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a b s t r a c t 

Robust Cassie–Baxter wettability of a rough solid surface with micro-textures is a key fac- 

tor for stable hydrophobicity. Overlayed micro-textures are potentially more effective in 

ensuring the robustness of the surface properties, because of the layer-by-layer increase 

of the duty ratio and their effective approximation of the full hierarchy. However, a de- 

sign methodology that includes considering manufacturability is lacking. In this article, we 

address this deficiency and present a monolithic inverse design approach, composed of a 

series of topology optimizations, to derive micro-textures with hierarchy approximated by 

overlayed geometries. The optimization are implemented in a dimensionless manner using 

a periodic regular-polygon tiling of the plane, in which the corresponding dimensionless 

Young-Laplace equation is used to describe the physics at the liquid/vapor interface. Two 

sequential and neighboring optimization tasks are linked through the design domain of the 

downward layer, determined by a conformal extension of the physical density representing 

the pattern of the upward layer. This ensures the manufacturability e.g. for an overlayed 

lithography process. Layer-by-layer robustness enhancement is thereby achieved, and the 

capability to anchor the three-phase contact line after the collapse of the liquid/vapor in- 

terface supported by the upward layer. In generating the overlayed micro-textures, a rigor- 

ous scaling factor for the patterns was determined, leading to a recursion inequality based 

on the depth of the liquid/vapor interfaces at the critical static pressures that determines 

the extrusion distance of the patterns. The trace height and minimal aspect ratio of the 

micro-textures are specified by the scaling factor and extrusion distance for a layer. This 

allows a compromise between performance and manufacturability, and thereby avoid in- 

stabilities caused by elasto-capillary collapse of the micro-/nano-structures. We computa- 

tionally confirm the optimality by comparing the derived micro-textures with previously 

reported designs. 
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1. Introduction 

Wettability of a solid surface is determined by its geometrical morphology and surface free energy [1] . For a given sub-

strate, the wetting behavior is dominated by micro-textures, because micro-textures on a solid surface can effectively change

the surface free energy. On a solid surface with micro-textures, two different solid/liquid contact modes can exist, i.e., the

Wenzel and Cassie–Baxter modes [2,3] . In the Wenzel mode, the liquid completely fills the micro-textures; in the Cassie–

Baxter mode, vapor pockets are trapped by the liquid/vapor interface supported by the micro-textures, so that the solid

surface presents to the liquid a composite of solid and vapor patches. The solid/liquid contact mode can transfer from a

Cassie–Baxter case to the Wenzel case, when the liquid is physically pressed into the cavities [4,5] . In this mode transition

process, the surface free energy decreases along with the liquid filling the micro-textures. The access to controlled wettabil-

ity profiles via the Cassie–Baxter mode has numerous applications in the areas of micromechanics [6] , super-hydrophobicity

[7] , anti-drag [8] , lubrication [8,9] , microelectromechanical systems [10] , microfluidics [11] , electrohydrodynamics [12] , sep-

aration of oil and water [13,14] , self-cleaning coatings [15] , etc. Therefore, it would be advantageous to bring rational design

to wettability texturing. 

The use of artificial micro-textures for Cassie–Baxter modes on a solid surface has been previously reported. To create

micro-textures, circular posts, square posts, and tapered-cone structures are widely used periodic units [16–21] . Inspired

by nature, e.g., lotus leaves and water-strider legs, bio-inspired hierarchical micro-textures have been variously discussed

in [22–29] , and have been extended for use in liquid-solid adhesion [30] . The theory, design, and applications for micro-

textures have been summarized in [31] ; especially, the inverse design method has been developed for micro-textures with

a single-layer instead of an overlayed geometry [32,33] . Compared to micro-textures formed from posts with regular cross-

sections, hierarchical micro-textures are potentially more robust and effective, because of their hierarchy with the affordabil-

ity for multiple critical static pressure. The periodic units of hierarchical micro-textures usually have complicated geomet-

rical configurations, and hence bottom-up processes (e.g. self-assembly) have been developed for their fabrication [34,35] .

In contrast, fully developed and overlayed photolithography-like top-down processes can ensure more accurate and con-

sistent periodic units of the hierarchical micro-texture [36] . The overlayed geometry for the corresponding process is an

effective approximation for the full hierarchy. The degree of approximation can be enhanced by increasing the number of

layers. To date, a rational design procedure is lacking that specifically targets the overlayed manufacturability of hierarchi-

cal morphologies for widely available photolithography-like manufacturing processes. Therefore, this article addresses this 

deficiency, by focusing on achieving a novel inverse design tool, in which the geometrical configurations in the overlayed

hierarchy are obtained from a monolithic inverse design approach composed of a series of sequentially implemented and

coupled topology optimizations. 

Topology optimization, a full-parameter method, can inversely determine the geometrical configurations of structures 

[37] . In contrast to designing devices by tuning a handful of structural parameters, it utilizes a continuous parameter space

to design structures solely based on the users’ specification of the desired structural performance. Thereby, topology opti-

mization can inversely and simultaneously find a reasonable structural shape and topology. It is thus a more general com-

putational design method than mere shape optimization, which usually improves the performance of a device by adjusting

the structural boundaries, keeping the topology of the structure invariant. On the other hand, topology optimization can

also ensure the manufacturability of the found structure through the use of additional constraints [38] . And this method

has been extended to multiple physical problems, e.g. acoustics, electromagnetics, fluidic dynamics, optics, thermodynamics, 

and material design problems [39–51] . It will therefore be our chosen methodology for designed wetting behaviour. 

The rest of this article is organized as follows. In Section 2 , the inverse design method is introduced for the periodic units

of the micro-textures with overlayed-lithography manufacturability. In Section 3 , the micro-textures with overlayed geome-

tries are derived and discussed. It is concluded in Section 4 , acknowledged in Section 5. and appendixed in Appendix A.1 . 

2. Method 

Because micro-textures on a solid surface usually exist with some degree of periodicity [52] , this aspect is now consid-

ered for wettability in the Cassie–Baxter mode. For the regular-polygon periodicity of the pattern, either a regular triangle,

a quadrangle, or a hexagon can be used to completely tile a flat solid surface without overlap, where the regular-triangle

tiling involves a rotation in addition to a translation operation ( Fig. 1 ). The three periodic units can be further reduced to

three differently shaped irreducible triangles in normalized size, based on the given symmetries ( Fig. 2 ). By considering

the performance and overlayed lithography-like manufacturability of the micro-textures, the inverse design is sequentially

implemented on each irreducible triangular-domain, in order to achieve patterns of layers in a ceiling-to-floor order. The

geometrical configuration of the final micro-textures is then obtained by reflection, scaling, extrusion, piling and paving op-

erations of the computed patterns, and this generation procedure is demonstrated in Appendix A.1 . In this procedure, the

pattern for the ceiling layer featuring the smallest duty ratio is inversely designed firstly. Subsequently, a pattern for next

down remaining layer is inversely designed in a domain obtained by removing the subdomain formed by a conformal lateral

extension of the pattern from the upward neighboring layer. The conformal extension is utilized to implement a sidestep

between the two neighboring layers, for which extrusion and pile operations are implemented. The sidestep will anchor the

three-phase contact lines at each position without having branch micro-textures connected, to ensure that a liquid/vapor

interface is completely suspended by the corresponding layer. This procedure will also ensure that the ceiling layer, with
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Fig. 1. Demonstration of the tiling of a flat solid surface, using a regular (a) triangle, (b) quadrangle, (c) and hexagon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the smallest duty ratio, features an optimal performance and robustness of the Cassie–Baxter mode, but which increases

layer-by-layer because of the additional incremental duty ratios in the ceiling-to-floor direction. 

