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A B S T R A C T

Cu2O nanoparticles decorated TiO2 thin films were fabricated by laser ablation. The effects of Cu2O nano-
particles on the structure, optical properties and photocatalytic performance of TiO2 thin film were investigated
by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS),
Raman spectrometer system, optical absorption and photocatalytic evaluation system, respectively. XRD pat-
terns indicate that the decoration has the effect of lowering the grain orientation of Cu2O. The photocatalytic
performance in hydrogen generation of Cu2O decorated TiO2 composite thin film was significantly improved
compared with that of either Cu2O nanoparticles or TiO2 single layer thin film with 1.70 and 1.77 times, re-
spectively. The oxidation of Cu2O was demonstrated to dominate the photocatalytic performances of Cu2O/TiO2

composite thin films by varying the laser ablation powers.

1. Introduction

Hydrogen is considered as an important energy source for sustain-
able development due to its recyclability, safety and sustainability. In
the early 1970s, Honda and Fujishima [1] reported that hydrogen was
induced on the titanium dioxide (TiO2) electrode by UV light. Since
then, the photocatalytic application of TiO2 has been studying ex-
tensively in water splitting [2,3]. However, pristine TiO2 transmits only
a partial solar energy to new energy due to the forbidden bandwidth of
about 3.2 eV [4]. Many strategies have been developed to improve its
photocatalytic performance [5]. But the photocatalytic activity was still
limited by the recombination of internal carriers in TiO2. Recently, the
heterojunction between TiO2 and the narrow gap semiconductor (such
as ZnO, Cu2O and MoS2) [6–8], which benefits for the separation of
carriers, draws lots of attentions. As a common p-type semiconductor
with a band gap of approximately 2 eV [9], cuprous oxide (Cu2O) not
only has the characteristics of low cost and considerable activities, but
also forms a heterojunction with TiO2 easily [10,11]. For example, Xi
et al. [12] prepared Cu2O/TiO2 nanoparticles by the solvothermal
method, resulting in an increasing rate of hydrogen precipitation under
simulated solar radiation. Xiang et al. [13] has published the deposition
of Cu2O nanoparticles on the TiO2 nanotube array and showed the

enhancement of its photodegradation activity. However, nanoparticles
have limited its commercial applications, because they are prone to
aggregate and difficult to separate and restore from solution [14]. Then,
some studies put forward the idea of thin film for solving the previous
problem due to their controllable particle size and immobile semi-
conductor nanoparticles [15,16]. But thin film has a relatively flat
surface structure, resulting in a very small contact area between pho-
tocatalysts and reactant. Therefore, it is an urgent need to provide a
method which can solve the above problems.

Laser ablation, which was carried out in vacuum, gaseous or liquid
environment, has been developed for the synthesis of nanostructures
[17–19]. Gondal et al. [20] performed the method of laser ablation in
water to synthesize nanostructured Cu2O by a Nd:YAG pulsed laser
(operating at 532 nm wavelength with a pulse duration of 5 ns and a
frequency of 10 Hz). Jung et al. [21] successfully prepared Cu, Cu2O
and CuO nanoparticles in different concentrations of NaOH solution by
a simple technical laser ablation. As above, it can be seen that the high
purity nanoparticles were prepared by laser ablation. On this basis,
laser ablation in the atmosphere was conceived to prepare the nano-
particle film. In this method, ions ablated from the target are adhered to
the substrate directly; thereby, the expectation that the sample has a
nanoparticle structure, which separates from the solution easily and has
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a large contact area for participating in the photocatalytic reaction, can
be successfully implemented.

In this paper, we propose a cost-effective technique for the nano-
fabrication of efficient decorating TiO2 thin film with Cu2O

nanoparticles by a fairly simple laser ablation procedure. The photo-
catalytic performance of Cu2O/TiO2 composite thin films was enhanced
and easily tuned by changing the laser power. The effects of Cu2O na-
noparticles decoration layer on structure, optical absorption and

Fig. 1. Schematic diagrams of (a) nanoparticles growth by laser ablation, (b) the effect of laser beam power and (c) the preparation for Cu2O nanoparticles decorated
TiO2 thin film.

Fig. 2. SEM images of Cu2O with the scale of (a) 10 μm and (b) 500 nm. (c)–(g) Optical microscope images of samples with the laser power of 0.8, 1.6, 2.4, 3.2 and
4.0W.
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photocatalytic activity of TiO2 thin film were investigated.

