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Single Remote-Sensing Image Dehazing in HSI Color Space
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In order to improve the visibility of a single hazy remote sensing multi-spectral image, we develop
a novel and effective dehazing algorithm in HSI (hue, saturation and intensity) color space. First of
all, the hazy image is transformed into HSI color space; then a linear regression model is built for
saturation component image processing. In addition, we implement the improved dark channel prior
method in the intensity channel processing. Compared with the traditional haze removal methods
in remote-sensing images, the experimental results demonstrate that the developed algorithm can
achieve better visual effect and better color fidelity. Both qualitative evaluations and quantitative
assessments indicate that the proposed method achieves a better performance than the state-of-
the-art methods.
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I. INTRODUCTION

The rapid development of computer technology and
remote-sensing techniques has brought new opportuni-
ties for the application of remote-sensing image process-
ing. The images are widely used in basic geographic
information acquisition, agricultural production, marine
monitoring and other fields because of their wide cov-
erage and high resolution [1–3]. Nearly all images ac-
quired by passive optical remote sensing are disturbed
by clouds, fog, haze and other weather factors, resulting
in light being absorbed and scattered by turbid media
such as particles and water droplets in the atmosphere
[4–6]. The removal of haze from a single remote-sensing
image is still a significant task.

At present, dehazing methods can be divided into two
main categories. The first is methods based on image
enhancement; the second is based on physical models.
Methods in first category enhance degraded images and
improve quality, and existing mature image processing
algorithms can be applied to haze removal. However,
the method in this category may result in some informa-
tion in the images being lost. The histogram equaliza-
tion method, which is based on the gray-level cumulative
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distribution function of the image, can also be used for
dehazing, The essence of histogram equalization is the
non-linear stretching of an image to enhance contrast [7–
9]. In foggy weather, the low-frequency component of the
image is enhanced, so a high-pass filter can be used to fil-
ter the image to suppress the low-frequency and enhance
the high-frequency. At present, holomorphic filtering is
being widely studied to remove haze [10]. According to
Retinex theory, if we can find a way to separate the re-
flected component from the image, then the effect of the
incident component on the image is reduced to enhance
the image. In the development of Retinex theory, the
path-based Retinex algorithm and the iterative Retinex
algorithm have appeared successively. These algorithms
are highly complex, and adjusting their parameters are
difficult [11,12].
The second category includes the atmospheric scat-

tering model based on the research of the atmospheric
suspended-particles scattering-effect on light. This is a
special method for image restoration and has a good ef-
fect on complex-scene image processing. Therefore, the
information in the image can be preserved completely
and haze can be removed. Tan [13] first proposed a sin-
gle image-dehazing method by maximizing the local con-
trast of the image. However, Tan’s proposed method can
easily cause color over saturation when processing dense
haze images. He et al. [14] summarized a rule, called the
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dark channel prior (DCP) based on observing the sta-
tistical characteristics pertaining to a large number of
haze-free images. Among the above dehazing methods,
He’s method is simple and effective. However, the DCP
methods are based on the statistics of outdoor images
while remote-sensing images have an imaging distance
different from outdoor images. As a result, color drift
can easily occur when that method is applied to remote-
sensing images.

In this paper, we propose a novel haze-removal method
for a single hazy remote-sensing image. In order to re-
move the haze and maintain the color information of the
original image better, we transform the hazy image into
HSI color space; then, we build a linear regression model
for saturation component image processing. In addition,
we implement the improved DCP method in the inten-
sity channel processing. Compared with the traditional
methods for removing haze from remote-sensing hazy im-
ages, the proposed method achieves better visual effect
in color fidelity and haze removal.