2.1. Modeling based on topology optimization method 

For wetting behavior in the Cassie–Baxter mode, with a liquid/vapor interface loaded to a fixed static pressure, the rea-

sonability of a given micro-texture can be measured by the liquid-bulge volume supported on the liquid/vapor interface. A

smaller liquid-bulge volume corresponds to a more robust Cassie–Baxter mode. A larger liquid-bulge volume could threaten

to overwhelm the surface tension, resulting in the wetting of the entire solid surface. Therefore, the micro-textures on a solid

surface should be inversely designed by finding the surface topology that minimizes the liquid-bulge volume suspended on

the liquid/vapor interface. 

Under equilibrium conditions, the liquid/vapor interface suspended on the periodic micro-texture is a two-dimensional

(2D) manifold with constant Riemann curvature, and can be described by the dimensionless Young-Laplace equation defined

on one of the irreducible triangles in Fig. 2 [53,54] : 

∇ ·

⎛ 

⎝ σ̄
∇ ̄z ( i ) √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 
⎞ 

⎠ = 1 , in �

σ̄
∇ ̄z ( i ) √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 · n = 0 , on ∂�

z̄ ( i ) = 0 , at O (1)

where z̄ (i ) = z (i ) /z 0 , i ∈ { 1 , 2 , . . . , N} is the normalized vertical coordinate of the interface supported by the i th layer of the

overlayed micro-texture, with z ( i ) representing the magnitude of the original vertical coordinate and N representing the

number of layers; L is the lattice constant of the periodic unit, and is defined to be the center-to-center distance between

two neighboring periodic units; σ̄ = σ/ (LP ) is the dimensionless surface tension, with σ the surface tension and P the static

pressure at the liquid/vapor interface; ∇ is the gradient operation defined on the xOy plane, with O the coordinate origin; �

is an irreducible triangular-domain; n is the outward unit normal on the boundary. To ensure uniqueness of the solution, the

liquid/vapor interface is constrained at the coordinate origin, which simultaneously is the minimal constraint introduced for

Eq. (1) . The liquid/vapor interfaces described by Eq. (1) are constant-curvature 2D manifolds defined on the three irreducible

triangles, as sketched in Fig. 3 . 

Based on the above mathematical description, the boundaries of the liquid/vapor interface are completely localized in the

xOy plane. This interface is a 2D manifold with uniform convexity, which can be measured by the volume enclosed by the

interface and the xOy plane, i.e., the liquid-bulge volume supported by the micro-texture over an irreducible triangle. This

volume is calculated to be z 0 L 
2 | ∫ � z̄ (i ) d�| . | ∫ � z̄ (i ) d�| and ( 

∫ 
� z̄ (i ) 2 d�) 

1 
2 are two different norms of z̄ (i ) ∈ H(�) , where

H(�) is the first order Hilbert functional space defined on �. According to the equivalence of norms [55] , | ∫ � z̄ (i ) d�| 2 is

equivalent to 
∫ 

z̄ (i ) 2 d�; hence, minimizing 
∫ 

z̄ (i ) 2 d� is equivalent to enhancing the robustness of the Cassie–Baxter mode.
� �
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Fig. 2. Irreducible triangular-domains (represented by �) of dimensionless counterparts corresponding to tiles in the shape of a regular (a) triangle, (b) 

quadrangle, and (c) hexagon. 

Fig. 3. Sketch of the liquid/vapor interfaces described by Eq. (1) defined on the three irreducible triangles in Fig. 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the well-posed expression 

∫ 
� z̄ (i ) 2 d�/ | �| , defined as liquid-bulge measurement, is preferred for the minimiza-

tion, where | �| represents the area of �. 

A series of variational problems can be constructed based on the topology optimization method, to determine the pat-

tern for individual layers of the micro-textures. In the variational problem, design variables are defined on the irreducible

triangles to represent the layered patterns of the micro-textures, by interpolating the dimensionless surface tension; they

are valued continuously in [0, 1], with 0 and 1 respectively representing micro-texture and blankness. The number of de-

sign variables is the same as that of the number of layers in the micro-texture. Each variational problem can be iteratively

solved using a numerical optimization procedure. The design variables are penalized and converged to binary distributions,

corresponding to the seeked patterns. To ensure the numerical stability, we smooth the design variables using a Helmholtz

filter [56] ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

−∇ ·
(

r 2 
f 
∇γ ( i ) 

f 

)
+ γ ( i ) 

f 
= γ ( i ) , in �

−r 2 
f 
∇γ ( i ) 

f 
· n = 0 , on ∂�

γ ( i ) 
f 

= 0 , at O. 

(2) 

Furthermore, the smoothed design variables are projected by the threshold method [57,58] 

γ ( i ) 
p = 

tanh ( βξ ) + tanh 

(
β
(
γ ( i ) 

f 
− ξ

))
tanh ( βξ ) + tanh ( β( 1 − ξ ) ) 

, (3) 

where γ ( i ) is the design variable for the i -th layer of the micro-texture; γ ( i ) 
f 

and γ ( i ) 
p are the filtered and projected counter-

parts of γ ( i ) ; r f is the radius of the Helmholtz filter, and it is used to control the feature size of the micro-textures; β and

ξ are the projection parameters with values chosen based on numerical experiments [58] . The projected design variables

replace the design variables to implement the interpolation of the surface tension: 

σ̄ = σ̄l + ( ̄σs − σ̄l ) 

q 

(
1 − S ( i ) γ ( i ) 

p 

)
q + S ( i ) γ ( i ) 

p 

, (4) 

where 1 − S ( i ) γ ( i ) 
p is the physical density for the i th layer of the micro-texture; S ( i ) is a binary distribution used to indicate

the design domain of the i th layer; it is 0 on the non-designable domain of the i th layer, and 1 on the complementary
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Fig. 4. Sketch of the indicator for the design domain of the i th layer of a micro-texture, where the indicator is determined by a conformal extension of the 

pattern corresponding to the physical density for the ( i − 1 )th layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domain; σ̄l is the dimensionless surface tension at the liquid-vapor interface; σ̄s is the dimensionless surface tension at

the top of the micro-texture; q is the parameter used to tune the convexity of this interpolation, and it is valued to be

10 −4 based on numerical tests. Theoretically, σ̄s should be infinite to approximate a flat liquid-solid interface; numerically,

it is chosen to have a finite value of 10 5 σ̄l , satisfying σ̄s � σ̄l , to ensure the stability of the numerical implementation. The

indicator S ( i ) is determined by a conformal extension of the pattern corresponding to S ( i −1 ) γ ( i −1 ) 
p for the ( i − 1 )-th layer of

the micro-texture, where the duty ratio of the extended part is � f ( 
i −1 ) 

s ( Fig 4 ). For the ceiling layer with i = 1 , the indicator

is set to S (i ) | ∀ x ∈ � = 1 with � f ( 
0 ) 

s = 0 . For the other layers, it is determined by a heuristic bisection-procedure described in

Appendix A.2 . 