2. Experimental

Fig. 1(a) shows the schematic diagram of fabrication, a target was
ablated by a neodymium-doped yttrium aluminium garnet (Nd:YAG)
pulsed laser (the wavelength is 1064 nm and the maximum laser power
is 20W) under ambient conditions. TiO2 thin films were deposited on
k9 quartz glass by electron beam evaporation at the temperature of
200 °C. The thickness (about 100 nm) of TiO2 thin film was monitored

by a quartz crystal microbalance. Cu2O layers were grown by laser
ablation using a Cu2O target (99.9%). The laser parameters adopted in
the experiment were as follows: laser beam powers were set as 0.8, 1.6,
2.4, 3.2 and 4.0W, respectively. The focal length, scanning rate, pulse
width and line spacing of laser beam was 7.8 cm, 1000mm/s, 4ns and
0.01mm, respectively. The schematic of Cu2O nanoparticles decorated
TiO2 thin film was shown in Fig. 1(c). The samples were marked as
Sample1 (S1), Sample2 (S2), Sample3 (S3), Sample4 (S4) and Sample
(S5), respectively, which are in accord with the increase of laser power.

The surface morphology was characterized by scanning electron
microscope (SEM) (S-4800, Hitachi) and optical microscope. The sur-
face roughness was measured by a step profiler (Ambios, XP-1). The
crystal structures of samples were analyzed by X-ray diffraction (XRD)
using a Rigaku MiniFlex600 system, with CuKα radiation
(λ = 0.15408 nm). Raman scattering spectra were examined using a
confocal microprobe Raman system (inVia Raman Microscope,
Renishaw) with 633 nm laser. The optical absorption spectrum of
samples was performed by using an UV-VIS-NIR double beam spectro-
photometer (Lambda 1050, Perkins Elmer). Thermo Scientific K-Alpha
+ was used to study on the XPS.

Water splitting was carried out in a glass gas-closed-circulation
system (CEL-SPH2N, Beijing) under irradiation with a 300W xenon
lamp (CEL-HXF 300). Typically, the sample was placed in a solution
consisting of 50mL deionized water. Then the air was sealed by rubber
diaphragm. Prior to irradiation, the air and dissolved oxygen in the
reaction mixture were removed by a vacuum pump. A cooling-water
jacket was used to keep the photocatalytic reaction temperature at 6 °C.
The deionized water with the photocatalyst was irradiated from the top
using a 300W xenon lamp jointing a cutoff filter to obtain UV-light
irradiation. The photocatalytic activity was analyzed by extracting a
certain amount of gas and employing N2 carrying gas into a TCD gas

Fig. 3. RMS values of Cu2O/TiO2 composite thin films with different laser
powers.

Fig. 4. XRD patterns of (a) Cu2O, TiO2, Cu2O/TiO2 composite thin film and (b) Cu2O/TiO2 composite samples with different laser powers. Raman spectra of (c) Cu2O,
TiO2, Cu2O/TiO2 composite thin film and (d) Cu2O/TiO2 composite samples with different laser powers.
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chromatograph equipped every half an hour.

3. Results and discussion

3.1. Surface morphology

Fig. 2(a) and (b) show the SEM images of Cu2O nanoparticles de-
corated TiO2 thin films with various magnifications. According to those
images, the surface morphology of decoration layer is rough and
porous, and a large number of nanoparticles with average diameter of
approximately 50 nm accumulate tightly together. It means that the
decoration layer prepared by laser ablation is consisted of small na-
noparticles with large-size pores. In addition, a macro surface ob-
servation was also applied to samples with different laser powers by
optical microscope with a 50×objective lens, as shown in Fig. 2(c)-(g).
The nanoparticles were distributed in a disordered state ablated with a
low laser power, and then gradually aggregated on the scanning path of
laser beam with wider scanning due to thermal effect with the increase
of laser power.

Fig. 3 shows the root mean square (RMS) values of Cu2O/TiO2

composited thin films with the scanning area of 3 μm×3 μm. With
laser power increasing, the roughness of composite thin film increased.
The RMS surface roughness values of these samples are 4.7, 5.4, 9.6,
15.3 and 21.2 nm, respectively.

