection of the meaningless negative values. 

In the reconstructed spectrum which discards the approximation coefficients, more than 80% 

of the spectral data becomes negative whereas in the spectrum reconstructed by the improved 

algorithm, the percentage of negative values is less than 20%. In addition, the second and 
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fifth weak peaks are well preserved after the calibration of the negative values as shown in 

Figure 2f. 

 In the traditional algorithm which discards the approximation coefficients, the 

influence of the pure spectral peaks on the approximation coefficients of the wavelet 

transform is neglected, which is the main cause of the reconstructed errors and the 

appearance of negative values. Thus the more peaks the pure spectrum contains, the larger 

errors will be generated in the reconstructed spectrum obtained with the algorithm which 

discards the approximation coefficients. In the improved algorithm, the essential information 

for the reconstruction of the pure spectral signal contained in the approximation coefficients 

is well estimated and reserved with the help of the suppression coefficient. Thus, the pure 

spectral signal has less effect on the reconstructed errors of the improved algorithm for a 

given background. To make a contrast experiment, the above algorithms are implemented on 

a series of simulated spectra consisted of the same flat background and different number of 

Gaussian peaks respectively. The differences between the reconstructed spectrum yt' and the 

simulated pure spectral signal yt are measured through the computation of the root mean 

square (RMS) values of the reconstructed errors, which are defined in Eq. 8. T is the length of 

yt' and yt. 

RMS = √∑ (𝑦𝑡
′−𝑦𝑡)

2𝑇
𝑡=1

𝑇
 (8) 

 The computation results are shown in Figure 3. As we can see, the reconstructed error 

obtained by just discarding the approximation coefficients increases linearly with the number 

of the peaks while the reconstructed error of the improved algorithm hardly changes with the 

number of peaks. So it is impossible to calibrate the reconstructed errors by adding a positive 

constant to the Raman spectrum obtained with the traditional algorithm. Moreover, the 

correction accuracy of the improved method is hardly affected by the pure spectral signal, so 

this improved algorithm can be used as an intelligent background correction tool for different 

kinds of Raman spectra. 

 To investigate the robustness of the improved algorithm, another three kinds of 

background signal (flat, linear, and sigmoidal background) are added to the Raman spectrum 
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shown in Figure 2a, and the SNR of the Raman spectrum is also changed by adding white 

Gaussian noise with different power. The simulated original spectrum and the background 

corrected spectrum obtained with the improved algorithm are shown in Figure 4. The flat 

background in Figure 4a and d can be described using a constant while the linear background 

signal bL(x) in Figure 4b and e is mathematically described as follows: 

bL(x) = 0.04x + 100  (9) 

 The sigmoidal background signal bS(x) in Figure 4c and f is also mathematically 

defined in Eq. 10: 

𝑏𝑠(𝑥) =
200

1+𝑒−0.006(𝑥−1000) + 200 (10) 

 As shown in the contrast experiments, the three kinds of background are all well 

eliminated while the second and fifth peaks with low intensity are also well preserved in the 

reconstructed spectra. This indicates that the improved background correction algorithm 

proposed in this paper can deal with different kinds of background signal and no prior 

knowledge about the background distribution is needed in the background correction process. 

In addition, this improved background correction algorithm can achieve good performance 

both in high SNR situation and low SNR situation. The RMS values of the errors between the 

reconstructed spectra and the corresponding simulated Raman spectra are calculated and they 

are almost the same when the simulated Raman spectra consist of the same background but 

different SNRs. This is mainly because that the improved algorithm is based on wavelet 

transform and relies on the difference in frequency response of background compared with 

characteristic peaks and noises. The power increase or decrease of white Gaussian noise will 

not change its frequency response. So the improved algorithm is immune to the effects of 

noise level. 