Based on the presented method, the variational problem used to inversely design the patterns for the overlayed micro-

textures is constructed to be a topology optimization sequence: 

For i = 1 , 2 · · · N, 

find γ ( i ) ( x ) ∈ [ 0 , 1 ] with ∀ x ∈ �, 

to minimize J ( i ) 

J 0 
with J ( i ) = 

1 
| �| 

∫ 
� z̄ ( i ) 

2 

d�, constrained by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∇ ·
( 

σ̄ ∇ ̄z ( i ) √ 

( L/z 0 ) 
2 + | ∇ ̄z ( i ) | 2 

) 

= 1 , in �

σ̄ ∇ ̄z ( i ) √ 

( L/z 0 ) 
2 + | ∇ ̄z ( i ) | 2 · n = 0 , on ∂�

z̄ ( i ) = 0 , at O 

( Young − Laplace equation ) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

−∇ ·
(

r 2 
f 
∇γ ( i ) 

f 

)
+ γ ( i ) 

f 
= γ ( i ) , in �

−r 2 
f 
∇γ ( i ) 

f 
· n = 0 , on ∂�

γ ( i ) 
f 

= 0 , at O 

( Helmholtz filter ) 

γ ( i ) 
p = 

tanh ( βξ ) + tanh 

(
β
(
γ ( i ) 

f 
−ξ
))

tanh ( βξ ) + tanh ( β( 1 −ξ ) ) 
( Threshold projection ) ∣∣∣ f ( 

i ) 
d 

− f ( 
i ) 

0 

∣∣∣ ≤ 10 

−3 , with f ( 
i ) 

d 
= 

1 
| �| 

∫ 
� 1 − S ( i ) γ ( i ) 

p d� ( Duty ratio ) 

(5)

where a duty-ratio constraint is imposed on the i th layer of the micro-texture, with f ( 
i ) 

d 
representing the duty ratio and

f ( 
i ) 

0 
∈ ( 0 , 1 ) representing the specified duty ratio with a permitted tolerance of 10 −3 ; J 0 is the liquid-bulge measurement

value corresponding to the periodic regular triangle, quadrangle or hexagon posts with specified duty ratio f ( 
1 ) 

0 
. The

patterns in the reduced triangular-domains can be inversely designed sequentially for the micro-textures from its ceiling to

floor layer, by solving the variational problem in Eq. (5) with a specified duty-ratio f ( 
i ) 

0 
on a corresponding design domain

indicated by S ( i ) as obtained from the extension of the pattern corresponding to S ( i −1 ) γ ( i −1 ) 
p . 

2.2. Analyzing the variational problem 

To solve the variational problem in Eq. (5) , a gradient-based iterative procedure can be used, where the gradient of the

liquid-bulge measurement and duty ratio can be found by a Lagrangian multiplier-based adjoint method [59] . The gradient
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of the liquid-bulge measurement is 

δJ ( i ) 

J 0 
= 

1 

J 0 

∫ 
�

−γ ( i ) 
fa 

δγ ( i ) d� (6) 

where δJ ( i ) and δγ ( i ) are the first-order variations of J ( i ) and γ ( i ) , respectively; γ ( i ) 
fa 

is the adjoint variable of the filtered de-

sign variable γ ( i ) 
f 

. γ ( i ) 
fa 

in Eq. (6) is found by sequentially solving the weak adjoint equations of the Young–Laplace equation

and Helmholtz filter: 

Find z̄ ( 
i ) 

a ∈ H ( �) with z̄ ( 
i ) 

a = 0 at O, satisfying 

∫ 
�

2 

| �| z̄ 
( i ) ˜ z̄ ( 

i ) 
a − σ̄

∇ ̄z ( 
i ) 

a · ∇ ̃

 z̄ ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 + σ̄

(
∇ ̄z ( i ) · ∇ ̄z ( 

i ) 
a 

)(
∇ ̄z ( i ) · ∇ ̃

 z̄ ( 
i ) 

a 

)
(√ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 )3 

d� = 0 , ˜ z̄ ( 
i ) 

a ∈ H ( �) ; (7) 

Find γ ( i ) 
fa 

∈ H ( �) with γ ( i ) 
fa 

= 0 at O, satisfying ∫ 
�

r 2 f ∇ γ ( i ) 
fa 

· ∇ ̃  γ ( i ) 
fa 

+ γ ( i ) 
fa 

˜ γ ( i ) 
fa 

− ∂ σ̄

∂γ ( i ) 
p 

∂γ ( i ) 
p 

∂γ ( i ) 
f 

∇ ̄z ( i ) · ∇ ̄z ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 ˜ γ ( i ) 

fa 
d� = 0 , ˜ γ ( i ) 

fa 
∈ H ( �) . (8) 

where z̄ (i ) 
a and γ (i ) 

fa 
are the adjoint variables of z̄ (i ) and γ (i ) 

f 
, respectively; ˜ z̄ (i ) 

a and ˜ γ (i ) 
fa 

are the test functions of z̄ (i ) 
a and γ (i ) 

fa 
,

respectively. The gradient of the duty ratio is found to be 

δ f (i ) 
d 

= 

∫ 
�

−γ (i ) 
fa 

δγ (i ) d� (9) 

where δ f ( 
i ) 

d 
is the first-order variation of the duty ratio f ( 

i ) 
d 

; γ ( i ) 
fa 

is found by solving the weak adjoint equation of the

Helmholtz filter: 

Find γ ( i ) 
fa 

∈ H ( �) with γ ( i ) 
fa 

= 0 at O, satisfying ∫ 
�

r 2 f ∇ γ ( i ) 
fa 

· ∇ ̃  γ ( i ) 
fa 

+ γ ( i ) 
fa 

˜ γ ( i ) 
fa 

− S ( i ) 
∂γ ( i ) 

p 

∂γ ( i ) 
f 

˜ γ ( i ) 
fa 

d� = 0 , ∀ ̃  γ ( i ) 
fa 

∈ H ( �) . (10) 

More details for the adjoint analysis have been provided in Appendix A.3 . 

2.3. Solving the patterns 

The inverse design procedure was implemented as outlined by the pseudo codes in Table 1 , where a main loop in

Table 1 a includes two sub-loops in Table 1 b and c, i.e., one for the heuristic bisection procedure used to determine the

indicators of the design domains ( Table 1 b), and the other one for the iterative solution of the variational problem in

Eq. (5) ( Table 1 c). The finite element method is utilized to solve the relevant partial differential equations and correspond-

ing adjoint equations. Triangular elements with maximal size 1/240 are used to discretize the irreducible triangular-domains

shown in Fig. 2 . The finite element solver can be implemented by choosing a finite element software package which includes

a nonlinear solver. In the inverse design procedure, the projection parameter β with initial value 1 is doubled after every

30 iterations, for each layer of the micro-texture; the sub-loop to solve the variational problem in Eq. (5) is stopped when

the maximal iteration number is reached, or if the averaged variation of the design objective in continuous 5 iterations and

the residual of the duty-ratio constraint are simultaneously less than the specified tolerance 10 −3 . The design variable is

updated using the method of moving asymptotes (MMA) [60] . 

2.4. Generating the overlayed micro-textures 

By the procedure outlined in Table 1 , the patterns for all layers of the micro-textures can be obtained. In each instance,

they are represented by the physical density in the dimensionless irreducible-triangles. The final patterns for the micro-

textures are generated by reflections, scalings, extrusions, and pile-ups of these patterns. Based on such a series of opera-

tions, each layer has a quasi three-dimensional configuration with an extruding geometry; the pattern of the current layer

is a subset of that of its downward layer; this arrangement is ensured by the indicators of the design domains. Therefore,

the micro-textures have overlayed geometry guaranteeing the manufacturability using an overlayed photolithography pro- 

cess [36] . Before generating the overlayed micro-textures based on the computed patterns, a scaling factor and extrusion

distance need be determined. 
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Table 1 

(a) Pseudocode for the inverse design of a overlayed micro-texture. In the inner loop for 

the iterative solution of the variational problem in Eq. (5) , n sub is the loop-index, and n sub 
max 

is the maximal value of n sub . (b) Pseudocode for a heuristic bisection procedure used to 

determine the indicators of the design domains. (c) Pseudocode for an iterative solution of 

the variational problem in Eq. (5) , where J ( 
i ) 

n sub is the value of J ( i ) in the n sub th iteration, and 

mod is the operator used to take the remainder. 