II. METHODOLOGY

1. The physical hazy image degradation model

Nayer et al. [15,16] described and deduced in detail
the atmospheric scattering model, which was widely re-
ferred to by later researchers. In that model, the effect
of atmosphere on the light reflected from scenery is di-
vided into two parts: the attenuation by the atmosphere
of light the scenery and the superposition of environment
light. Attenuation refers to light reflected by the scene
reaching to the observer after having been scattered by
atmospheric particles. The image degradation model is
expressed in RGB space as follows:

I(x) = J(x)t(x) +A(1− t (x)) , (1)

where x represents the position of the pixel in the image,
I(x) is the intensity of the observed hazy image, J(x)
is the scene radiance, A is the global atmospheric light
which is usually assumed to be constant, and t(x) is the
medium transmission, which describes the fraction of the
light that is not scattered and gets to the camera.

2. Color space conversion

The main purpose of the RGB color space is for the
representation and display of images in electronic sys-
tems, such as televisions and computers. The color in-
formation collected from the pixels by common devices
is stored by dividing it into R (red), G (green) and B
(blue). However, in RGB color model, the chrominance
information is vulnerable to brightness [16].

(a) Hue component
image

(b) Saturation
component image

(c) Intensity
component image

Fig. 1. Comparison of the H, S, and I image components
before and after haze removal. The top row shown hazy im-
ages images, and the bottom row shown the haze-free images.

The existence of haze submerges the object’s light in
the intensity channel, which could lead to a low con-
trast image. What’s more, the saturation component
is slightly affected due to the different scattering coef-
ficients, which will be discussed in next section. When
people observe objects, they tend to describe them in
terms of hue, saturation and brightness (HSI). HSI color
space is widely used in computer vision processing al-
gorithms, and the HSI model is more suitable for the
subjective description and interpretation of the human
eyes. The image is divided into a color component and a
gray component, which will make the application of our
image processing method more convenient in HSI color
space [17,18]. The conversion from RGB color space to
HSI color space can be achieved by using the following
formulas. The hue component is calculated as:

H =

{
θ, B ≤ G

360− θ, B > G,
(2)

where

θ = arccos

{
1/2[(R−G) + (R−B)]

[(R−G)2 + (R−G)(G−B)]1/2

}
, (3)

The saturation component is given as:

S = 1− 3

R+G+B
[min(R,G,B)], (4)

Finally, the intensity component is given by:

I =
1

3
(R+G+B), (5)

3. Dehazing method

By comparing and analyzing the image dehazing ex-
perimental results for the H, S, and I components, we
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Fig. 2. (Color online) Overall flowchart of the proposed
method.

found that the saturation component and the brightness
component were positively correlated with the concen-
tration of haze, and that the H component undergoes no
obvious change before and after haze removal processing.
And the results are shown in Fig. 1.

Therefore, a hazy image is transformed from RGB
color space into HSI color space for image processing,
and the intensity and the saturation components are
processed while the hue component remains unchanged.
The overall flowchart of the proposed method is shown
in Fig. 2.

For a haze-free image, the saturation value of each
pixel is relatively large. Because of the existence of fog,
the saturation of atmospheric light is introduced, result-
ing in the dilution of saturation. Thus, we established a
linear model to estimate the saturation S (x, y) compo-
nent:

S (x, y) = θ0 + θ1S1 (x, y) + θ2SA (x, y) , (6)

where θi, i ∈ (0, 1, 2), represents nonnegative coefficients,
S1 (x, y) is the saturation of a hazy image, and SA (x, y)
represents the saturation of atmospheric light. The gra-
dient descent method is applied to learn θi, and a cost
function J (θi) is introduced, which is the sum of squares
of all modeling error, J(θi) can be described using:

J(θ) =
1

2m

m∑
i=1

(
Sθ(X

i)− yi
)2
, (7)

where m is the total number of training samples and yi

is the actual value of the samples.
We can obtain the coefficients by minimizing the cost

function. At first, we randomly select a combination
of parameters (θ0, θ1, θ2) to calculate the cost function;
then, we look for the next combination of parameters to
make the value drop most until the cost function reaches
a local minimum. The derivative of the cost function is

calculated as

∂

∂θj
J(θ) =

∂

∂θj
− 1

2m

m∑
i=1

(
Sθ(X

i)− yi
)2
, (8)