In the case of laser ablation, the energy of photon is transferred to
the electrons in the manner, causing a temperature rise. Then, the ions
are gradually obtained the energy of electrons by electron-phonon
coupling. When the thermal energy of ions is sufficient, the material
melts to form the plasma and diffuses into the free space [22]. There-
fore, with the laser power increasing, the quantity of energized elec-
trons increases [23], resulting in a broader range of nanoparticles being
ablated and attached to the substrate (as shown in Fig. 1(b)).

Meanwhile, the heating of target in various locations is different by
pulse laser (isothermal expansion occurs during the pulse and adiabatic
expansion occurs after the pulse) [22], so the sample has a large
number of pores. It is beneficial to increase the contact area of photo-
catalysts with reactant in the photocatalytic reaction.

3.2. Structural properties

XRD patterns as shown in Fig. 4(a) reveal the influence of laser
ablation on the structure of Cu2O and TiO2. No diffraction peak is ob-
served in TiO2 thin film sample, indicating that it is amorphous phase.
While it is apparent that Cu2O deposited on glass substrate by laser
ablation under ambient conditions is consisted of two diffraction peaks
at around 36.48° and 42.41°, which correspond to the (111) and (200)
peaks of Cu2O, respectively (JCPDS 56–3288). The strong intensity of
(111) diffraction peak indicates a preferred orientation of Cu2O nano-
particles along the (111) crystallographic direction. No diffraction from
randomly oriented grains or impurity phases is observed from the XRD
spectrum. However, the XRD intensity of Cu2O in composite thin film
decreases drastically than that of single layer sample. Both the coupling
and rough surface (compared with blank glass surface) of TiO2 thin film
contributed to degrade the diffraction or orientation in intensity. The
diffraction peak of Cu2O in composite samples increased in intensity
with the laser power increasing (as shown in Fig. 4(b)).

Raman spectroscopy was also used to evaluate the crystalline
quality. According to Fig. 4(c), no obvious Raman scattering peaks are
detected in TiO2 thin film. While two strong Raman bands at about 280
and 433 cm−1 are observed in Cu2O nanoparticles, typically assigned to
the structures of +

− −2Γ Γ12 25 and −4Γ12 in the silent modes of Cu2O, re-
spectively [24,25]. Where −Γ12 corresponds to the twisting of Cu+ tet-
rahedron around an axis (the two edges perpendicular to the axis ro-
tating in opposite directions), and −Γ25 corresponds to the opposite

Fig. 5. Absorption spectra of (a) Cu2O, TiO2, Cu2O/TiO2 composite thin film and (b) Cu2O/TiO2 composite samples with different laser powers. (c) Optical band gap
energy (Eg) of Cu2O and TiO2. (d) Schematic energy diagram of Cu2O and TiO2.
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displacements of two O= lattices [25]. In the Cu2O/TiO2 composite
sample, two Raman peaks are still observed with the weak intensity.
But the intensity ratio of these two peaks is different from that of the
single layer structure. The O element in the voids of TiO2 thin film that
stimulates the peak intensity of 433 cm−1, may be the reason. In ad-
dition, it can be seen that the laser power has an effect on the intensity
of Raman peaks (as shown in Fig. 4(d)). The variation tendency in the
Raman peak of samples was similar to that of XRD pattern, and the
Raman scatting intensities of peaks were enhanced with the laser in-
creasing. It has been confirmed that the crystal quality of Cu2O nano-
particles is controlled by varying the laser power.

3.3. Optical absorption

Optical absorption is critical to characterize the activity of photo-
catalysts and reflects the ability of thin film to produce electron-hole
pairs. Fig. 5(a) shows the absorption spectra of single layer and com-
posite samples. It indicates that the absorption curves of both Cu2O and
TiO2 are typical semiconductor oxides with the maximum absorption
peaks near the bandgap edge. The absorption intensity of Cu2O/TiO2

composite increases and the bandgap shows a red-shift compared with
those of TiO2 single layer thin films. With the laser power increasing,
both the increase in absorption intensity and red-shift of bandgap are
observed in the curves of Cu2O/TiO2 composite thin films.

The optical band gap of Cu2O and TiO2 can be calculated from
absorption by the Tauc plot (Formula 1).

= − = −(αhν) k(hν Eg) or (αhν) k(hν Eg)2 1/2 (1)

where α is absorption coefficient, k is a constant, hν is the photon

energy, and Eg is the optical band gap, respectively [26]. In general, the
spectrum is the linear combination of the spectra of both components
(Formula 2).