(a) Main loop 

Choose σ̄l , N , 
{

f ( 
1 ) 

0 
, f ( 

2 ) 
0 

, . . . , f ( 
N ) 

0 

}
, 
{
� f ( 

0 ) 
s , � f ( 

1 ) 
s , . . . , � f ( 

N−1 ) 
s 

}
with � f ( 

0 ) 
s = 0 ; 

Set n sub 
max ← 327 and i ← 1; 

loop 

Set γ ( i ) ← f ( 
i ) 

0 
, n sub ← 1, ξ ← 0.5 and β ← 1; 

if i == 1 , 

S ( i ) ( x ) = 1 , for ∀ x ∈ �; 

else 

Set r S max ← 1 and r S min ← 0; 

sub-loop 1 in Table 1b; 

end ( if ) 

sub-loop 2 in Table 1c; 

if i == N, 

break; 

else i ← i + 1 ; 

end ( if ) 

end ( loop ) 

(b) Sub-loop 1 

sub-loop 1 

Set r S ← ( r S max + r S min ) / 2 ; 

Solve Eq. (19) to derive S ( i ) ; 

Compute S ( i ) from Eq. (20) and calculate A E = 

∫ 
� S ( i ) d�; 

if 

∣∣∣(A E −
∫ 
� S ( i −1 ) γ ( i −1 ) 

p d�
)

− � f ( 
i −1 ) 

s 

∣∣∣/ 

� f ( 
i −1 ) 

s ≤ 1 × 10 −3 , 

break; 

elseif A E > 

∫ 
� S ( i −1 ) γ ( i −1 ) 

p d�, 

r S max ← r S ; 

else r S min ← r S ; 

end ( if ) 

end ( sub-loop 1 ) 

(c) Sub-loop 2 

sub-loop 2 

Derive γ ( i ) 
p by filtering and projecting γ ( i ) , and compute f ( 

i ) 
d 

; 

Solve z̄ ( i ) and evaluate J ( 
i ) 

n sub ; 

Solve z̄ ( 
i ) 

a and γ ( i ) 
fa 

from equations 9 and 10, and evaluate δJ ( i ) /J 0 from equation 8; 

Solve γ ( i ) 
fa 

from equation 12, and evaluate δ f ( 
i ) 

d 
from equation 11; 

Update γ ( i ) based on δJ ( i ) /J 0 and δ f ( 
i ) 

d 
; 

if mod 
(
n sub , 30 

)
== 0 and n sub > 0 

β ← 2 β; 

end ( if ) 

if 
(
n sub == n sub 

max 

)
or (

β == 2 10 , 1 
5 

∑ 4 
m =0 

∣∣∣J ( i ) n sub − J ( 
i ) 

n sub −m 

∣∣∣/ 

J 0 ≤ 10 −3 , and 

∣∣∣ f ( 
i ) 

d 
− f ( 

i ) 
0 

∣∣∣ ≤ 10 −3 

)
break; 

end ( if ) 

n sub ← n sub + 1 

end ( sub-loop 2 ) 

 

 

 

 

 

 

 

 

2.4.1. Scaling factor 

The scaling factor can be determined based on a scaling property of the pattern, which follows from a solution property

of the dimensionless Young–Laplace Eq. (1) : 

z̄ ( 
i ) 

l s 
( l s x ) = l s ̄z 

( i ) ( x ) , ∀ x ∈ � and ∀ l s x ∈ �l s . (11)

where l s is the scaling factor, and z̄ (i ) 
l s 

is the liquid/vapour interface on the scaled domain �l s = 

{
x ′ : x ′ = l s x , ∀ x ∈ �

}
, i.e.,

a solution of the dimensionless Young-Laplace equation defined on �l s . Under the precondition of constant σ̄l = σl / ( LP ) ,

with σ l representing the liquid surface tension, the desired working pressure corresponding to l s is P ( l s ) = LP/l s . Then, a

smaller scaling factor will achieve more robust Cassie–Baxter mode. However, the overlayed photolithography process phys-

ically fixes the feasible minimum feature size of a pattern. Therefore, a lower bound of the scaling factor corresponds to a

manufacturability constraint, and is determined based on a feasible minimum feature size. 

On the other hand, because a scaled pattern should retain the dominant role of the surface tension in suspending the

liquid, its surface-to-volume ratio should be much larger than one. Hence, the scaling factor should satisfy 
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Fig. 5. Inversely design patterns corresponding to each layer of a micro-texture. To the right, the micro-textures are assembled into surface patterns. 

 

 

 

 

 

 

 

 

 

l s 
 min 

i ∈{ 1 , 2 , ... ,N} 
S (i ) 

c 

V 

(i ) 
c 

(12) 

where S (i ) 
c = 

∫ 
�

√ 

1 + |∇ ̄z (i ) 
c | 2 d� and V (i ) 

c = | ∫ � z̄ (i ) 
c d�| are respectively the surface area and bulk volume of the liquid

bulges, with z̄ (i ) 
c representing the liquid/vapor interface corresponding to the critical static pressure P (i ) 

c for the i th layer

of the micro-texture. As a performance criterion of the computed micro-texture, the critical static pressure P (i ) 
c can be de-

termined according to the fact that the maximal value of the contact angle at the sidewalls of the i th layer is not larger than

its crucial advancing value, when the three-phase contact lines are anchored at the boundary of the upper level surface of

the i th layer: 

sup 

x ∈ ∂ N (i ) \ ∂ �
θ ( i ) ( x ) ≤ θA , i ∈ { 1 , 2 , . . . , N } . (13) 

Here, N 

(i ) ⊂ � is the null space of S (i ) γ (i ) 
p > 1 / 2 at the minimum liquid-bulge measurement of the liquid/vapor interface,

i.e., 

N 

(i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

⎧ ⎨ 

⎩ 

x ∈ � : 

⎛ 

⎝ S ( i ) γ ( i ) 
p 

∣∣∣
arg min 
γ ( i ) ∈ [ 0 , 1 ] 

J ( i ) 
> 

1 
2 

⎞ 

⎠ ∈ { 0 } ⊂ { 0 , 1 } 
⎫ ⎬ 

⎭ 

, i ∈ { 1 , 2 · · · N } 

�, i ∈ { N + 1 } 
(14) 

and 1/2 is the average of the elements in {0, 1}. The contact angle 

θ (i ) (x ) = π − cos −1 

( 

∇ ̄z ( i ) ∣∣∇ ̄z ( i ) 
∣∣ · n N ( i ) 

) 

, ∀ x ∈ ∂ N 

( i ) \ ∂ � (15) 

is formed at the boundary of the i -th layer, with n N ( i ) representing the outward unit normal at the boundary of N 

( i ) ;

for micro-textures with known material, θA is the critical advancing contact angle, and its value is usually found from

experimental tests. Notably, θA is equal to its equilibrium counterpart, when the sidewalls are regarded to be smooth and

chemically homogeneous; otherwise, it is larger in the hydrophobic case. 



Y. Deng, Z. Liu and Y. Wang et al. / Applied Mathematical Modelling 74 (2019) 621–640 629 

Fig. 6. Computed distribution of the normalized vertical coordinate of the liquid/vapor interface supported on the inversely designed micro-textures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The critical static pressure P ( 
i ) 

c and the corresponding liquid/vapor interface z̄ ( 
i ) 

c is determined by the heuristic bisection

method with an upper bound found by a double procedure, described in Appendix A.4 . It can be concluded that the critical

static pressure satisfies P ( 
1 ) 

c < P ( 
2 ) 

c < · · · < P ( 
N ) 

c , because the robustness of the Cassie–Baxter mode progressively increases

along with the ceiling-to-floor enlargement of the duty ratio. 

