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ABSTRACT High efficiency video coding (HEVC) is standard in the video compression field and performs
well not only in video compression coding, but also in image compression. Regions of interest (ROIs) and just
noticeable difference (JND), two human visual models, can accurately quantify human visual system (HVS)
characteristics as pixel values. Using ROIs and JND to assist in evaluating image distortion can effectively
reduce human visual redundancy and reflect authentic perceptual distortions. However, they are not readily
applicable to the HEVC test model (HM) in the pixel domain. It is difficult to secure a suitable Lagrange
multiplier A and quantization parameter (QP) for the JND model in particular. This paper proposes different
solutions for the use of rate control (RC) or not where an appropriate A value is available for perceptual
models. In RC, the proposed approach centers on a robust relationship between QP and achieved A. And we
also established a bit allocation technique using the related A and expression for the RC model. Experimental
results validate the rationality and effectiveness of the proposed method.

INDEX TERMS HEVC, ROI, IND, Lagrange multiplier A, QP, bits allocation.

I. INTRODUCTION

Advancements in communications and semiconductor tech-
nology have brought about a new information era accom-
panied by revolutionary voice, text, picture, animation and
video applications. Today, smartphones are regarded as a
quotidian necessity. The sheer quantity of data that is trans-
mitted across a single mobile app is enormous, and image
information occupies a considerable proportion of said data.
Transmitting the maximum quantity of information possible
over limited resources is a problem which demands innova-
tive compression algorithms. Scholars have proposed several
image processing methods in effort to resolve this problem
including JPEG [1] and JPEG2000 [2]. Video coding stan-
dards such as H.264/AVC [3] and HEVC [4] perform even
better in terms of image compression.

Coding parameters, including the division of coding
units (CUs), angles, and residual quad-trees (RQTSs) are
selected under HM methodology according to the relation-
ship between bits and distortion [5]. The selection of any one
parameter directly affects the others and all affect the over-
all image compression performance. Extant methods involve
measuring distortion by SAD (The differences among SAD,
SSE, MSE, and similar techniques are not distinguished in
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this paper for the sake of brevity). Extant methods thus fail
to effectively reflect human vision characteristics. The distor-
tion calculated in this manner has abundant visual redundancy
and does not allow for effective compression performance.

HVS techniques center on the JND and ROI. Changes in
a given image are revealed only if the difference between
two corresponding pixels exceeds a certain threshold, the so-
called JND [6]. If the difference is less than the value of
the threshold, there is technically no distortion. Extant JND
models fall into two main categories: Sub-band domain [7]
and pixel-wise [8]. Only a portion of any given image is
attractive to the human eye [10], namely, the ROI [11].

Bits and distortion are the two main elements of HEVC
image compression, and are closely related to coding effi-
ciency. To improve the coding efficiency, it is possible to
enhance distortion while reducing bits or to maintain the
bit quantity while raising image quality. The JND model
can reveal accurate perceptual distortion values, while the
ROI model enhances imaging quality in locations of strong
visual interest under bit constraints. In terms of HVS from
the two perspectives, the correlation coefficient between them
is zero.

In other words, either can be applied to measure image
distortion without accounting for the impact of the other.

There is indeed an intrinsic relationship between HVS and
distortion in compressed perceptual images. ROI and JND
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FIGURE 1. (a) Original image, (b) JND threshold image, (c) Saliency (ROI) image.

models can improve the image compression efficiency. There
are numerous JND models which can precisely reflect the
threshold of HVS [9], [12] and several widely accepted algo-
rithms for obtaining image ROIs. Researchers have attempted
a variety of models and techniques for image compression
and made remarkable achievements.

Early scholars attempted to place more bits in ROIs and
less in non-ROIs [34], [35] to manage the HVS. Li et al
[36] found, however, that low quality in non-ROIs can sig-
nificantly decrease the image quality. To ensure the correct
ratio between ROIs and non-ROls, they proposed a method
to detect face ROIs and assign optimal weight saliency values
based on the GMM. They also established a closed-form bit
allocation approach to minimize the perceptual distortion for
the appropriate allocation of bits. They effectively adopted
the saliency weighted PSNR (SWPSNR), but considered only
one factor and did not make full use of the HVS.

The JND, as discussed above, can also be utilized to
compute distortion. As per JND models [14] in the discrete
cosine transform (DCT) domain, Zhang et al. [13] calculated
distortion and coding bits with quantization steps from 1 to
255 for multiple bands in a JPEG compression experiment;
they then calculated A values and placed them into a JPEG
quantization table corresponding to the HVS. This method
allows for effective coding, but comes at a significant com-
putational cost as there are different JNDs in multiple images
with tables that must be calculated separately.

Bae et al. [9], [15] attempted to do more than simply
estimate the JND value of a transform coefficient for a fixed-
sized DCT kernel (e.g., 8 x 8), as many small transform
coefficient values in mid- and high-frequency regions are
otherwise not sufficiently suppressed. They proposed a
HEVC-compliant local distortion detection probability
(LDDP)-based PVC scheme which does perform relatively
well. They also analyzed the effects of quantization distortion
in JND models to build a new DCT-based energy-reduced
JND (ERJIND) model. This model consists of LR-JNQD and
CNN-JNQD sub-models and has favorable bits saving per-
formance [18], but still suffers a large computational burden.

Pixel-wise probability models are more convenient and
readily operable than sub-band domain models, which
require complex transformations encompassing various fac-
tors [16], [17]. However, the pixel-wise A is difficult to
achieve in practice. Zeng et al. [20] obtained a simplified
fitting weight parameter according to neurophysiological
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FIGURE 2. (a) is RD cost curves and (b) is distortion fitting line (DPP:
Distortion per pixel).

experiment results and Weber’s ratio, but failed to take the
quantization parameter (QP) into account as only the image
content element was considered, the A value obtained by this
method is inaccurate.

In this study, we integrated ROI and JND models for HEVC
intra perceptual image compression in the pixel domain.
We propose the perceptual calibrated PSNR (PCPSNR) to
supersede the traditional PSNR. A parameter change typ-
ically alters all relationships in the system. We replaced
SAD (PSNR) with a new distortion parameter, so we also
matched the distortion model for all parameters and estab-
lished a new method for guiding the bit allocation pro-
cess when rate control (RC) is executed in HM. The goal
of this work is to achieve the optimal image compression
performance.

Our contributions can be summarized as follows.

1) We use ROI and JND models in the pixel domain to
measure distortion simultaneously which fully utilizes HVS
characteristics, effectively reduces human visual redundancy,
and accurately reflects perceptual image quality.

2) We recommend a general experimental method to obtain
the A value for the rate distortion optimization (RDO) of
perceptual model.

3) We derived a stable relationship between QP and A based
on the perceptual model.

4) We developed a bit allocation approach using the above
parameters to ensure RC accuracy.

The remainder of this paper is organized as follows.
Section II discusses the related works on HEVC intra com-
pression. Section III presents our methods and theoretical
support thereof. Our experimental results are discussed in
Section IV. Section V summarizes the paper and proposes
future research directions.
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FIGURE 3. Distortion ratio in different QP.

Il. RELATED WORK

Good tools make for good work. A suitable JND model and
a high-quality saliency algorithm are necessary to secure
accurate theoretical results.

A. JND MODELS
We selected a pixel-wise JND model for transplanting to the
HM. A pixel-wise JND model [21], [22] reveals the JND
threshold for every pixel. The subjective distortion between
an original and a reconstructed pixel can be calculated conve-
niently. However, obtaining the threshold value over several
critical factors is an overly complex process. The application
conditions and weights of each factor form a certain relation-
ship with each other after they are comprehensively analyzed.
The mechanisms of the human visibility are effectually
a “breakthrough point” in this type of system [12], as the
HVS is very sensitive to the repeatable visual patterns under
which the JND threshold is evaluated [23]. Consider an
image with two components, luminance contrast and pattern
complexity, which determine the final pixel threshold. These
components are the decisive factor for contrast-masking and
pattern-masking, as their respective maxima are responsible
for spatial-masking effects. Luminance adaptation can be
used to determine the JND threshold as shown in Fig. 1(b).
Here, the pixel gradient is regarded as the fundamental
factor affecting all external performance. Mathematical mod-
els were established with the gradient as argument for all
components.