= ⋅ + ⋅α(hν) a α (hv) b α (hv)s m (2)

where a and b determine the contributions of the components, while
α (hv)s and α (hv)m are the absorption coefficients of the semiconductor
and modified martials [27]. Here, the TiO2 is only a single layer film
obtained by electron beam evaporation, which means that α (hv)m is not
present. So the bandgap energy of TiO2 should be calculated directly by
the Tauc formula. It can be seen from Fig. 5(c) that the band-gap of
TiO2 is 3.35 eV, which is similar to that obtained in the literature [26].
And the forbidden band widths of Cu2O nanoparticles ablated with the
laser power of 0.8, 1.6, 2.4, 3.2 and 4.0W is about 3.17, 3.03, 2.92,
2.54 and 2.31 eV, respectively. The energy diagram of Cu2O and TiO2 in
Fig. 5(d) shows the reason why the composite sample converts more
light to new energy by decorating a layer of Cu2O nanoparticles on TiO2

thin film. The conduction band value of Cu2O is more negative than
that of TiO2. In this case, the thermodynamic condition favors the
transfer of electrons from Cu2O to TiO2 [28].

3.4. Composition and valence state

To further obtain the information about the chemical states of Cu2O
nanoparticles decorated TiO2 thin film by laser ablation, XPS was em-
ployed to characterize those samples (as shown in Fig. 6). The dot chart
is the raw data obtained from the XPS measurements. According to
Ti2p3/2 core-level spectrum, two peaks located at around 457.7 and
463.7 eV, corresponding to Ti2O3 and TiO2, respectively, are observed

Fig. 6. XPS core-level and valence band spectra obtained from (a) TiO2, (b) Cu2O and (c) Cu2O/TiO2 composite thin film (d) Cu2O/TiO2 composite samples with
different laser powers.

C. Deng, et al. Optical Materials 94 (2019) 130–137

134



[29]. The appearance of Ti2O3 is due to insufficient oxygen in the
chamber of coating machine during deposition. In addition, there are
also two peaks located at around 932.3 and 934.6 eV in the Cu2p3/2
core-level spectrum, corresponding to Cu2O and CuO, respectively
[30,31]. It indicates that the decoration layer obtained by laser ablation
is principally consisted of Cu2O with a small amount of CuO. So a peak-
fit on the basis of deconvolution method was employed to find in-
dependent peaks related different valence states from the spectra (as
shown in Fig. 6(d)). Those fitting results demonstrate that the compo-
sition of decoration layer is controlled by varying the laser power in the
case of laser ablation.

With the laser power increasing, the ratio of Cu2O in the decoration
layer gradually increases, and then decreases with the further increase
of laser power. Two separate processes could be concluded in the case
of laser ablation (ablation process and decomposition process). With the
laser power increasing, the photon energy from laser exerting to the
Cu2O target increases. The higher photon energy, the more Cu2O par-
ticles are peeled off due to a sustained effect. This is referred to as
ablation process. However, with the laser power further increasing, the
surrounding temperature on target rises accordingly, which leads to an
oxidation process of Cu2O. The Cu2O will be oxidized to CuO once the
temperature is high enough [32]. Both of these two processes happened
during laser ablation, and the rates of these two processes varied with
the conditions, as shown in Fig. 7(d). In the case of laser power in-
creased to 3.2W, the ablation process kept a faster rate than the oxi-
dation process. At the same time, the temperature of target also rose,
resulting in an acceleration of oxidation (Cu2O to CuO), as shown in the
peak shift (Fig. 6(d)). When the laser power reached 4.0W, the oxi-
dation process was dominant, leading to a reduction of Cu2O ratio in
sample. Additionally, the nanoparticles amount of sample obtained by

laser ablation with the laser power of 4.0W increased (as shown in
optical microscope images).

According to the XPS results, the method proposed by Kraut et al.
[33] was employed to determine of the valence band offset at hetero-
junction interfaces. In this method, the valence band offset (ΔEv) and
the conduction band offset (ΔEc) of heterojunction between Cu2O and
TiO2 can be calculated. Fig. 6(a), (b) and (c) show the XPS core-level
data of Cu2O, TiO2 and composite sample, respectively. Then, the data
which obtained in the figures was taken into Formula 3-5 for calcula-
tion.