After finding the critical static pressures and their corresponding liquid/vapor interfaces, the scaling factor can be evalu-

ated; a reasonable scaling factor finds a compromise between the robustness of the Cassie–Baxter mode and manufactura-

bility of the overlayed micro-textures. 

2.4.2. Extrusion distance 

The extrusion distance for every layer of the scaled pattern can be large enough to avoid a collapse of the Cassie–Baxter

mode. This collapse would be caused by the liquid/vapour interface touching the surface or walls of the micro-texture

terraces before the working pressure has reached its critical static value. The extrusion distance of the current layer is

commonly determined by that of the higher up layers and the depth suprema of the liquid/vapor interfaces suspended over

the difference sets of the current pattern and its downward neighbor terraces. Thus, the extrusion distance d ( 
i ) 

e = 

l s 
L z 0 d̄ 

( i ) 
e of

the i th layer should be chosen with d̄ ( 
i ) 

e satisfying the following recursion inequality: 

d̄ ( 
i ) 

e > max 
n ∈ { 1 , 2 ···i } 

{ 

sup 

x ∈N ( i +1 ) \N ( i ) 
∣∣z̄ ( n ) c 

∣∣−
i −n ∑ 

k =1 

d̄ ( 
k ) 

e 

} 

, i ∈ { 1 , 2 · · · N } , (16)

where sup is the supremum operator; d̄ ( 
i ) 

e is the normalized counterpart of the extrusion distance for the scaled patterns.

More details on this recursion inequality are provided in Appendix A.5 . 

Based on the determined scaling factor and extrusion distance, the aspect ratio can be evaluated for the micro-textures,

and it is another important index used to characterize the manufacturability. Because the pattern has a dimensionless fea-

ture size of the magnitude of the filter radius r f , the scaled pattern of the i th layer has a feature size of the magnitude of

l s r f . Because the condition 

max 
n ∈ { 1 , 2 ···N } 

{
sup 

x ∈ �

∣∣z̄ ( n ) c 

∣∣} > max 
n ∈ { 1 , 2 , ... ,i } 

{ 

sup 

x ∈N ( i +1 ) \N ( i ) 
∣∣z̄ ( n ) c 

∣∣−
i −n ∑ 

k =1 

d̄ ( 
k ) 

e 

} 

, i ∈ { 1 , 2 , . . . , N } (17)
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Fig. 7. Convergence history of the iterative solution process, corresponding to the designs of Fig. 5 . A step downward in the curve correspond to the 

hierarchy achieved by the conformal deviation. Snapshots of the evolved density topology are shown as inserts; at the downward steps the conformal 

pattern extension is also illustrated. 

 

 

is satisfied, the normalized extrusion distance d̄ (i ) 
e can be approximated to be within the magnitude of

max n ∈{ 1 , 2 ···N} { sup x ∈ � | ̄z (n ) 
c | } , which in turn is within the magnitude of r f . Therefore, the aspect ratio of the i th layer of

the micro-textures can be approximated as 

R 

( i ) 
a ∼ 1 

z 0 d̄ 
( i ) 
e /r f ∼

1 

z 0 < 1 , i ∈ { 1 , 2 , . . . , N } . (18) 

L L 
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Fig. 8. Plots (a), (c), and (e) show the critical static pressures in the unit of σ l / L versus different values of the critical advancing contact angle. Plots (b), 

(d) and (f) describe the feasible regions for the scaling factors. The rows correspond to each of the three tiling patterns. 



632 Y. Deng, Z. Liu and Y. Wang et al. / Applied Mathematical Modelling 74 (2019) 621–640 

Fig. 9. Plots for the critical static pressures in the unit of σ l / L versus different values of the critical advancing contact angle, respectively for the derived 

micro-textures and the ones composed of hierarchical posts with regular-polygonal and circular cross sections. 

Table 2 

Parameters used for solving the 

variational problem in Eq. (5) . 

σ̄l r f L z 0 

1 4/120 10 μm 1 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Eq. (18) , it can be concluded that an inversely designed overlayed micro-texture features favourable manufacturability

from the viewpoint of aspect ratio. The trace height due to this aspect-ratio is a reason for terming the periodic micro-

texture as artificial roughness . 

3. Results and discussion 

In this section, the overlayed micro-textures are numerically investigated for their wetting behavior in the Cassie–

Baxter mode. Under the manufacturing constraint of overlayed photolithography, the micro-textures with triple lay-

ers are inversely designed by the method introduced in Section 2 , for which the design parameters are chosen to

be 

N = 3 , 
{

f ( 
1 ) 

0 
= 0 . 1 , f ( 

2 ) 
0 

= 0 . 3 , f ( 
3 ) 

0 
= 0 . 6 

}
, 
{
� f ( 

0 ) 
s = 0 , � f ( 

1 ) 
s = 0 . 1 , � f ( 

2 ) 
s = 0 . 2 

}
, 

along with those listed in Table 2 . For the three types of periodicity demonstrated in Fig. 1 , the patterns for each layer of the

micro-textures shown in Fig. 5 are obtained by solving the variational problem in Eq. (5) . The distributions of the normalized

vertical coordinate of the liquid/vapor interfaces supported on the derived patterns are shown in Fig. 6 . The convergence

histories of the iterative solutions, and corresponding density pattern evolutions, are shown in Fig. 7 , which indicates that

the convergence is essentially monotonic. Therefore, the robustness of the iterative solution procedure is conformed. In

Fig. 7 , local jumps and downward steps exist; local jumps are caused by the double operation of the projection parameter

β; and downward steps correspond to the liquid-bulge volume decrease along with the duty-ratio increase caused by the

conformal extension of the pattern, where the hierarchy is achieved by the conformal deviation. 

After the patterns are obtained, the periodic units of the triple-layered micro-textures are generated as shown in Fig. 5 ,

using the procedures demonstrated in Appendix A.1 . The scaling factor and extrusion distance should be determined in

advance of texture-generation. The critical static pressures are computed for the patterns by the procedure sketched in

Appendix A.4 . For different critical advancing contact angles, the derived critical static pressures in the unit of σ l / L are

plotted in Fig. 8 a, c and e. A range of the advancing contact angle can be targeted through specific choice of materials
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Fig. 10. Overlayed micro-textures are flexible on enhancing the manufacturability by removing a lower layer to reduce the number of manufacturing steps, 

with keeping the performance of the remaining layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the micro-textures. It is noted that the critical static pressure of each layer increases in the ceiling-to-floor direction.

This corresponds to the improvement in robustness of the Cassie–Baxter mode brought by each additional layer. It can

also be concluded that the critical static pressure increases along with an enlargement of the advancing contact angle. This

is because that a larger advancing contact angle corresponds to a critical liquid/vapor interface with larger curvature and

hence larger critical static pressure. Sequentially, the scaling factor and extrusion distance can be determined based on the

geometrical properties of the critical liquid/vapor interface corresponding to a given advancing contact angle. 

For the scaling factor, the surface-volume ratios are computed for the critical liquid/vapor interfaces, supported on their

corresponding layers of the micro-textures. For each periodic pattern, the minimal surface-volume ratio corresponding to

different layers are plotted for a range of advancing contact angles, shown in Fig. 8 b, d, and f. To reduce the scaling factor

to far below the minimal surface-volume ratio, the upper limit of l s is set to be 10 −5 -fold of its corresponding minimal

surface-volume ratio. The lower limit is set to be 10 −6 , corresponding to a lattice constant of 1 μ m, which is feasible for

an electron-beam lithography process. With these parameters, the scaling factor can be determined in the feasible regions

marked in Figure 8 b, d, and f. 