B. ROI MODELS

The number of bits allocated to a largest coding unit (LCU)
(64 x 64) depends on the accuracy of the ROI region outline.
Previous researchers have used various algorithms, method-
ologies, and influencing factors to determine saliency values.
At present, deep learning is the most widely used and effec-
tive approach [42], [43].

To guarantee a correct ROI, images are usually divided
into two categories: Face images [37] and generic images
[24]. In this study, we predicted saliency to verify the per-
formance of the proposed algorithm rather than test the
proper ROI partition. Our method can be considered an image
post-processing technique. We adopted a fixation predic-
tion and saliency modeling framework based on inter-image
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similarities and ensemble of Extreme Learning Machines
(ELM) [41]. In this framework, attention is modulated by
both the contextual information of a scene and low-level
visual cues. The influence of scene memorability on eye
movement patterns is dependent on the resemblance of a
scene to a former visual experience.

The fixation prediction algorithm uses images similar to
the input image to train the extreme learners, which requires a
“retrieving set” for the input images. The ELM can generate
a set of predicted saliency values from the retrieved image
set, then the saliency (Fig. 1(c)) of the given image can be
measured in terms of the mean predicted saliency value per
the ensemble’s members. These values guide the subsequent
perceptual distortion calculations.

C. R-D CURVE MODELS

The fitting model plays a vital role in any RC algorithm. In the
quantization (Q)-domain model [25], Q is the determinant
parameter to select the target bitrate R. The p-domain model
[26], logarithmic model [27], exponential model [28], seg-
mented model [29] and others can also be helpful to a certain
extent for RC. According to Li et al. [5], exiting algorithms
utilize a one-to-one correspondence relationship between R
and Q, but as per the flexible coding unit (CU) size in HEVC,
R should be decided by Q and other parameters not only by Q.
They established a more accurate relationship for R-A based
on the hyperbolic function model [30], [31].

As stated above, bits and distortion are the key to image
compression. A is the slope of the R-D curve. The JND curve
must fall under the SAD curve in the first quadrant. The blue
and red curves in Fig. 2(a) represent the R-D curve of SAD
and JND models, respectively. If SAD is simply replaced with
the JND model, distortion reduction will be the only variable
that changes between the two parameters — this is reflected in
the green lines in Fig. 2(a).

There is a fixed relationship between QP and A [32] when
SAD is used and thus an inevitable connection between them
in JND or ROI4+-JND models. In a single ROI model [36],
the relationship change between QP and A may be ignored,
experiments have shown that the effect of this improvement
is not particularly significant.

By contrast, as the JND model dramatically alters the
distortion value, the conventional relational equation does not
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TABLE 1. All tests list that we have done.

Test Model Test Content (A B')

JND Def SAD  Def IND LUT JND Pre JND

ROI Def SAD  Def ROI No Pre_ROI

JR Def SAD  Def JR  LUTJR  Pre JR
'About the format A_B, A is the way to get A and B is the distortion used
in RDO. Def means that A is obtained by default method in HM, LUT and
Pre mean that A is obtained by lookup table and pre-processing method,

respectively. JR means that it is a JND+ROI model.

hold. IND threshold values are content-related, so correla-
tion coefficients differ for different images. The relationship
between the two is closely related to their content. Here,
we use ROI and JIND models to describe subjective distortion.
The goal of this study is to acquire the specific relationships
for any image in JND and ROI4-JND models.

Ill. DETERMINING QP AND LAMBDA

In HEVC, QP can be regarded as the most decisive parameter
influencing the RDO and RC mode selection. If an effective
RC is required, we need to know the optimal distortion;
however, the distortion value can only be obtained after RDO.
If we utilize RDO to select the mode to calculate the dis-
tortion, knowing QP is a prerequisite and A is deduced by
QP. In turn, QP is also derived from A which can only be
determined after RC. This is, effectively, a “chicken and egg”
dilemma. Regardless of whether we calculate QP to A or the A
to QP, the SAD distortion equation is based on a large number
of experimental data statistics which are not applicable here.
Various other strategies are available to determine the QP and
X, as discussed below.

A. ) FOR PERCEPTUAL RDO IN FIXED QP
As mentioned above, a known QP is the prerequisite for RDO.
HM provides a ready-made equation to determine the A for a

(b)

FIGURE 4. Test images. (a) is for getting the lambda of lookup table;
(b) is used in subjective test.
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general SAD model,
A =c.2@P712/3, (1

where c is a fixed value.

Naturally, we expect a similar relationship for perceptual
models. However, as the perceptual models are related to the
image content, ¢ must be a variable for different images in a
subjective model, such an equation seems to not exist. In this
paper, we propose that the A value can be determined via pre-
processing or a lookup table.

The R-A model is important in terms of the value of A.
HEVC employs a complex coding structure encompassing a
sequence, group of pictures (GOP), frame, and coding tree
unit (CTU), and other elements. New R-A approaches [5]
have emerged as scholars seek to improve the processing abil-
ity for complex coding structures. The R-A model is derived
from the R-D model, but is more robust. Ardestani [34] and
Li et al. [5] proved that the hyperbolic model performs excep-
tionally well. Our method is also based on the hyperbolic
model. The R-D relationship is formulated as follows,

d=c-r7*, 2

then,

od 5
Ervie &)

where ¢ and k are parameters related to the image content.

d

_7
7

cok-r 1l =k

1) PRE-PROCESSING METHOD

Before formal compression, we can estimate the A suitable
for the image to be compressed by pre-processing. Here,
we perform RDO with SAD and a default A by setting the
maximum CU depth to zero for all LCUs [11]. We also count
the distortion and bits of the image for a perceptual model in
this and the adjacent QP (minus or plus one) according to the
previous mode and partition choices as D1, D2, Ry, and Ry,
respectively. Equation (2) can thus be rewritten as follows,

Dy =c-R*
Dy = c-R;F, )
SO,
_ In (Dl/Dz) . )
In (Rz/Rl)

Next, we can obtain the A which is applied to the perceptual
distorted model dependent on Eq. (3),

Diln (D1 /Dz)

P R ln(Rz/Rl). ©)
2) LOOKUP TABLE METHOD
We built a one-to-one lookup table corresponding to the JND
threshold and A. Inspired by the multi-layer neural network,
we divided this into two parts in order to obtain the most
suitable A: The constant JND threshold and the image JND
threshold. We first made the JND threshold independent of
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the image, namely, we set the threshold as a constant. For
simplicity, the JND threshold was uniform across all pixels,
and the SAD model is a special case where all the thresholds
are zero. Given a QP, for different images, the content and res-
olution may vary greatly, but for the distortion corresponding
to the equal threshold, they have an incomplete but strong
linear relationship, as shown in Fig. 2(b) and Eq. (7),

Dy =Dy +t. (7

Taking the partial derivative of both sides with respect to R
yields the following,

hy = [L - Ay, ®)

where are coefficient constants while x, y are the values of
the JND threshold.
Equation (8) can be rewritten as,

An = In - Ao, ©))

wherenis 0, 1,2, ..., N, and N is related to QP (presumably,
Un = Upyl = ... = WUon; wWhen DN/DN_1 < 0.02, and
distortion is determined by QP). Ag can be obtained from Eq.
(1) and by fitting the corresponding distorted experimental
data as shown in Fig. 2(b). The distorted experimental data
is obtained similarly to D; in Eq. (4), except that we set the
maximum depth to 3 for all LCUs and the JND threshold of
all pixels is n for Dy,. uy is the value of the lookup table built
previously.

We next associate the constant JND threshold with the
image JND threshold. The constant JND threshold step we
selected is one, so rounding is an effective method to analyze
the distribution of the image JND threshold under the constant
JND threshold. If M is the number of pixels in the image, M,
is the number of pixels under the image JND threshold equal
to n after rounding. M, / M can be regarded as the weight of
An in Ap. So the target is,

E = Z _)Vn = Zﬂn_)\o’ (10)

n=0

B. . AND QP FOR PERCEPTUAL MODELS IN RC

As discussed above, pre-processing is a workable approach
to complex problems. Here, we set the maximum CU depth
to O for all CTUs first. Unlike the pre-processing discussed
in Section III-A, the QP is not known. Instead, an appropriate
value of bits is specified.