= − − − +ΔE E E E E ΔE( ) ( )V Cu p V Cu Cu O Ti p V Ti TiO CL,2 , 2 ,2 , 2 (3)

= −ΔE E E( )CL Ti p Cu p Cu O TiO,2 ,2 2 @ 2 (4)

= − +ΔE E E ΔEC Cu O TiO V2 2 (5)

where, ΔEc is the main driving force for photoelectrons to transfer from
Cu2O to TiO2 [34]. As shown in Fig. 5(d), the sample has a higher ΔEc
value compared to Liu's work [35]. The result shows that Cu2O nano-
particles decorated TiO2 thin film has a large driving force, which is
helpful to enhance the separation and transfer of charge.

3.5. Photocatalysis

The photocatalytic performances of all samples were measured by
photocatalytic evaluation system under UV light irradiation. After 6 h
irradiation, the hydrogen yields of Cu2O and TiO2 was 1.63 μmol and
1.56 μmol, respectively (Fig. 7(a)). While the hydrogen generation of
TiO2 thin film decorated with Cu2O nanoparticles was 2.76 μmol, which
was 1.77 times than that of TiO2 single layer thin film. It indicates that

Fig. 7. The amount of H2 produced by (a) blank substrate, Cu2O, TiO2, Cu2O/TiO2 composite thin film and (b) Cu2O/TiO2 composite samples with different laser
powers in photocatalytic experiment under UV light irradiation. (c) Hydrogen yields of composite samples with different laser powers after 6 h UV irradiation. (d)
Ratio of Cu2O in decoration layers with different laser powers.
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the photocatalytic performance of TiO2 thin film has a great improve-
ment with the decoration of Cu2O nanoparticles. In general, the pho-
tocatalytic activity of Cu2O is weaker than that of TiO2 due to the large
differences of band gap energy and the carrier recombination between
Cu2O and TiO2 [28]. However, here the hydrogen yield of Cu2O is al-
most equivalent to that of TiO2. Because the decoration layer obtained
by laser ablation is featured with porous, resulting in a larger contact
surface for water splitting than that of thin film obtained by physical
vacuum deposition. Additionally, the heterojunction formed between
Cu2O and TiO2 provides a built-in electric field drive for electron-hole
separation [16,36]. According to the calculation results of both the
band gaps of single layer samples and the conduction band offsets of
heterojunction, the photoelectrons (generated from the Cu2O) are
transferred to the TiO2 because the CB of Cu2O is lower than that of
TiO2. The internal recombination of electron-hole is successfully re-
duced and charge separation is accelerated because of the high driving
force.

Reasonable control of laser power is also a key factor in the case of
fabricating the Cu2O nanoparticles decorated TiO2 composite thin film.
With the laser power increasing, the photocatalytic activity exhibits a
significant difference, as shown in Fig. 7(b). And the variation tendency
of hydrogen generation in composite samples is similar to that of Cu2O
ratios in the decoration layer (Fig. 7(c)). The hydrogen generation of
composite samples was enhanced with the power increasing to 3.2W. It
should be attributed to that a high power laser beam is able to ablate
more Cu2O nanoparticles on the surface of TiO2 thin film, leading to a
wide range of heterojunctions. Moreover, the composite sample, fab-
ricating with a higher laser power, has a better crystalline qualities of
(100) and (111) crystal orientations on the decoration layer, which is
beneficial to improve the photocatalytic efficiency [37–39]. Un-
fortunately, with the laser power further increasing, the photocatalytic
performance of composite sample abruptly decreased due to a reduced
proportion of Cu2O and an increase of charge trapping mechanism
[40,41].

4. Conclusion

In conclusion, the influence of decoration layer on the composition,
morphology, crystal quality and optical properties of TiO2 thin film
were investigated in this paper. SEM and optical microscope images
show that the decoration layer has a nanoparticle structure with pores,
and both ratio and quantity of Cu2O can be tuned by varying the laser
power. The heterojunction between the Cu2O nanoparticles and TiO2

thin film leads to a significant improvement of absorption. The hy-
drogen generation of Cu2O nanoparticles decorated TiO2 thin film is
1.70 and 1.77 times than those of Cu2O nanoparticles and TiO2 single
layer thin film under UV irradiation respectively, indicating that the
photocatalytic efficiency is obviously enhanced.
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