 To make a further contrast experiment, we implemented both the improved wavelet 

transform algorithm in this paper and the iterative polynomial fitting algorithm9 on a group of 

simulated Raman spectra with the same curved background and different SNR. The simulated 

pure Raman signal is defined in Eq. 3 and the baseline or the background signal in the 

simulation is mathematically defined in Eq. 5. White Gaussian noise signal with different 
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power is added to the simulated Raman signal through MATLAB function AWGN(). The 

experiment results are shown in Figure 5. As shown in Figure 5a, the RMS values of the 

reconstructed errors using the improved wavelet transform algorithm hardly change with the 

SNR of the simulated Raman spectrum while the iterative polynomial algorithm performs not 

so well in low SNR situations. In addition, the processing speed of the improved wavelet 

transform algorithm is faster. As shown in Figure 5b, the average running time of the 

improved WT algorithm is about a quarter of that of the iterative polynomial algorithm when 

the SNR of the simulated Raman spectrum is 190 dB and both of the two algorithms have 

almost the same RMS value. Therefore, the improved wavelet transform algorithm does not 

need to consider the effects of noise and takes less computing time, which is favored by real-

time applications. 

 In order to choose the proper decomposition level and wavelet type, a series of 

simulated experiments are made. In these simulated experiments, the improved algorithm is 

used to deal with the simulated spectra consisted of Raman signal shown in Figure 2a and 

different kinds of typical background (curved, flat, linear, or sigmoidal background) by 

changing decomposition levels and wavelet types. The RMS values of the reconstructed 

errors are calculated and used to evaluate the performance of the algorithm. The relationship 

between the RMS values and decomposition level as well as wavelet type is shown in Figure 

6. The experiment results show that the improved algorithm in this paper can obtain good 

performance in the background correction for all the four kinds of background when the 

original spectra are decomposed with coif5 wavelet at level 9. 

 

Results 

The Raman spectrum of rat liver cell was collected using the Raman spectral Imaging system 

built in our lab. The excitation radiation, produced by a He–Ne laser (532 nm), was directed 

by an Olympus microscope and focused on the sample by a 50X microscope objective. 

Rayleigh scattering was rejected by a Notch filter and the Raman signal was focused on the 

slit of the spectrometer. Then the input signal was dispersed by a grating and detected by a 
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scientific CCD detector. The resolution of the spectrometer is about 2 cm–1 and the Raman 

spectra covering the 600 cm–1 to 1100 cm–1 spectral range were recorded. The specimen is 

driven by a scanning stage with high precision to realize the Raman imaging in a 60 μm × 60 

μm area. 

 The original experimental Raman spectrum is shown in Figure 7 as well as the 

background corrected spectra obtained with the algorithm which discards the approximation 

coefficients and the improved algorithm which utilizes the suppression coefficient. As we can 

see, there is a significant fluorescence background in the original Raman spectrum, which 

will cause a decrease of the SNR of the Raman signal. Then the original spectrum is 

decomposed by wavelet transform at level 9 using the coif5 wavelet. In the reconstructed 

spectrum obtained through wavelet inverse transform when the approximation coefficients 

are set to zero, about 80% of the data in the reconstructed spectrum is negative and the 

intensities of some weak spectral peaks (644 cm–1, 719 cm–1, 829 cm–1, 853 cm–1, and 936 

cm–1) become negative. The above peaks disappear after the meaningless negative values are 

substituted with zero as shown in Figure 7a. On the other hand, the suppression coefficient 

calculated via Eq. 7 is used to modify the approximation coefficients. After the wavelet 

inverse transform, the background is well corrected and less than 15% of the data become 

negative in the reconstructed spectrum. None of the Raman peaks disappear after the 

calibration of the negative values as shown in Figure 7b. The experimental results are 

consistent with the above simulation results and the quality of background correction is 

significantly improved by the usage of the suppression coefficient. 

 As phenylalanine20 is characterized by the spectral contribution at 1003 cm–1 and 

tyrosine is characterized by the spectral contribution at 644 cm–1, Raman image for the 

distribution of phenylalanine and tyrosine in liver cells can be constructed using the spectral 

intensity at the above wavenumbers (1003 cm–1 and 644 cm–1) of each scan point after the 

scan of the specimen. The traditional background correction algorithm which discards the 

approximation coefficients and the improved algorithm which utilizes the suppression 

coefficient are implemented on the spectrum of each scan point respectively to make a 
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contrast experiment. The meaningless negative values in the reconstructed spectra are all 

substituted by zero. Figure 8 shows the comparison of the Raman images constructed using 

the spectral data processed by the traditional algorithm which discards the approximation 

coefficients and the improved algorithm utilizing the suppression coefficient. For the spectral 

contributions at 1003 cm–1 which have relative high intensities and high SNR, the images for 

the distribution of phenylalanine which are constructed with the spectral data processed with 

the above two algorithms are similar but there is a significant intensity increase generated by 

the usage of the suppression coefficient. However, for the spectral contributions at 644 cm–1 

which have weak intensities and low SNR, there are almost no Raman signals in the image 

constructed by spectral data processed with the traditional algorithm while the distribution of 