We continued to use the default HM method for pre-
processing at this point in our attempt to secure necessary
distortion and bits information. We first solved for A (Eq. (4))
then derived the following parameters from Eq. (2) and
Eq. (3),

k=20 (1)

~|

d
d
= (12)
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where d, T, A represents the pre-compressed distortion, bits,
and XA as-obtained after pre-processing. As discussed in
Section II-C, we analyzed the necessity of establishing a
new A-QP derivation relationship. By re-analyzing the exper-
imental conditions for pre-processing and the data shown
in Fig. 2(a), we found that an invariant R (bits) may be used
as a bridge between the following two equations.

After pre-processing, we obtained necessary parameters
such as ¢ and k which can be considered valid for any coding
level. We are interested in the frame and LCU level here,
so we consider the following equation,

XisAD = CisaD - kisap - (risap) <SP~ 1 (13)
MR = cir - kig - (rig) KR! (14)
where the subscript i represents the i-th LCU, SAD and JR

(JND + ROI) reflect the method for evaluating the distortion.
Under the given pre-processing conditions, it is obvious that

risap = rijr- Therefore, we can integrate Eq. (13) and
Eq. (14) as follows,

Aisap = o - (Lir)P, (15)
where @ = %, B = ‘ISJ’;—D:II (The values of

) KR+

R X¥K;j
alpha and beta flo a frame of i image in Table 16, Appendix).
Thus,

In (Aisap) = B -In(Ajyr) + Inc, (16)

The Joint Collaborative Team on Video Coding (JCT-VC)
determines QP by X value as follows,

OP = 4.2005 In(Ajsap) + 13.7122, (17)

We combined Egs. (16) and (17) to suit the ROI and JND
models as follows,

OP=4.20058 - In (hyg)+(4.2005In+13.7122) . (18)

The case we illustrate suits the LCU level, but may also fit
the conditions in any level.

C. BITS ALLOCATION

For formal compression, we considered the RDO between
perceptual distortion and bits. First, we associated saliency
and threshold values with perceptual distortion. The saliency
and JND threshold values are implemented in the pixel
domain, which makes our application very direct. Saliency
values can be converted to weighted distortion [38]. As the
threshold values well reflect the perceptual tolerance to dis-
tortion for every pixel, we can measure the perceptual distor-
tion as follows,

d(x,y)
0,
if |Forg (x,y)—Frec (x, y)| <JND (x, y)
o (x,¥)-|IForG (x,y)—Frec (x, ¥)|—=JND (x, y)]
if others,
(19)
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TABLE 2. Performance of different lambda in JND models.

et BD-PCPSNR/dB(JND) BD-BR/%(IND) Time/Second(JND)
est image Def JND LUT JND Pre JND Def JND LUT JND Pre JND Def JND LUT JND Pre JND
PeopleOnStreet  0.070153 0.343788  0.486857 -1.205979  -5.502993  -7.628789 234.4 248.3 315.1
Traffic 0.106740 0.278748  0.337563 -2.158832  -5.469289  -6.595417 235.5 249.8 316.8
BQTerrace 0.095891 0.270685  0.363523 -1.732728  -4.331562  -5.980068 121.2 128.8 164.3
Cactus 0.089129 0.202878  0.295830 -2.519541  -4.712805  -6.640364 113.9 118.6 152.4
BasketballDrill 0.093844 0.193983  0.295224 -1.928774  -4.922680 -4.316916 224 24.2 30.6
BQMall 0.104263 0.343679  0.451396 -1.85645  -5.126989  -6.590664 23.7 25.1 31.5
BlowingBubbles  0.123886 0.285847  0.340968 -2.659077  -4.635842  -5.357627 6.3 6.6 8.5
RaceHorses 0.091185 0.294332  0.328010 -1.658177  -4.130583  -4.571345 6.2 6.5 8.2
Johnny 0.053566 0.259986  0.508083 -1.180666  -4.867373  -9.092498 42.9 44.9 58.9
KristenAndSara  0.051834 0.312687  0.481399 -0.976568  -4.766209  -7.206698 44.6 47.4 60.4
vidyol 0.081594 0.349655  0.542139 -1.514364  -6.387380  -9.031059 46.8 49.8 63.4
vidyo4 0.024680 0.310191  0.589813 -0.563061  -5.446240  -9.765661 45.7 48.5 61.9
average 0.082230  0.287205  0.418400 -1.662851  -4.895875  -6.898092 78.6 83.2 106.0
TABLE 3. Performance of different lambda in ROI and JND+ROI models.
BD-PCPSNR/dB BD-BR/%
Test Image
Def ROI Pre ROI Def JR LUTJR Pre JR  Def ROl  Pre ROI Def JR LUT JR Pre JR
PeopleOnStreet  0.263019  0.337384  0.637947  0.748319  0.884455  -7.440547 -6.057751 -9.835097  -11.593710  -13.420231
Traffic 0238140  0.213974 0.466431 0.542562 0.605744  -4.716247 -4.255392 -8.797534  -10.361499 -11.367714
BQTerrace 0.489475  0.434636  0.741006  0.795006 0.876430  -8.639245 -7.783370  -12.417289  -12.709807  -13.574052
Cactus 0.174309  0.144204 0.405535 0.434101 0.506613  -4.232563 -3.577706 -9.303278  -10.126350  -11.225031
BasketballDrill 0.584504  0.496046 0.780452 0.806177 0.833128 -11.966164 -10.300575 -13.079140 -13.039949 -13.826074
BQMall 0.299314  0.278849  0.706798  0.733754  0.845528  -4.770547 -4.412005  -10.155101  -10.174327  -11.666697
BlowingBubbles  0.310220  0.247880  0.574553  0.583012  0.684205  -5.701572 -4.583544 -8.885324 -8.847686  -10.366008
RaceHorses 0.285360  0.236336  0.543332 0.559415 0.600187  -3.691204 -3.734110 -7.328601 -7.509503 -7.967027
Johnny 0.291789  0.350819  0.972382 1.027902 1.038112  -5.849980 -7.003785  -13.388072  -15.726956 -15.941697
KristenAndSara  0.244025  0.259317  0.745493  0.782367 0.891607  -4.337609 -4.587824  -10.337523  -10.923153  -12.187815
vidyol 0.375542  0.356835 0.851464 0.882977 1.032565  -7.447285 -7.055535  -13.372244 -14.478080  -15.944850
vidyo4 0.433999  0.394398  0.773809  0.848196 1.101594  -9.221060 -8.398764  -13.030651  -14.450265 -18.018893
average 0.332475  0.312557 0.683267 0.728649 0.825014  -6.556221 -5.979197 -10.827488 -11.661774 -12.958841
w; throughout the entire calculation process and never changes.
N -5 20 Here, we regard the Apr as a parameter and apply it to each
o Zf\/_ oSi ’ (20) LCU in the system. Owing to the one-to-one correspondence

where Forg (x, y), FRec(x, ), IND(x, y), d(x, y), and w(x, y)
represent the original pixel, reconstructed pixel, JND thresh-
old, subjective distortion, and weight in position (X, y) values,
respectively, s; is the average saliency value of the i-th LCU,
w; is the weight of the i-th LCU (w (x, y) and w; correspond
one by one according to the pixel position), and N is the
number of LCUs in an image.

After clarifying the distortion question, we operated the
proposed bit allocation method.