According to the gradient descent algorithm we have

θj := θj − α
∂

∂θj
J(θ), (9)

θ is updated during gradient descent, so we have the
following expressions:

θ0 := θ0 − α
1

m

m∑
i=1

(Sθ(X
i)− yi), (10)

θ1 := θ1 − α1/m
m∑
i=1

Sθ((X
i)− yi)X

(i)
1 , (11)

θ2 := θ2 − α1/m
m∑
i=1

Sθ((X
i)− yi)X

(i)
2 , (12)

where the notation := represents that the set of the val-
ues of θj ion the left side of the equation is equal to the
set of the value on the right side, and α is the learning
rate, which determines the efficiency of the gradient de-
scent algorithm. If the learning rate is too small, a large
number of steps will be needed to reach the global min-
imum. Conversely, if the learning rate is too large, the
cost function will not converge. Thus, choose the right
learning rate is crucial.
The learning rate can be calculate using

α = αS ∗ αD

global−step
decay−step , (13)

where αS is the initial learning rate, αD indicates the
attenuation rate of each round of learning, global− step
represents the current number of learning steps which is
equivalent to how many times we have put batch into
the learner, and decay− step is the number of steps per
round of learning which is equal to the total number of
samples divided by the size of each batch. Then the
saturation of atmospheric light SA is estimated. Owing
to atmospheric light corresponds to the most dense haze
area, so the 1/4 brightest region in the image is selected,
and the minimum pixel value in the region is used as an
estimate of SA.

We implement the improved DCP method [14] in the
intensity channel. We obtain the transmission t(x) based
on the DCP theory. Then, the atmospheric light estima-
tion method of He et al. is improved. In He et al.’s work
[14], the top 0.1% of pixels in the dark channel are taken
as the atmospheric light. Although this method is ro-
bust, only one point is taken into account which maybe
the reason that the A value of each channel is too high to
result in color drift. Achieving satisfactory results with
conventional methods is difficult when highlight areas
exist in the image.

M(x) = min
c∈(r,g,b)(Ic(x)). (14)
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(a) (b) (c) (d) (e)

Fig. 3. (Color online) Qualitative comparison of different methods: (a) hazy images, (b) MSR method results, (c) Tan’s
method results, (d) DCP method results, and (e) our results.

Based on the work of He and others, we developed a
method that can reduce the influence of highlight areas
on the acquisition of atmospheric light. First, it’s re-
quired a minimum channel map of the degraded remote
sensing images. The minimum channel map can be cal-
culated as follows:

scorei = M̄i − δ2i , i = 1, 2, (15)

where i is the index of each region, scorei is the score
of region i, Mi represents the mean value of the region i
and δ2i represents the variance in the region i. Then, the
region with the highest score is taken as the candidate
iterative region and is further divided into four smaller
regions. The process continues until the size of the can-
didate region is smaller than the preset size threshold.
The average of each channel in the last candidate re-
gion is selected as the result of A. Thus, we can obtain
the haze-free intensity component image I(x) because we
have estimates of A and t(x):

I(x) =
I(x)−A

t(x)
+A. (16)

Finally, these three channel images are transformed from
HSI color space back to RGB color space.

III. EXPERIMENT

To validate the effectiveness of the method, we tested
multiple remote sensing hazy images. The images used
in this research were collected from the NASA Earth Ob-
servatory website and the Earth Explorer of the United
States Geological Survey (USGS). The performance of
the proposed method is compared with that of the Multi-
scale Retinex method [12], the Tan’s method [13] and the
DCP method [14] are both qualitative and quantitative.
In order to verify the improvement of in image visual

effect for each algorithm, we selected typical images to
processed, as shown in Fig. 3.
Figures 3(a) and 3(b) show an input hazy image and