Raman signal at 644 cm–1 can be still recognized in the image constructed by the spectral data 

processed with improved algorithm. Thus it is well convinced that the usage of the 

suppression coefficient can prevent the decrease of the Raman peak intensity and the loss of 

weak Raman signal in the background correction, and then increase the accuracy and 

sensitivity of the Raman spectral analysis. 

 

Conclusion 

Benefited from the multiscale analysis implemented by the discrete wavelet transform, the 

essential information contained in the approximation coefficients for the reconstruction of the 

pure spectrum is well reserved by the usage of the suppression coefficient to modify the 

approximation coefficients in the background correction of Raman spectrum. It is proved by 

both the simulation and experimental results that there is a significant decrease in the 

reconstructed errors of the Raman peak intensities and the number of meaningless negative 

values in the background corrected spectrum obtained with improved algorithm which 

utilizes the suppression coefficient, and the Raman peak with weak intensity is well preserved 

which increases the sensitivity and accuracy of the Raman spectral analysis. Therefore, this 

improved algorithm can be used as an efficient and powerful tool for Raman spectral analysis 

and imaging. 
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Captions 

Figure 1. (a) The Schematic description of wavelet transform and the improved algorithm. 

CAn is approximation coefficients, CD1–CDn are detail coefficients and c is the calculated 

suppression coefficient. (b) The comparison between the background which is reconstructed 

just using the approximation coefficients (CAn) and the original simulated background. 

 

 

Figure 2. (a) The simulated pure Raman spectrum which is composed of six Gaussian peaks 

and random noise. (b) The simulated original spectrum with curved background. (c) The 

background corrected spectrum reconstructed by just using the detail coefficients in the 

wavelet inverse transform. (d) The negative values calibrated spectrum after background 

correction by just using the detail coefficients in the wavelet inverse transform. (e) The 

background corrected spectrum using the suppression coefficient. (f) The negative value 

corrected spectrum after background correction using the suppression coefficient. 
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Figure 3. The relationship between the RMS of the reconstructed errors and the number of 

peaks when using the two kinds of background correction algorithm. 
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Figure 4. Background correction of spectra with different kinds of background, (a–c) Flat, 

linear, and sigmoidal, SNR=150 dB. Different SNR using the improved algorithm, (d–f) Flat, 

linear, and sigmoidal, SNR=30 dB. 

 

 

Figure 5. The performance comparison between the improved WT algorithm and the iterative 

polynomial algorithm. (a) The RMS values of the reconstructed errors when the two 

algorithms are implemented on simulated spectra with different SNR. (b) The running time of 
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the two algorithms when the SNR of the simulated Raman spectrum is 190 dB. 

 

 

Figure 6. The simulated experiments on the choice of proper decomposition level and wavelet 

type for different kinds of background. (a) The relationship between the RMS and the 

decomposition level when using the coif4 wavelet. (b) The relationship between the RMS and 

different wavelet when the decomposition level is 9. 

 

 

Figure 7. The performance comparison between the traditional algorithm which just discards 

the approximation coefficients and the improved algorithm which utilize the suppression 

coefficient in the background correction of experimental Raman spectrum. (a) The original 

Raman spectrum and the reconstructed spectrum obtained with the traditional algorithm. (b) 

The original Raman spectrum and the reconstructed spectrum obtained with the improved  
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algorithm. 

 

Figure 8. The performance comparison of the traditional and improved background correction 

algorithms for Raman spectra with high SNR (1003 cm–1) and low SNR (644 cm–1). (a) The 

Raman image at 1003 cm–1 constructed by the spectral data processed with the improved 

algorithm using the suppression coefficient. (b) The Raman image at 1003 cm–1 constructed 

by the spectral data processed with the traditional algorithm which just discards the 

approximation coefficient. (c) The Raman image at 644 cm–1 constructed by the spectral data 

processed with the improved algorithm. (d) The Raman image at 644 cm–1 constructed using 

the spectral data processed with the traditional algorithm.  
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