Eq. (3) continues to be used here, but we wrote another
formula for the whole image,

—Kr—1

A= CrKp - R5T1, 1)

the subscript F indicates that the parameter is associated with
a frame image. We assume the target bitrate of an image is
R and plug this R into Eq. (21). The Lagrange multiplier for

one frame is calculated as,
Arg = CpKp - R7KF=1 (22)

If the RC is not used in HM, the Lagrange multiplier in
the RDO is obtained by QP (Eq. (1)). The value is valid
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between R and A, when the Lagrange multiplier is plugged
into Eq. (14), then,

1
AFR >_kiJRR+1
rgp = | ——— , (23)
l (CiJRkiJR
TiJR
Rip-o = ZN— R, 24)
i=0 ViJR

where R;jg—, reflects the weighted bits for each LCU depen-
dent on the ROI and JND models. So,

—kijr—1

AiJR—w = CiR " kiR - Rjp™, (25)

Next,

OP; = 420058 - In (Aijr—o) + (4.2005Ino + 13.7122),
(26)

where Aijjr—, and QP; are the value for every LCU in the
perceptual model.

Regardless of how precise the bit allocation is, there are
slight deviations in the actual coding process. To reduce the
influence of unavoidable differences on RC performance,
we can update the remaining bits at a certain frequency and
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TABLE 4. Accuracy of bit allocation.

Bits Cost/bit Bits Errors/%

Test Content =0 L™ 02 0.4 0.6 0.8 1.0 02 0.4 0.6 0.8 1.0 average
Def SAD 02029 03999 05982 0.7983 0.9895 15038 19445 22795 17217 19634  1.8826
Def IND 0.1998 03848 05717 07834 0.9631 24261 51093 5.8565 3.0029 42587  4.1487

Def JR (alztiI;l) 02017 03881 05749 07838 0.9647 1.6163 44345 55796 29034 4.0923  3.7252
Pre_JND 02023 04041 06064 08182 1.0143 24893 13656 12053 22746 14320  1.7534
Pre JR 02033 04041 0.6029 0.8097 1.0074 1.6494 1.0594 06169 13671 10375  1.1460

FIGURE 5. Perceptual performance of face image in SAD (up)/JND (middle)/JND+ROI models (down) under RC condition

(BPPP = 0.03 (a), 0.03 (b)).

TABLE 5. Performance in JND and JND+ROI models with our pre-processing method.

BD-PCPSNR/dB BD-BR/%
Test Image
Def JND Pre JND  Def JR Pre JR Def JND Pre JND Def JR Pre JR

PeopleOnStreet  0.185147  0.447414  0.472616  0.741767 -4.475397  -8.535290  -6.254770  -10.080133
Traffic 0215257  0.527676  0.413026  0.887033 -4.396385  -10.676939  -7.479380  -16.170776
BQTerrace 0.168459  0.522510  0.699717  1.441815 -3.013772  -7.120568  -9.837524  -20.194302
Cactus 0.185616  0.384200 0.401568 1.074158 -5.574648  -7.763706  -8.758369  -21.904357
BasketballDrill ~ 0.324888  0.586549  0.851836  1.295044 -5.382508  -9.835011  -13.593751 -20.501414
BQMall 0.121855 0.435306 0.517021 1.214616 -1.846946  -5.350024  -7.410188  -16.517336
BlowingBubbles  0.113651  0.724375 0.366761  0.709948 -1.861762  -9.541168  -6.114249  -12.442009
RaceHorses 0.082749  0.266925  0.449689  0.736997 -1.178324  -4.478314  -6.536050  -10.373095
Johnny 0252789  0.588829  0.943564 1.027556 -9.288810  -9.039213  -13.159810 -14.473593
KristenAndSara  0.272934  0.542210 0.683195  1.132011 -10.869215  -7.572422  -8.732636  -14.671629
vidyol 0261430  0.563385  0.600777  1.093749 -9.591982  -13.597687  -7.754503  -14.663874
vidyo4 0.198992  0.632756 0.982589  1.894641 -4.801789  -9.251774  -13.481379 -25.084586
average 0.198647 0.518511 0.615197 1.104111 -5.190128  -8.563509  -9.092717  -16.423092

redistribute them. The frequency is typically set to 4 [5], [11],
so we updated the actual bits every 4 LCUs.

IV. EXPERIMENTAL RESULTS
We conducted a series of experiments to test the per-
formance of the proposed method. As mentioned above,

we mainly focused on the mutual deductive relation between
QP and A.
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A. NUMERICAL DIFFERENCE

The set of test images comes from HEVC test videos.
We selected one frame from each sequence as the image
source as-realized on the HM 16.20 platform.

We assigned statistics to the data in a non-RC experiment
at fixed QPs: 7, 12, 17,22,27,32, 37, and 42. All parameters
were consistent in this case except apart from measurement
distortion. As shown in Fig. 3, we calculated the ratio of
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TABLE 6. Objective distortion of different models.

PSNR/dB PSNR/dB
Test Image
(default) IND JR
PeopleOnStreet 41.0419  40.7528 40.5815
Traffic 40.9753  40.6177 40.4500
BQTerrace 36.6588 36.2585  35.7552
Cactus 38.5754  38.1759 37.1784
BasketballDrill 39.0369  38.7716 38.5414
BQMall 37.2268  36.8640 36.3878
BlowingBubbles  33.8913 33.2661  32.7296
RaceHorses 33.9748 33.5196  33.2037
Johnny 46.3562 457949  45.7756
KristenAndSara 442748 437709  43.5207
vidyol 455890 449674 44.8104
vidyo4 46.5412  45.6534 45.8382
average 40.3452  39.8677 39.5644
TABLE 7. Test information for MOS.
Item Information
Display Dell E2414Ht X 3
Type and size LCD 24”
Resolution 1920 X 1080

15 (male: 11, and female: 4,
not professional in image
processing, age: 18 to 33)

4.0 H (H: image high)

Number of subjective

Viewing distance

TABLE 8. Evaluation criterion for original and distortion image.

Quality Impairment Score values
Excellent Imperceptible 5
Good Perceptible, but not annoying 4
Fair Slightly annoying 3
Poor Annoying 2
Bad Very annoying 1

SAD to JND distortion at the eight QPs. As per the polygonal
line, the value of SAD distortion is much greater than that
of JND distortion. Considering the maximum point, if the
SAD distortion of most pixels is close to the JND threshold,
the subjective distortion value must be significantly reduced.
In addition, if the QP decreases, each pixel distortion value
will also decrease. The effect of the JND model is reduced
correspondingly, namely, the ratio of SAD to JND decreases.
We finally considered a case of extreme distortion, where
the QP is sufficiently large and almost any amount of pixel
distortion is greater than the corresponding threshold. In this
case, the SAD and JND distortion are nearly identical.

We were able to clearly recognize the divergence among
different distortion measurement methods, which reveals
whether the default A suitably reflects the relationship
between the new distortion and bits. We also found that
the broken lines in these four images have almost the same
change trends. Previous conclusions do not relate to the res-
olution or content of the given image.
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TABLE 9. Evaluation criterion for two distortion images.

Evaluation Score values
Much worse -3
Worse -2
Slightly worse -1
the same 0
Slightly better +1
Better +2
Much better +3

TABLE 10. MOS scores.

MOS Scores
S12 S2% S3% S4° S5°¢6
040 3.13 3.13 3.13 0.00 0.00
BasketballDrill 030 3.07 3.07 3.07 0.00 0.00
(832x480) 020 2.80 2.80 2.80 0.00 0.00
0.10 1.87 2.07 207 1.07 1.07
0.50 500 5.00 500 0.00 -0.04
BQMall 035 4.00 4.00 3.50 -0.07 -0.53
(832x480) 020 3.07 3.07 247 0.00 -1.00
0.10 140 213 1.07 187 0.07
040 4.00 4.00 4.00 0.00 0.00
BlowingBubbles  0.30 393 393 393 0.00 0.00
(416x240) 020 3.07 3.07 3.50 0.00 1.00
0.10 2.13 213 3.07 0.00 0.00
040 4.00 4.00 4.00 0.00 0.00
RaceHorses 030 393 393 393 0.00 0.00
(416x240) 020 3.07 3.07 3.07 0.00 0.07
0.10 2.13 2.13 213 0.00 1.07
0.15 4.13 4.13 400 0.00 0.00
Johnny 0.10 393 393 393 0.07 0.00
(1280x720) 0.05 293 293 313 -0.73 0.80
0.03 1.00 1.00 2.07 0.20 1.07
020 4.00 4.00 4.00 0.00 0.00
KristenAndSara 0.10 347 347 347 027 0.00
(1280x720) 0.05 147 1.67 293 0.87 1.20
0.03 1.00 1.00 2.00 0.87 1.43
020 4.00 4.00 4.00 0.00 0.00
vidyol 0.10 3.50 3.50 3.50 0.00 0.00
(1280x720) 0.05 253 253 280 0.07 1.93
0.03 1.00 1.00 1.87 0.13 1.07
020 493 493 493 0.00 0.00
vidyo4 0.10 4.00 4.00 4.00 0.00 0.00
(1280x720) 005 247 247 347 1.00 1.80
0.03 1.00 1.13 2.07 1.00 1.40

Test Image BPPP

The score of SAD distorted image compared with original image. *The
score of JND distorted image compared with original image. *The score of
JR distorted image compared with original image. 3The score of JND
distorted image compared with SAD distorted image. ‘The score of JR
distorted image compared with SAD distorted image.