For the extrusion distance, the recursion inequality in Eq. (16) , detailed in Appendix A.5 , can be computed based on

the depth of the critical liquid/vapor interfaces. As demonstrated by Fig. 8 a, c, and e, the depth of the critical liquid/vapor

interface increases along with the enlargement of the critical advancing angle, because of the increase of the critical static
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Fig. 11. Sketch of the inverse design procedure for overlayed micro-textures with the regular-triangle (a), regular-quadrangle (b) and regular-hexagon (c) 

tiling. 
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Fig. 12. Profile sketch illustrating the recursion inequality ( Eq. (16) ) for an extrusion distance of the pattern for the i th layer of the micro-texture. 

Table 3 

Recursion inequalities for the normalized extrusion distance 

of the derived patterns shown in Fig. 5 . 

(a) Recursion inequalities for the patterns in Fig. 5 a. 

d̄ ( 
1 ) 

e > 0 . 0535 

d̄ ( 
2 ) 

e > max 
{

0 . 0404 − d̄ ( 
1 ) 

e , 0 . 0301 
}

d̄ ( 
3 ) 

e > max 
{

0 . 0542 − d̄ ( 
2 ) 

e − d̄ ( 
1 ) 

e , 0 . 0372 − d̄ ( 
1 ) 

e , 0 . 0132 
}

(b) Recursion inequalities for the patterns in Fig 5 b. 

d̄ ( 
1 ) 

e > 0 . 0656 

d̄ ( 
2 ) 

e > max 
{

0 . 0663 − d̄ ( 
1 ) 

e , 0 . 0313 
}

d̄ ( 
3 ) 

e > max 
{

0 . 0671 − d̄ ( 
2 ) 

e − d̄ ( 
1 ) 

e , 0 . 0321 − d̄ ( 
1 ) 

e , 0 . 0135 
}

(c) Recursion inequalities for the patterns in Fig 5 c. 

d̄ ( 
1 ) 

e > 0 . 0927 

d̄ ( 
2 ) 

e > max 
{

0 . 0975 − d̄ ( 
1 ) 

e , 0 . 0394 
}

d̄ ( 
3 ) 

e > max 
{

0 . 0980 − d̄ ( 
2 ) 

e − d̄ ( 
1 ) 

e , 0 . 0413 − d̄ ( 
1 ) 

e , 0 . 0112 
}

 

 

 

 

 

 

 

pressure. Therefore, the critical liquid/vapor interfaces are set to be the ones corresponding to the critical advancing angle

150 ◦. In this case, the derived extrusion distance can ensure that the micro-textures are effective for materials with inher-

ent critical advancing angle smaller than 150 ◦. Furthermore, the extrusion distance, normalized by l s 
L z 0 , should satisfy the

inequalities listed in Table 3 , from which we can obtain a set of reasonable choice as 

d̄ ( 
1 ) 

e = 0 . 100 , d̄ ( 
2 ) 

e = 0 . 045 , d̄ ( 
3 ) 

e = 0 . 020 

for all three tiling patterns. Additionally, by choosing the scaling factor to be l s = 10 −5 localized in all the feasible re-

gions marked in Fig. 8 b, d, and f, the extrusion distance of the derived patterns are confirmed to be d (1) 
e = 100 nm , d (2) 

e =
45 nm, and d (3) 

e = 20 nm , for the tiling patterns with lattice size 10 μm . 

To confirm the optimality of the derived patterns, and hence the improved performance of the corresponding micro-

textures, liquid-bulge measurement values of the liquid/vapour interfaces ( Fig. 6 ) are compared to the interfaces supported
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Table 4 

Liquid-bulge measurement values of the liquid/vapor interface supported on the de- 

rived micro-textures, the micro-textures in [32] , and the ones composed of hierar- 

chical posts with regular polygonal and circular cross sections. The optimal entries 

for the derived micro-textures are noted in bold. 

(a) Regular triangle 

Inverse design Pattern in [32] Triangular post Circular post 

i = 1 1 . 48 × 10 −3 1 . 77 × 10 −3 1.68 × 10 0 2.90 × 10 0 

i = 2 1 . 72 × 10 −5 1 . 13 × 10 −4 1 . 10 × 10 −1 3 . 68 × 10 −1 

i = 3 3 . 23 × 10 −7 3 . 51 × 10 −6 1 . 90 × 10 −3 6 . 41 × 10 −2 

(b) Regular quadrangle 

Inverse design Pattern in [32] Quadrangular post Circular post 

i = 1 8 . 25 × 10 −4 1 . 05 × 10 −3 9 . 56 × 10 −1 1.16 × 10 0 

i = 2 1 . 41 × 10 −5 9 . 51 × 10 −5 6 . 41 × 10 −2 9 . 22 × 10 −2 

i = 3 1 . 99 × 10 −7 2 . 05 × 10 −6 1 . 35 × 10 −3 5 . 77 × 10 −3 

(c) Regular hexagon 

Inverse design Pattern in [32] Hexagonal post Circular post 

i = 1 1 . 60 × 10 −3 1 . 67 × 10 −3 7 . 29 × 10 −1 7 . 80 × 10 −1 

i = 2 1 . 27 × 10 −5 8 . 23 × 10 −5 5 . 11 × 10 −2 5 . 61 × 10 −2 

i = 3 1 . 77 × 10 −7 1 . 15 × 10 −6 1 . 17 × 10 −3 1 . 61 × 10 −3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the other micro-textures, as listed in Table 4 ; the compared micro-textures include the ones with the patterns in [32] (in-

versely designed by fixing corresponding polygonal parts with the duty ratio 3 × 10 −2 ) and their conformal extension respec-

tively for the first and downward layers, and the ones composed of hierarchical posts with regular polygonal and circular

cross sections, where the duty ratios are kept to be the same as the corresponding layers of the current micro-textures. The

comparison shows that the inversely designed micro-textures achieve flatter liquid/vapour interfaces, with effective reduc- 

tion of the liquid-bulge measurement. The improved robustness of the inversely designed micro-textures are demonstrated

through their enhancement of the critical static pressure. Compared to those of the hierarchical posts for different values of

critical advancing angle, as shown in Fig. 9 , the critical static pressure is enhanced up to 17.7-, 12.9- and 11.3-fold, respec-

tively for the regular triangle, quadrangle, and hexagon tiling patterns. 

Because the number of layers of a micro-texture affects the complexity of manufacturing by a lithography process, it

is notable that the overlayed micro-textures offer the flexibility to enhance feasibility by dropping lower layers from a

particular design without negative effect on the performance of the remaining layers ( Fig. 10 ). 

The equilibrium contact angle is a global parameter used to characterize the wetting behavior on a solid surface with

micro-textures. When the unit cell of a overlayed micro-texture is embedded periodically in an array, an increase in the

equilibrium contact angle is accompanied by an attenuation effect for perturbations to the contact angle, for those cases

where the solid surface is micro-textured by a unit-cell array with a fixed repeat size and wetting is in the Cassie–Baxter

status [61] . This attenuation effect increases along with a decrease in the ratio of the lattice constant to array size. The

micro-textured surface become “slippery”, because the attenuation effect weakens the contact angle hysteresis, an important

phenomenon in wetting behavior [61,62] . By logical extension, an overlayed micro-texture with relatively small length scale

can reduce the contact angle hysteresis. 

4. Conclusions 

This article presented a monolithic inverse design approach aimed at achieving improved robustness of Cassie–Baxter

mode for the wettability of solid surfaces. The micro-textures are in overlayed geometry with manufacturability for an

overlayed lithography process. The inverse design approach is composed of a series of sequentially implemented topology

optimizations, with each cycle delivering the pattern of the subsequent layer. The topology optimization is implemented

for three dimensionless irreducible triangles, derived from the symmetry of three regular polygons (triangle, quadrangle,

hexagon) used to tile a flat surface. The Cassie–Baxter status is described by a dimensionless Young–Laplace equation. It has

been demonstrated conclusively that the procedure works properly and is able to achieve a design with the desired wetting

performance. 