the multi-scale Retinex method results respectively. Al-
though the MSR algorithm has good performance in con-
trast enhancement, it will lead to color distortion when
the original image does not satisfy the gray assumption.
Figure 3(c) show Tan’s method results, in which most of
the haze has been removed, but the recovered image has
a slight color distortion, and the resolution of the image
is lower than the original image. Figure 3(d) presents the
DCP method result, which is constrained by the inher-
ent problem of dark channel priors; He et al.’s algorithm
cannot be applied to areas in which the brightness in
the region is similar to that of atmospheric light. There-
fore, the DCP method is often unreliable when dealing
with non-homogeneous images. Figure 3(e) presents our
method’s results; as can be seen, the dense haze is ef-
fectively removed, and color fidelity is preserved. Our
method achieves a better result.

1. Quantitative results comparison

In order to quantitatively evaluate the algorithms,
we select some classical evaluation indices, including
the mean squared error (MSE), the structural similar-
ity (SSIM), the ratio of new visible edges (e), the gain
of visibility level r̄ and the fog aware density evalua-
tor (FADE). Structural similarity (SSIM) is an objective
evaluation index that is independent of the brightness
and the contrast of the image and conforms to the char-
acteristics of the human visual system. A high SSIM
value indicates that the image with haze removed is very
similar to the real image on the ground [19].
By comparing the processing results of each algorithm,

we concluded that the SSIM value obtained by this
method is higher; the results are shown in Table 1. The
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Fig. 4. (Color online) The corresponding MSE calculation results.

Table 1. The values of SSIM, e, r̄ and FADE

Image SSIM e r̄ FADE

Original
0.737

0.685

2.627

0.668

2.315

2.168

0.348

0.606

MSRCR method
0.774

0.732

2.806

0.927

1.785

1.654

0.269

0.472

Tan’s method
0.763

0.742

2.763

0.664

1.646

1.235

0.335

0.616

DCP method
0.712

0.746

2.782

0.757

1.836

1.757

0.317

0.608

Our method
0.739

0.7216

2.798

0.786

1.963

1.935

0.305

0.496

MSE can be utilized as a more convenient way to eval-
uate the degree of data variation [20,21]. A high value
of MSE indicates that the haze-removal algorithm is not
effective while a low value of MSE indicates that the re-
covered image is valuable. The value of e evaluates the
ability of the haze-removal method to recover the edges
that are not visible in a hazy image. The value of r̄ rep-
resents the average ratio of gradient specifications before
and after dehazing [22]. The Fog Aware Density Evalu-
ator [23] (FADE) is a contrast descriptor that indicates
the visibility of a foggy scene by measuring the statis-
tical regularity deviation of hazy images and haze-free
images. A low value of the FADE implies better vis-
ibility enhancement. We show the corresponding MSE
results produced by the different algorithms in Fig. 4, we
list the values of SSIM, e, r̄ and FADE in Table 1.

To sum up, our method achieves the smallest values
of MSE and FADE, the highest value of SSIM, e and r̄.
Therefore, the results of these experimental data indicate
that our algorithm achieves better performance in con-
trast enhancement, image structure information preser-
vation, visible edge enhancement, and haze removal. As
a consequence, the proposed method in this research is
valuable for haze removal.

IV. CONCLUSION

We have developed a novel and effective dehazing algo-
rithm to achieve single remote-sensing image dehazing.
A linear regression model is proposed to estimate the
saturation component; and the gradient descent method
is applied to learn the coefficients of the linear model. In
addition, we improved the DCP method by proposing a
new method to estimate the atmospheric light, which can
limit the influence of highlight areas. Compared with the
traditional haze-removal methods, the experimental re-
sults demonstrate that the developed algorithm performs
better. Both qualitative evaluations and quantitative as-
sessments indicate that the proposed method can recover
a haze-free remote-sensing image with good visual effect
and high quality. The following research will be aimed
at dealing with dense haze.
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