B. PERCEPTUAL MODEL PERFORMANCE IN NON-RC

The goal of quoting JND and JND+ROI models to describe
distortion serves to minimize human visual redundancy.
These models are also more accurate than SAD for RDO.
When the objective quality of the image does not change,
the distortion obtained by different evaluation methods may
widely differ (Section IV-A). In order to cope with the
changes caused by perceptual distortion, we used two meth-
ods we proposed to obtain subjective A, and a lot of necessary
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T1 70 T2 TO T3 T4 TO T5

(@ (b)

T1 (T4) = 4s, T2 (T3, T5) = 5s, T0 = 3s.

FIGURE 6. Time sequence.

tests have been done to evaluate the performance of the
proposed A. Table 1 lists all the tests we have done.

As discussed in Section III-A (2), we secured a perceptual
A by weighting the JND threshold via a lookup table. The test
images used to build the lookup table are shown in Fig.4 (a).
As to enhancing the credibility of our method, we selected
different images for the subjective tests as shown in Fig.4 (b).
About all the tests, we selected five fixed QPs (Fig.3), 22, 27,
32, 37, and 42 to verify the necessity of a new A.

In the case of BD-BR and BD-PCPSNR, our goal was to
minimize the bitrate and subjective distortion while maximiz-
ing the PCPSNR. Here we define that,

2" — 1)2. MN
PCPSNR = 101log %
Y > d?(x,y)

x=0 y=0

, 27

where M x N is the spatial resolution of the image, n is the
bit depth of the pixel, and d (x, y) has the same denotation as
in Eq. (19).

Next, the performance of proposed A in different models
will be described in detail.

The JND model: Table 2 shows the performance compar-
ison among the default, lookup table, and pre-processing A
techniques. The default A only contributes slightly to per-
formance improvement, which justifies the need to secure
a better A. The pre-processing method has the best results:
its BD-PCPSNR increased 0.42 dB and BD-BR decre-
ased 6.90 %. If we adopt the lookup table method to obtain
the A, the BD-PCPSNR will increase 0.29 dB and BD-BR
will decrease 4.90 %. This method does appear to remit
some performance improvement with little time consump-
tion. Comparing the two proposed approaches, we can make
a reasonable choice according to the application conditions.

The ROI model: We also try to use the perceptual A in the
ROI model, but the data in Table 3 shows that there is no
performance difference between default and pre-processing
X, and the default A is the best choice.

The JND+ROI model: The data in Table 3 also show that,
the default A can also improve the subjective image quality in
the JND+ROI model. It makes the BD-PCPSNR and BD-
BR reach 0.68 dB and —10.83 %, respectively. However,
compared with the default A, the recommended A can further
improve the performance of a JND+ROI model especially the
pre-processing method, PCPSNR promotion and rate savings
reaches 0.83 dB and 12.96 %, respectively. This told us that
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the proposed A is closer to the Lagrange operator in perceptual
RDO.

According to the above analysis and data, we can conclude
that: It is effective to improve the subjective image quality
by using perceptual models in the pixel domain to measure
distortion. In a JND model, we must consider a new A, while
in a ROI model, the default A maybe the best. For a JND+ROI
model, a proposed A will perform better than the default one.
In addition, we can also realize that a combination performs
much better than employing a sole JND or ROI model.

In a non-RC case, both the bits and distortion are uncertain
variables. The differential mean opinion score (DMOS) only
describes the distortion (PSNR), so it cannot be used as a
criterion for performance evaluation with a fixed QP.

The lookup table replaces a great deal of workload and only
adds an additional time of 6 % (or less) on average. The pre-
processing stage, conversely, is fairly time-consuming, and
the total additional time may even exceed 30 %.

C. PERCEPTUAL MODEL PERFORMANCE IN RC

We also tested the performance of the proposed method when
executing the RC. Five discrete values were selected which
represent the average bits pre-allocated per pixel (BPPP): 0.2,
0.4, 0.6, 0.8 and 1.0. More factors must be assessed here than
under non-RC condition.

Adopting the conclusion of the previous section, we only
attempted to verify the recommended method in a JND and a
JND+ROI model.

The restricted bit value is a decisive condition in the
RC mode. It is crucial to guarantee accurate bit coding.
Table 4 provides us with two pieces of information: 1)
Comparison of the proposed method against the conven-
tional method in JND and JND+ROI models. The proposed
approach ensures similar even more excellent bit allocation
accuracy as the traditional method. 2) If we use the default
A and QP-) relationship in the perceptual model, the accu-
racy of bit allocation is seriously reduced. The data from
Table 11 to Table 15 in the appendix provide us more detailed
bit information.

Table 5 and Table 6 show the performance in JND and
JND+ROI models with our proposed method in RC. In the
JND model, The BD-PCPSNR is 0.51 dB and the BD-BR
reaches —8.56 %, but the PSNR degraded from 40.35 dB to
39.87 dB. And in the JND+ROI model, these factors are fur-
ther improved. The BD-PCPSNR is 1.10 dB and the BD-BR
reaches —16.42 %, the PSNR also degraded from 40.35 dB to
39.56 dB. However, Table 5, Table 6 and Fig.5 areenough to
show that compared with the default SAD model, the percep-
tual evaluation model yields better subjective image quality.
This fully shows that the method we proposed to evaluate the
distortion in the pixel domain can effectively reduce human
visual redundancy, and accurately reflect perceptual image
quality. At the same time, we see that if the default A and QP-2
relationship are used, the perceptual quality of the image will
also be improved, BD-PCPSNR and BD-BR reach 0.20 dB
and —5.19 % in a JND model, and they reach 0.62 dB and
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TABLE 11. Accuracy of bit allocation for a SAD model by default lambda.