Because the designed structures are able to minimize the perturbation of the liquid surface topology from the flat, whilst

simultaneously minimizing the contact area with the solid wall, a number of advantageous properties emerge that may have

important consequences for applications. The pattern’s relative height above the surface remains of low profile, making it

less prone to damage. The gain in effective contact angle relative to what is possible with the constituent material’s inherent

surface energy makes this a potentially graded or variable and tunable surface feature, for example through the use of adap-

tive/switchable materials to form the patterns. The potentially achieved low contact angle hysteresis will have consequences

for fluid-structure interaction, as well as tangential drag and super-icephobic surfaces, which may be useful in protecting
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equipments and regulating fluids. For other environments, decoupling wetting behaviour from molecular composition frees

up the material to focus on further aspects in the flow environment, such as fouling and chemical resistance. In the future,

we will address these issues, through exploration of the micro-/nano-fabrication of the overlayed micro-textures and testing

the surface-liquid interaction. 

Acknowledgments 

During this research, Y. Deng acknowledgements a Humboldt Research Fellowship for Experienced Researchers

(Humboldt-ID: 1197305), the support from the National Natural Science Foundation of China (No. 51875545 ), the Youth Inno-

vation Promotion Association of the Chinese Academy of Sciences (No. 2018253 ) and the Open Fund of SKLAO; Y. Deng also

acknowledgements the valuable discussion provided by Yuan Ji from CIOMP and Teng Zhou from Hainan University, during

the revision of this manuscript; Z. Liu was supported by the National Natural Science Foundation of China (No. 51675506 );

J.G. Korvink acknowledges support from an EU2020 FET grant (TiSuMR, 737043), the DFG under grant KO 1883/20-1 Meta-

coils, in the framework of the German Excellence Intitiative under grant EXC 2082 “3D Matter Made to Order”, and by the

VirtMat initiative “Virtual Materials Design”. The authors are grateful to Prof. K. Svanberg for supplying the MMA codes.

They are also grateful to the editors and reviewers for their kind attention and valuable suggestions. 

Appendix A 

A.1. Demonstration for the generation procedure of the overlayed micro-textures. 

The generation procedure for the micro-textures is demonstrated by the triple-layer cases as sketched in Fig. 11 for three

types of tiling. 

A.2. Heuristic bisection-procedure used to determine indicator for the design domain. 

The indicator for the design domain is determined by the following heuristic bisection-procedure for the ceiling’s down-

ward layers: 

1. Set the upper and lower bounds of an extention radius r S to be r S max = 1 and r S min = 0 , where the extention radius is

used to relax S ( i −1 ) γ ( i −1 ) 
p by an extension equation expressed as ⎧ ⎨ 

⎩ 

−∇ ·
(
r 2 S ∇S ( i ) 

)
+ S ( i ) = S ( i −1 ) γ ( i −1 ) 

p , in �

−r 2 S ∇S ( i ) · n = 0 , on ∂�

S ( i ) = 0 , at O 

(19)

2. Set r S = ( r S max + r S min ) / 2 and derive S ( i ) by numerically solving the extension equation 19 , further compute A E =∫ 
� S ( i ) d�, where 

S ( i ) = 

tanh 

(
2 

10 · 0 . 98 

)
+ tanh 

(
2 

10 
(
S ( i ) − 0 . 98 

))
tanh 

(
2 

10 · 0 . 98 

)
+ tanh 

(
2 

10 · ( 1 − 0 . 98 ) 
) ; (20)

3. If | (A E −
∫ 
� S (i −1) γ (i −1) 

p d�) − � f (i −1) 
s | / � f (i −1) 

s ≤ 10 −3 is not satisfied, r S max will be updated to be r S in the case of A E >∫ 
� S (i −1) γ (i −1) 

p d�, r S min will be updated to be r S in the case of A E ≤
∫ 
� S (i −1) γ (i −1) 

p d�, and the heuristic bisection-

procedure will return to Step 2; or else, the heuristic bisection-procedure will be stopped after computing the desired

indicator S ( i ) . 

This heuristic procedure, with pseudocode in Table 1 b, is a loop operation, which sequentially relaxes and projects

S (i −1) γ (i −1) 
p to find an extension S ( i ) with a preset duty-ratio enlargement � f (i −1) 

s . 

A.3. Lagrangian multiplier-based adjoint analysis. 

According to the Lagrangian multiplier-based adjoint method [59] , the augmented Lagrangian of the variational problem

for the topology optimization of the i th layer of the micro-texture is 

ˆ J ( i ) = 

∫ 
�

1 

| �| z̄ 
( i ) 

2 − σ̄
∇ ̄z ( i ) · ∇ ̄z ( 

i ) 
a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 + r 2 f ∇γ ( i ) 

f 
· ∇γ ( i ) 

fa 
+ γ ( i ) 

f 
γ ( i ) 

fa 
− γ ( i ) γ ( i ) 

fa 
d� (21)
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Table 5 

Pseudocode for the heuristic bisection procedure used to determine the 

critical static pressure P ( 
i ) 

c for the i th layer of a micro-texture. A double 

procedure is included to find a reasonable upper bound P ( 
i ) 

max . 

Set i ← 1; 

loop 

Choose the initial values of P ( 
i ) 

min 
= 0 and P ( 

i ) 
max ; 

sub-loop 1 Double procedure used to find a reasonable P ( 
i ) 

max : 

Set P ( 
i ) 

c ← P ( 
i ) 

max ; 

Solve Eq. (25) to derive z̄ ( 
i ) 

c and compute sup 
x ∈ ∂ N ( i ) \ ∂ �

θ ( i ) 
∣∣

z̄ ( i ) = ̄z ( i ) c 

; 

if sup 
x ∈ ∂ N ( i ) \ ∂ �

θ ( i ) 
∣∣

z̄ ( i ) = ̄z ( i ) c 

> θA ; 

break; 

else P ( 
i ) 

max ← 2 P ( 
i ) 

c ; 

end ( if ) 

end ( sub-loop 1 ) 

sub-loop 2 Bisection procedure used to determine P ( 
i ) 

c : 

Set P ( 
i ) 

c ← 

(
P ( 

i ) 
min 

+ P ( 
i ) 

max 

)/ 

2 ; 

Solve Eq. (25) to derive z̄ ( 
i ) 

c and compute sup 
x ∈ ∂ N ( i ) \ ∂ �

θ ( i ) 
∣∣

z̄ ( i ) = ̄z ( i ) c 

; 

if 0 ≤
(

θA − sup 
x ∈ ∂ N ( i ) \ ∂ �

θ ( i ) 
∣∣

z̄ ( i ) = ̄z ( i ) c 

)/
θA ≤ 10 −3 , 

break; 

elseif sup 
x ∈ ∂ N ( i ) \ ∂ �

θ ( i ) 
∣∣

z̄ ( i ) = ̄z ( i ) c 

≤ θA , 

P ( 
i ) 

min 
← P ( 

i ) 
c ; 

else P ( 
i ) 

max ← P ( 
i ) 

c ; 

end ( if ) 

end ( sub-loop 2 ) 

if i == N, 

break; 

else i ← i + 1 ; 

end ( if ) 

end ( loop ) 

 

 

 

 

 

 