Bits Cost/bit Bits Errors/%
Test Image
BPPP 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
PeopleOnStreet 822976 1640648 2398232 3275224 3716352 0.4609  0.1372  -2.4157  -0.0481 -9.2688
Traffic 825232 1646488 2466992 3285656 4104704 0.7363  0.4937  0.3822 0.2703 0.2125
BQTerrace 418280 833456 1247728 1662512 2077440 0.8584  0.4842  0.2868 0.2189 0.1852
Cactus 417976 832408 1247776 1662232 2079000 0.7851  0.3578  0.2906 0.2021 0.2604
BasketballDrill 81776 162040 241920 322232 401800 23838 14373  0.9615 0.8589 0.6110
BQMall BPP 81608 161712 241040 320824 400280 2.1735 12320  0.5943 0.4182 0.2304
BlowingBubbles  (Actual) 20912 41792 64008 83624 101968 47276  4.6474  6.8510 4.6975 2.1314
RaceHorses 20656 40880 61296 81504 101496 3.4455 23638  2.3237 2.0433 1.6587
Johnny 183848 349728 546184 738400 921568 -0.2561  -5.1302  -1.2254  0.1519  -0.0035
KristenAndSara 185648 352888 501320 657464 862480 0.7205  -4.2730 -9.3388 -10.8257 -6.4149
vidyol 185544 359584 539272 732128 899480 0.6640 -2.4566 -2.4754  -0.6988  -2.4002
vidyo4 185856 369824 554112 738952 923296 0.8333  0.3211  0.2083 0.2268 0.1840
Average of ABS 1.5038  1.9445  2.2795 1.7217 1.9634
Average(BPP) 0.2029 0.3999 0.5982 0.7983 0.9895 Average of Total ABS =1.8826
TABLE 12. Accuracy of bit allocation for a IND model by default lambda.
Bits Cost/bit Bits Errors/%
Test Image
BPPP 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
PeopleOnStreet 820616 1532112 2180560 3056064 3440352 0.1729  -6.4873  -11.2728  -6.7363  -16.0070
Traffic 824032 1647544 2467224 3286096 4098936 0.5898 0.5581 0.3916 0.2837 0.0717
BQTerrace 418592 833248 1247120 1660824 2075456 0.9336 0.4591 0.2379 0.1172 0.0895
Cactus 417960 832648 1246384 1660288 2076376 0.7813 0.3868 0.1788 0.0849 0.1339
BasketballDrill 75624 154444 240176 321840 401168 -5.3185 -3.3178 0.2337 0.7362 0.4527
BQMall BPP 81536 161480 240848 320136 398832 2.0833 1.0867 0.5142 0.2028 -0.1322
BlowingBubbles  (Actual) 20792 41160 61848 81648 101160 4.1266 3.0649 3.2452 2.2236 1.3221
RaceHorses 20792 40848 61144 81048 101192 4.1266 2.2837 2.0700 1.4724 1.3542
Johnny 169752 322800 477264 736488 900736 -7.9036 -12.4349 -13.6892  -0.1074 -2.2639
KristenAndSara 184920 324656 450368 577728 775000 0.3255  -11.9314 -18.5532 -21.6406 -15.9071
vidyol 180816 320040 482472 713088 840360 -1.9010 -13.1836 -12.7474  -3.2813 -8.8151
vidyo4 185888 346088 513456 738968 879624 0.8507  -6.1176 -7.1441 0.2289 -4.5547
Average(BPP) 0.1998 0.3848 0.5717 0.7834 0.9631 Average of Total ABS = 4.1487
TABLE 13. Accuracy of bit allocation for a JIND+ROI model by default lambda.
Bits Cost/bit Bits Errors/%
Test Image
BPPP 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
PeopleOnStreet 817896 1555312 2205296 3080224 3462384 -0.1592  -5.0713  -10.2663  -5.9990  -15.4691
Traffic 824992 1647104 2467616 3287808 4095432 0.7070 0.5313 0.4076 0.3359 -0.0139
BQTerrace 419320 833648 1245944 1659592 2074976 1.1092 0.5073 0.1434 0.0429 0.0664
Cactus 417968 832640 1246288 1660632 2077040 0.7832 0.3858 0.1710 0.1056 0.1659
BasketballDrill 78496 156648 242240 321992 401752 -1.7228  -1.9381 1.0951 0.7838 0.5990
BQMall BPP 81672 161392 240888 320008 398544 2.2536 1.0317 0.5308 0.1628 -0.2043
BlowingBubbles ~ (Actual) 20872 41432 61960 81448 100992 4.5272 3.7460 3.4322 1.9732 1.1538
RaceHorses 20792 40984 61464 81136 101200 4.1266 2.6242 2.6042 1.5825 1.3622
Johnny 179640 328264 484304 736632 906664 -2.5391  -10.9527 -12.4161  -0.0879 -1.6207
KristenAndSara 184888 330112 457216 587928 781896 0.3082  -10.4514 -17.3148 -20.2572 -15.1589
vidyol 183968 326416 487024 713296 839328 -0.1910 -11.4540 -11.9242  -3.2530 -8.9271
vidyo4 186104 351976 516192 739176 881360 0.9679  -4.5204 -6.6493 0.2572 -4.3663
Average of ABS 1.6163 4.4345 5.5796 2.9034 4.0923
Average(BPP) 0.2017 0.3881 0.5749 0.7838 0.9647 Average of Total ABS =3.7252
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TABLE 14. Accuracy of bit allocation for a JND model by processing lambda.

Bits Cost/bit

Bits Errors/%

Test Image
BPPP 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
PeopleOnStreet 813616 1610872 2436616 3282768 4101680 -6.8164 -1.6801 -0.8538 0.1821 0.1387
Traffic 825152 1648808 2471512 3291560 4113096 0.7266  0.6353  0.5660 0.4504 0.4174
BQTerrace 417504 833088 1249520 1665928 2083176 0.6713  0.4398  0.4308 0.4249 0.4618
Cactus 418488 838664 1278688 1733944 2095448 09086  1.1121 27752 4.5250 1.0536
BasketballDrill 81800 163112 242848 322688 401864 24139  2.1084  1.3488 1.0016 0.6270
BQMall BPP 81776 161144 240824 320656 400120 23838 08764  0.5041 03656 0.1903
BlowingBubbles  (Actual) 21280 41888 61672 82944 103784 6.5705  4.8878 29514 3.8462 3.9503
RaceHorses 20848 40856 61432 81296 101648 44071 23037 25507 1.7829 1.8109
Johnny 180088 369784 555720 782520 935992 -2.2960  0.3103 04991  6.1361 1.5616
KristenAndSara 181952 367440 555120 739096 926968 -1.2847  -0.3255 03906 0.2463  0.5825
vidyol 183128 370776 556696 745392 925200 -0.6467  0.5794  0.6756  1.1003  0.3906
vidyo4 185696 372800 558032 790616 976888 0.7465  1.1285 09172  7.2342  5.9991
Average of ABS 24893 13656  1.2053 2.2746 1.4320
Average(BPP) 0.2023 0.4041 0.6064 0.8182 1.0143 Average of Total ABS =1.7534
TABLE 15. Accuracy of bit allocation for a JIND+ROI model by processing lambda.
Bits Cost/bit Bits Errors/%
Test Image
BPPP 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
PeopleOnStreet 818232 1635592 2448848 3264240 4076824 -0.1182  -0.1714 -0.3561  -0.3833  -0.4682
Traffic 824616 1655064 2458920 3277640 4092640 0.6611 1.0171  0.0537  0.0256  -0.0820
BQTerrace 416656 830320 1242016 1656448 2070864 0.4668  0.1061 -0.1723  -0.1466 -0.1319
Cactus 417192 834480 1268160 1723752 2150224 0.5961  0.6076  1.9290 39106  3.6952
BasketballDrill 81360 162248 241728 321744 400568 1.8630  1.5675 0.8814  0.7061  0.3025
BQMall BPP 81872 161568 240880 319328 398528 2.5040  1.1418 05275 -0.0501 -0.2083
BlowingBubbles  (Actual) 20992 41608 60848 81928 103248 51282 4.1867 1.5759 25741 34135
RaceHorses 21152 40720 60688 80792 100608 5.9295  1.9631 1.3088  1.1518  0.7692
Johnny 185040 369064 552616 746176 924952 0.3906  0.1150 -0.0622  1.2066  0.3637
KristenAndSara 185816 368664 552232 735568 919208 0.8116  0.0065 -0.1317 -0.2322 -0.2595
vidyol 185160 370048 552728 736672 915752 0.4557 03819  -0.0420 -0.0825 -0.6345
vidyo4 185920 373976 554960 781040 941152 0.8681 1.4475 03617 59353  2.1215
Average of ABS 1.6494  1.0594 0.6169 13671  1.0375
Average(BPP) 0.2033 0.4041 0.6029 0.8097 1.0074 Average of Total ABS = 1.1460

—9.09 % in a JND+ROI model. But, the proposed way has
better performance, obviously.

We conducted subjective tests by means of the sin-
gle stimulus continuous quality score (SSCQS) based on
the adjectival categorical judgment (ACJ) [40] to deter-
mine the mean opinion score (MOS). The test conditions
and comparison scale are shown in Table 7, Table 8 and
Table 9. We ran two MOS experiments to verify the effec-
tiveness of the JND and JND+ROI models. For the first,
we displayed reference images (left) and test images (right)
at the same time according to the time sequence shown
in Fig. 6(a).

At T1, the original image is on the left and the SAD
and JND (JND+ROI) images alternately displayed 3 times
per second are on the right. The goal in this case was to
recognize the difference between two distorted images before
evaluating them. At T2, we evaluated the original and one of
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the two distorted images randomly. At T3, the other distorted
image was handled in the same manner. A mid-gray image
was observed at TO.

As shown in Table 10, although there were differences
between the two distorted images in a JND model, the dissim-
ilarity is not well reflected by comparing the distorted versus
original image separately. We instead observed the reference
images (left) and test images (right) at the same time accord-
ing to the time sequence shown in Fig. 6(b). T4 is similar to
T1, so we compared the two distorted images at TS. As shown
in Table 10, when BPPP is sufficiently large, there is little
difference visible between the two distorted images despite
an improvement in PCPSNR. When the BPPP is sufficiently
small, the JND model much more effectively improves the
perceptual image quality than SAD model. Without a doubt,
the JND+ROI model has the best perceptual performance
among them as shown in Table 10.
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TABLE 16. The values of alpha and beta of different contents and resolutions in a JND model for one frame.

BPPP 1.0 0.8 0.6 04 0.2
Alpha Beta Alpha Beta Alpha Beta Alpha Beta Alpha Beta

BasketballDrive ~ 9.78838  1.22515  7.75062 1.12701  6.51278 1.05591 5.02048 0.93917 4.71446 0.87732
BQTerrace 5.02728 1.14873 471167 1.01966  4.56745 095426 4.26718 0.89632 3.39511  0.90604
Cactus 4.65270  1.12453  4.33572  1.08939  4.07898 1.05828 3.88619 1.02916 3.58575 0.95084
Kimonol 6.29901 1.11881 5.13346 1.04237  3.99367 094423 3.57013 0.88980 3.75185 1.09674
ParkScene 5.10105 1.14573 494427 1.16099  4.92165 1.20984 4.48112 1.16910 3.74294 1.06983
BasketballDrill ~ 4.09464 1.02030 3.84530 0.94794  3.74439 0.90583 3.41137 0.93826 2.97224  0.90901
BQMall 457406 1.11860 4.29682 1.05231  4.34321 0.94548 4.07635 0.90052 3.66373  0.88327
PartyScene 3.61420 1.00111 3.73205 091623  3.56648 091033 3.05413 0.92305 2.55825 0.92322
RaceHorses 3.81444  1.16519 3.59964 1.07693  3.44906 1.09693 3.45887 0.97427 3.16565 0.91771
BasketballPass ~ 4.25721  1.15764 3.84743 1.04214  3.68863 0.96620 3.57800 0.94223 2.78084  0.96501
BlowingBubbles  3.88298  0.92754  3.77277 0.94188  3.42979 0.97732 3.02344 0.93658 2.61905 0.92318
BQSquare 544250 0.79102 4.89842 0.81854  4.33868 0.81957 3.03930 0.89323 236034  0.92349
RaceHorses 3.55547 0.98472 3.40029 1.02612  3.83456 0.87252 3.74734 0.86299 2.79242 0.89751
FourPeople 9.15153  1.25741 7.76375 1.20137  6.43240 1.15580 5.30133 1.04537 523941 0.84513
Johnny 18.8154  1.40963 18.0230 1.39304  11.0218 124211 6.80400 1.05101 5.60896  0.94979
KristenAndSara  11.6893  1.32618 9.11730 1.24415  6.98818 1.14741 5.97485 1.10763  4.69756  0.97298
vidyol 12.6019 1.34603 12.2006 1.32536  8.94147 1.22484 7.37893 1.17246 542659 0.95647
vidyo3 16.1127  1.37330 12.4735 1.27895  8.85070 1.15322 6.24420 0.98420 5.28868  0.84629
vidyo4 23.8359 147179 19.0080 1.41207  11.6796 126614 7.83740 1.11659 6.20351  0.92427

The time consumption is the same as the pre-processing
method in non-RC.

V. CONCLUSION

In this study, the ROI and JND models are combined to
evaluate perceptual image quality in the pixel domain for
HEVC intra coding. For the successful implementation of
the scheme, we established a new method for obtaining QP
and X values in perceptual models under the non-RC or RC
conditions. We also proposed an approach to allocate bits
according to the subjective distortion. The results show that
the subjective PSNR improvement can be gained in a JND,
a ROI, and a ROI4-JND model under both non-RC and RC
conditions. At the same time, it is easy to find that the
combination performs much better than employing a sole
JND or ROI model.

Still, this study has several limitations. One hand: 1) The
limited sample set and large sampling step, for example, may
have caused substantial error in the lookup table. 2) The pre-
compression method is also overly time-consumptive due to
the costly pre-compression stage. On the other hand: Pay
more attention to the current image processing methods, and
deep learning can better complete a lot of work. In HEVC,
scholars used deep learning method to achieve fast intra mode
and CU partitioning, [44] not only improves BD-BR, but also
greatly reduces coding time. Meanwhile, Li et al. [45] used
deep learning method to excavate the continuous multi-frame
image information in HEVC and applied it to the design of
loop filter, so as to significantly improve the filtered image
quality and further improve the efficiency of HEVC coding.

So in the future work, 1) we plan to further improve the
performance of perceptual coding by improving the ROI and
JND models based on our proposed approach. 2) We hope to
use deep learning method to obtain perceptual lambda in a
subjective model to solve the accuracy and time consumption
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problems. 3) As per the supra-threshold level concept, the
image may indeed have a more precise JND scale and/or
multiple scales [39] that can further minimize human visual
redundancy. 4) We will also further study HEVC and continue
to strive for more innovative approaches.

APPENDIX
Table 11 to Table 15 present detailed bit information for all
the test images in different BPPP.

Table 16 presents the values of alpha and beta with different
contents and resolutions for one frame.

REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30-44, 1991.

[2] D.Taubman and M. Marcellin, JPEG2000 Image Compression Fundamen-
tals, Standards and Practice: Image Compression Fundamentals, Stan-
dards and Practice, vol. 642. Berlin, Germany: Springer, 2012.

[3] T. Wiegand, G. J. Sullivan, G. Bjgntegaard, and A. Luthra, “Overview of

the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 13, no. 7, pp. 560-576, Jul. 2003.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[5] B.Li, H. Li, L. Li, and J. Zhang, “A domain based rate control for high
efficiency video coding,” IEEE Trans. Image Process., vol. 23, no. 9,
pp. 3841-3854, Sep. 2014.

[6] F. Ernawan and S. H. Nugraini, “The optimal quantization matrices for
JPEG image compression from psychovisual threshold,” J. Theor. Appl.
Inf. Technol., vol. 70, no. 3, pp. 566-572, Dec. 2014.

[7] S.-H. Bae and M. Kim, “A novel DCT-based JND model for luminance

adaptation effect in DCT frequency,” IEEE Signal Process. Lett., vol. 20,

no. 9, pp. 893-896, Sep. 2013.

X. Zhang, R. Xiong, W. Lin, S. Ma, J. Liu, and W. Gao, “Video compres-

sion artifact reduction via spatio-temporal multi-hypothesis prediction,”

IEEE Trans. Image Process., vol. 24, no. 12, pp. 6048-6061, Dec. 2015.

[9] J. Kim, S.-H. Bae, and M. Kim, “An HEVC-compliant perceptual video

coding scheme based on JND models for variable block-sized transform

kernels,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 11,

pp. 1786-1799, Nov. 2015.

E. P. Simoncelli, Foundations of Vision. Sunderland, MA, USA: Sinauer,

1996.

[4

=

8

—

[10]

VOLUME 7, 2019



D. Fu et al.: HEVC/H.265 Intra Coding Based on the HVS

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S.Li, M. Xu, Y. Ren, and Z. Wang, ““Closed-form optimization on saliency-
guided image compression for HEVC-MSP,” IEEE Trans. Multimedia,
vol. 20, no. 1, pp. 155-170, Jan. 2018.