 

where z̄ ( 
i ) 

a is the adjoint variable of z̄ ( i ) with z̄ ( 
i ) 

a = 0 at O ; γ ( i ) 
fa 

is the adjoint variable of γ ( i ) 
f 

with γ ( i ) 
fa 

= 0 at O . The first

order variational of the augmented Lagrangian to the field variable and design variable is 

δ ˆ J ( i ) = 

∫ 
�

2 

| �| z̄ 
( i ) δz̄ ( i ) − σ̄

∇δz̄ ( i ) · ∇ ̄z ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 + σ̄

(
∇ ̄z ( i ) · ∇ ̄z ( 

i ) 
a 

)(∇δz̄ ( i ) · ∇ ̄z ( i ) 
)

(√ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 )3 

− ∂ σ̄

∂γ ( i ) 
p 

∂γ ( i ) 
p 

∂γ ( i ) 
f 

∇ ̄z ( i ) · ∇ ̄z ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 δγ ( i ) 

f 
+ r 2 f ∇δγ ( i ) 

f 
· ∇γ ( i ) 

fa 
+ δγ ( i ) 

f 
γ ( i ) 

fa 
− δγ ( i ) γ ( i ) 

fa 
d� (22) 

where δz̄ ( i ) , δγ ( i ) 
f 

and δγ ( i ) are the first order variational of z̄ ( i ) , γ ( i ) 
f 

and γ ( i ) , respectively. From the Kurash–Kuhn–Tucker

condition of the partial differential equation constrained optimization problem [59] , the first order variational of the aug-

mented Lagrangian to the field variables satisfies 

∫ 
�

2 

| �| z̄ 
( i ) δz̄ ( i ) − σ̄

∇δz̄ ( i ) · ∇ ̄z ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 + σ̄

(
∇ ̄z ( i ) · ∇ ̄z ( 

i ) 
a 

)(∇δz̄ ( i ) · ∇ ̄z ( i ) 
)

(√ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 )3 

d� = 0 (23) 

∫ 
�

r 2 f ∇ δγ ( i ) 
f 

· ∇ γ ( i ) 
fa 

+ δγ ( i ) 
f 

γ ( i ) 
fa 

− ∂ σ̄

∂γ ( i ) 
p 

∂γ ( i ) 
p 

∂γ ( i ) 
f 

∇ ̄z ( i ) · ∇ ̄z ( 
i ) 

a √ 

( L/z 0 ) 
2 + 

∣∣∇ ̄z ( i ) 
∣∣2 δγ ( i ) 

f 
d� = 0 (24) 

Without losing the arbitrariness of δz̄ ( i ) and δγ ( i ) 
f 

, one can set δz̄ ( i ) = 

˜ z̄ ( 
i ) 

a with ∀ ̃

 z̄ ( 
i ) 

a ∈ H ( �) and δγ ( i ) 
f 

= ˜ γ ( i ) 
fa 

with ∀ ̃

 z̄ ( 
i ) 

a ∈
H ( �) , and derive the adjoint system in Eq. (7) and ( 8 ), where H ( �) is the first order Hilbert functional space defined on �.

The adjoint gradient of the variational problem can be derived to be the first order variational of the augmented Lagrangian

to the design variable ( Eq. (6) ). Based on a similar procedure, the adjoint analysis can be implemented for the duty ratio in

Eq. (5) , thereby deriving the adjoint gradient ( Eq. (9) ) and the adjoint equation ( Eq. (10) ). 
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A.4. Heuristic bisection method used to determine the critical static pressure P ( 
i ) 

c and its corresponding liquid/vapor interface z̄ ( 
i ) 

c .

The critical static pressure P ( 
i ) 

c and the corresponding liquid/vapor interface z̄ ( 
i ) 

c are determined by a heuristic bisection

method with an upper bound found by a double procedure: 

1. Set the initial values P (i ) 
min 

= 0 and P (i ) 
max for the lower and upper bonds of P (i ) 

c ; 

2. Set P (i ) 
c = P (i ) 

max , and compute sup x ∈ ∂ N (i ) \ ∂ � θ (i ) 
∣∣

z̄ (i ) = ̄z (i ) 
c 

, where z̄ (i ) 
c corresponds to the current P (i ) 

c and is found by solving

the following equation: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∇ ·

⎛ 

⎝ 

σ

l s P 
( i ) 
c 

∇ ̄z ( 
i ) 

c √ 

( l s /z 0 ) 
2 + 
∣∣∣∇ ̄z ( 

i ) 
c 

∣∣∣2 
⎞ 

⎠ = 1 , in �\N 

( i ) 

z̄ ( 
i ) 

c = 0 , in N 

( i ) 

σ

l s P 
( i ) 
c 

∇ ̄z ( 
i ) 

c √ 

( l s /z 0 ) 
2 + 
∣∣∣∇ ̄z ( 

i ) 
c 

∣∣∣2 · n = 0 , on ∂�

z̄ ( 
i ) 

c = 0 , at O 

; (25)

3. if sup x ∈ ∂ N (i ) \ ∂ � θ (i ) | 
z̄ (i ) = ̄z (i ) 

c 
> θA is not satisfied, P (i ) 

max will be updated to be 2 P (i ) 
c , and the procedure will return to Step

2; else, it will continue to the next step; 

4. Set P (i ) 
c = (P (i ) 

min 
+ P (i ) 

max ) / 2 , and compute sup x ∈ ∂ N (i ) \ ∂ � θ (i ) | 
z̄ (i ) = ̄z (i ) 

c 
, with z̄ (i ) 

c by solving Eq. (25) ; 

5. If 0 ≤ (θA − sup x ∈ ∂ N (i ) \ ∂ � θ (i ) | 
z̄ (i ) = ̄z (i ) 

c 
) /θA ≤ 10 −3 is not satisfied, P (i ) 

min 
will be updated to be P (i ) 

c in the case of

sup x ∈ ∂ N (i ) \ ∂ � θ (i ) | 
z̄ (i ) = ̄z (i ) 

c 
≤ θA , P (i ) 

max will be updated to be P (i ) 
c in the case of sup x ∈ ∂ N (i ) \ ∂ � θ (i ) | 

z̄ (i ) = ̄z (i ) 
c 

> θA , and the bi-

section procedure will return to Step 4; else, the heuristic bisection procedure will be stopped, delivering the desired

P (i ) 
c and its corresponding z̄ (i ) 

c . 

The above heuristic bisection procedure can be implemented by the pseudocode in Table 5 , determining the critical static

pressure for each layer of the micro-texture. 

A.5. Details for the recursion inequality in Eq. (16) . 

For the recursion inequality in Eq. (16) , the term max n ∈{ 1 , 2 ···i } { sup x ∈N (i +1) \N (i ) | ̄z (n ) 
c | −∑ i −n 

k =1 
d̄ (k ) 

e } is the abstract form of 

max 

{
sup 

x ∈N ( i +1 ) \N ( i ) 
∣∣z̄ ( 1 ) c 

∣∣−
i −1 ∑ 

k =1 

d̄ ( 
k ) 

e , sup 

x ∈N ( i +1 ) \N ( i ) 
∣∣z̄ ( 2 ) c 

∣∣−
i −2 ∑ 

k =1 

d̄ ( 
k ) 

e , · · · sup 

x ∈N ( i +1 ) \N ( i ) 
∣∣z̄ ( n ) c 

∣∣−
i −n ∑ 

k =1 

d̄ ( 
k ) 

e , 

· · · sup 

x ∈N ( i +1 ) \N ( i ) 

∣∣∣z̄ ( i −1 ) 
c 

∣∣∣− d̄ ( 
1 ) 

e , sup 

x ∈N ( i +1 ) \N ( i ) 

∣∣∣z̄ ( i ) c 

∣∣∣}. (26)

This recursion inequality can be physically and geometrically demonstrated by Fig. 12 . 
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