J. Wu, L. Li, W. Dong, G. Shi, W. Lin, and C.-C. J. Kuo, “Enhanced just
noticeable difference model for images with pattern complexity,” IEEE
Trans. Image Process., vol. 26, no. 6, pp. 2682-2693, Jun. 2017.
X.F.Zhang, S. Wang, K. Gu, W. Lin, S. Ma, and W. Gao, ‘‘Just-noticeable
difference-based perceptual optimization for JPEG compression,” IEEE
Signal Process. Lett., vol. 24, no. 1, pp. 96-100, Jan. 2017.

Z. Weiand K. N. Ngan, ““Spatial just noticeable distortion profile for image
in DCT Domain,” in Proc. IEEE Int. Conf. Multimedia Expo, Hannover,
Germany, Jun./Apr. 2008, pp. 925-928.

S.-H. Bae, J. Kim, and M. Kim, “HEVC-based perceptually adaptive video
coding using a DCT-based local distortion detection probability model,”
IEEE Trans. Image Process., vol. 25, no. 7, pp. 3343-3357, Jul. 2016.

X. Zhang, R. Xiong, S. Ma, and W. Gao, “Reducing blocking artifacts in
compressed images via transform-domain non-local coefficients estima-
tion,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2012, pp. 836-841.
X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao, “Compression artifact
reduction by overlapped-block transform coefficient estimation with block
similarity,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 4613-4626,
Dec. 2013.

S. Ki, S.-H. Bae, M. Kim, and H. Ko, “Learning-based just-noticeable-
quantization-distortion modeling for perceptual video coding,” IEEE
Trans. Image Process., vol. 27, no. 7, pp. 3178-3193, Jul. 2018.

H. Wang, L. Wang, Q. Tu, and A. Men, ‘““Perceptual video coding based
on saliency and just noticeable distortion for H.265/HEVC,” in Proc. Int.
Symp. Wireless Pers. Multimedia Commun., Jan. 2015.

Z. Zeng, H. Zeng, J. Chen, J. Hou, C. Cai, and K.-K. Ma, “A novel
direction-based JND model for perceptual HEVC intra coding,” in
Proc. Int. Symp. Intell. Signal Process. Commun. Syst., Xiamen, China,
Nov. 2017.

K.-C. Liu, “An improvement of just noticeable color difference estima-
tion,” in Proc. Federated Conf. Comput. Sci. Inf. Syst., Gdansk, Poland,
Sep. 2016.

M. Uzair and R. D. Dony, “Estimating just-noticeable distortion for
images/videos in pixel domain,” [ET Image Process., vol. 11, no. 8,
pp. 559-567, Aug. 2017.

C. Yuan, X. Sun, and R. Lv, “Fingerprint liveness detection based on multi-
scale LPQ and PCA,” China Commun., vol. 13, no. 7, pp. 60-65, Jul. 2016.
J. Zhang and S. Sclaroff, “Exploiting surroundedness for saliency detec-
tion: A Boolean map approach,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 5, pp. 889-902, May 2016.

S. Ma, W. Gao, and Y. Lu, “Rate-distortion analysis for H.264/AVC video
coding and its application to rate control,” IEEE Trans. Circuits Syst. Video
Technol., vol. 15, no. 12, pp. 1533-1544, Dec. 2005.

Y. Pitrey, M. Babel, and O. Deforges, ‘“One-pass bitrate control for MPEG-
4 scalable video coding using p-domain,” in Proc. IEEE Int. Symp. Broad-
band Multimedia Syst. Broadcast. (BMSB), May 2009, pp. 1-5.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

W. Ding and B. Liu, “Rate control of MPEG video coding and recording
by rate-quantization modeling,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 1, pp. 12-20, Feb. 1996.

J. Ribas-Corbera and S. Lei, “Rate control in DCT video coding for low-
delay communications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,
no. 1, pp. 172-185, Feb. 1999.

S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,”
IEEE Trans. Image Process., vol. 46, no. 4, pp. 1024-1042, Apr. 1998.
M. Dai, D. Loguinov, and H. Radha, “‘Rate-distortion modeling of scalable
video coders,” in Proc. Int. Conf. Image Process. (ICIP), vol. 2, Oct. 2004,
pp. 1093-1096.

B. Li, D. Zhang, H. Li, and J. Xu, QP Determination by A Value,
document Rec. JCVVC-10426, Geneva, Switzerland, Apr./May 2012.

M. R. Ardestani, A. A. B. Shirazi, and M. R. Hashemi, ‘“Rate-distortion
modeling for scalable video coding,” in Proc. IEEE 17th Int. Conf.
Telecommun. (ICT), Apr. 2010, pp. 923-928.

C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression,”
IEEE Trans. Image Process., vol. 19, no. 1, pp. 185-198, Jan. 2010.

J. Li and H.-H. Sun, “On interactive browsing of large images,” IEEE
Trans. Multimedia, vol. 5, no. 4, pp. 581-590, Dec. 2003.

Z. Li, S. Qin, and L. Itti, “Visual attention guided bit allocation in video
compression,” Image Vis. Comput., vol. 29, no. 1, pp. 1-14, Jan. 2011.

VOLUME 7, 2019

(37]

(38]

(39]
[40]

[41]

[42]

[43]

(44]

[45]

M. Xu, Y. Ren, and Z. Wang, “Learning to predict saliency on face
images,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 3907-3915.
Z. Wang and Q. Li, “Information content weighting for perceptual
image quality assessment,” IEEE Trans. Image Process., vol. 20, no. 5,
pp. 1185-1198, May 2011.

H. R. Wu and D. M. Tan, “Subjective and objective picture assessment at
supra-threshold levels,” in Proc. PCS, 2015, pp. 312-316.

Methodology for the Subjective Assessment of the Quality of Television
Pictures, document ITU-R BT.500-13, Jan. 2012.

H. R. Tavakoli, A. Borji, J. Laaksonen, and E. Rahtu, “Exploiting inter-
image similarity and ensemble of extreme learners for fixation prediction
using deep features,” Neurocomputing, Mar. 2017, pp. 10-18.

J. Sainio, A. Yld-Outinen, M. Viitanen, J. Vanne, and T. D. Hamél4inen,
“Eye-controlled region of interest HEVC encoding,” in Proc. IEEE ISM,
Dec. 2018, pp. 186-187.

A. Stergiou, G. Kapidis, G. Kalliatakis, C. Chrysoulas, R. Veltkamp,
and R. Poppe, “Saliency tubes: Visual explanations for spatio-
temporal convolutions,” 2019, arXiv:1902.01078. [Online]. Available:
https://arxiv.org/abs/1902.01078

W. Kuang, Y. Chan, S. H. Tsang, and W. C. Siu, “Online-learning-based
Bayesian decision rule for fast intra mode and CU partitioning algorithm
in HEVC screen content coding,” IEEE Trans. Image Process., vol. 29,
pp. 170-185, 2020.

T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A deep learning
approach for multi-frame in-loop filter of HEVC,” IEEE Trans. Image
Process., vol. 28, no. 11, pp. 5663-5678, Nov. 2019.

DONGHUI FU received the B.S. degree in elec-
tronic information engineering from Jilin Univer-
sity, Changchun, China, in 2015. He is currently
pursuing the Ph.D. degree with the Changchun
Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun. His
research interest includes image compression.

YANJIE WANG received the B.S. degree in com-
puter science and applications from the Jilin Uni-
versity of Technology, Changchun, China, in 1988,
and the M.S. degree from the Changchun Institute

—
-y of Optics, Fine Mechanics and Physics, Chinese
= Academy of Sciences, Changchun, in 1998. He
" is a Doctoral Tutor and a Scientific Researcher.

His research interest includes real-time image
processing.

BO FAN received the B.S. degree in informa-
tion engineering from Jilin University, Changchun,
China, in 2011, and the M.S. degree from the
Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
Changchun, in 2014, where he is currently
pursuing the Ph.D. degree. His research inter-
ests include high-image acquisition and real-time
image processing.

NANNAN DING received the B.S. degree in
information engineering from Jilin University,
Changchun, China, in 2007, and the Ph.D. degree
from the Changchun Institute of Optics, Fine
Mechanics and Physics, Chinese Academy of Sci-
ences, Changchun, in 2012. His research interests
include image signal processing, image registra-
tion, and image stitching fusion.

186599



