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Abstract

This paper presents a kinematic calibration of a 6-RRRPRR parallel kinematic mechanism with offset RR-joints that would

be applied in space positioning field. In order to ensure highly accurate and highly effective calibration process, the

complete error model, which contains offset universal joint errors, is established by differentiating inverse kinematic

model. A calibration simulation comparison with non-complete error model shows that offset universal joint errors are

crucial to improve the calibration accuracy. Using the error model, an optimal calibration configuration selection algo-

rithm is developed to determine the least number of measurement configurations as well as the optimal selection of

these configurations from the feasible configuration set. To verify the effectiveness of kinematic calibration, a simulation

and experiment were performed. The results show that the developed approach can effectively improve accuracy of a

parallel kinematic mechanism with relatively low number of calibration configurations.
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Introduction

The parallel kinematic mechanism (PKM) has been
successfully used as the secondary mirror positioning
machine of the large ground-based optical telescope in
recent years.1–3 However, the stiffness and accuracy
are the major technique problems faced by the appli-
cation of the active adjustment device to space optical
loads.4–6 In recent years, a large number of studies
have shown that the design of joint used in PKM is
the key component to determine its stiffness.5,7 In
related literature, R, U, S, C and P denote a revolute
pair, a universal joint, a spherical joint, a cylindrical
pair, and an actuated prismatic pair.8 The offset
design of RR-joint makes pivoting range of joint
larger and also makes the parallel structure more stif-
fer than traditional S-joint and U-joint.9 Gloess and
Lula analyzed that the offset RR-joint is twice the
load capacity of U-joint.10 Besides, the offset RR-
joint is easier to manufacture than the S-joint and
U-joint due to the universal joint that is replaced by
two separate revolute joints.

In this paper, a PKM with RRRPRR kinematic
chain is mainly used as the secondary mirror adjust-
ment system of a large space telescope. Compared to
precise fabrication and assembly, kinematic calibra-
tion is more effective and lower cost way to improve
the accuracy of parallel manipulators.11–13 Generally,
kinematic calibration of the PKM includes error mod-
eling, pose measurements, identification of geometric
errors, and error compensation.14 By establishing the
kinematic and error models as well as measuring
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the pose (position and orientation) and actuator
movements of the PKM within the workspace, par-
ameter identification equations can be established
from which optimal solutions for the geometric
errors can be derived.15

In the process of kinematic calibration, the error
model has a strong relationship with the computa-
tional stability and calibration result. Compared to
kinematic calibration of traditional 6-SPS, 6-UCU,
and 6-UPS configurations PKMs, the offset RR-
joints introduced the offset parameters of hinge axis
into kinematics model, which increases the number of
kinematic parameters to be identified. To simplify the
difficulties of kinematic calibration and error model-
ing, universal (U) and spherical joints are usually
regarded as points without considering other
defects16,17 such as machining error, assembly error,
and joint rigidity.18 Sun formulated the error model of
a three-degrees-of-freedom (3-DOF) rotational paral-
lel manipulator that considered all possible geometric
source errors, and in order to decrease the difficulty
and complexity of the kinematic calibration, sensitiv-
ity analysis of all geometric source errors based upon
Monte Carlo method was carried out.19 Kong et al.20

investigated the influence of imperfect universal joints
on increasing the positioning accuracy for a 3-DOF
parallel manipulator. They found that considering the
defects of the universal joints leads to a small
improvement in accuracy. However, for the high-
accuracy adjustment requirements of a PKM system
with an offset hinge in a large space telescope,21 the
ignored kinematic parameters that cannot be identi-
fied by kinematic calibration22,23 prevent the parallel
mechanism from achieving higher levels of absolute
positioning accuracy.24

The measurement scheme determines the effective-
ness and cost of kinematic calibration work. Basically,
all measurement schemes can be classified into two
categories: complete and incomplete measurements.
Many studies have been conducted on complete meas-
urements with various devices.25 However, calibration
is a time-consuming process, and the high number of
poses or configurations required for calibration is
impractical to measure. Instead of laboriously striving
for complete-measurement configuration information,
most studies impose some constraints to reduce the
dimensions of the calibration configuration set, such
as cylinder,26 orientation,27,28 distance,29 or position
constraints.30 However, incomplete measurements
approach is not efficient, and corresponding measur-
ing method would change completely when dealing
with different PKMs.31 Besides, with the reduction
of measurement configuration dimension, these meas-
urement noise caused by test fixture error and limited
measurement equipment precision is propagated to
the identified kinematic parameters. Therefore, the
effect of measurement noise on the kinematic calibra-
tion has to be minimized.32–34 To reach a compromise
between calibration accuracy and efficiency, an

optimal calibration configuration selection is the
determination of complete measurement configur-
ation for achieving the best accuracy with the optimal
number and combinations of experiments. Several
studies on PKM systems have been conducted to
determine the optimal plan for measurement config-
uration. Daney et al.35 presented an iterative one-
by-one pose search algorithm to search for a given
number of optimal poses within an infinite-
but-bounded or a finite set of configurations.
However, this study does not mention how to deter-
mine the number of optimal poses. Zhou et al.36 indi-
cated that determining the number of optimal
measurement poses is as important as selecting the
poses themselves for improving the robot calibration
accuracy. Nategh and Agheli37 employed observabil-
ity indices to find the most visible measurement con-
figurations and optimum number of configurations.
This approach significantly increased the robustness
of the PKM calibration with respect to measurement
noise, but the optimization methods are sensitive to
local minima.

In contrast to kinematic calibration of common 6-
SPS, 6-UCU, and 6-UPS configurations PKMs, the
inverse kinematics of a 6-RRRPRR configuration
cannot be easily solved by vector methods, and the
effect of offset universal joint errors on calibration
accuracy needs to be considered in the proposed kine-
matic calibration. Therefore, a complete error model
that contains the RR-joint offset defects is established
to identify the global kinematic parameters.
Compared with the common optimal configurations
selection algorithm that only considers the number or
combination of configurations in the global work-
space, this paper proposes an optimal method
to achieve a compromise between calibration accur-
acy and efficiency with the optimal number and
combinations of configurations in the feasible config-
uration set.

In the following section, a PKM with a RRRPRR
kinematic chain was introduced, and the associated
kinematic models were developed. Kinematic calibra-
tion simulation was carried out in a further section.
The penultimate section described how the proposed
approach had been implemented on a 6-DOF
secondary-mirror adjustment mechanism (SMAM).
Experimental results proved that the proposed PKM
calibration method was very effective and accurate.
The last section concluded this study.

Structural modeling

A PKM is composed of a base platform connected to
a mobile platform with six kinematic chains (as shown
in Figure 1(a)). Each RRRPRR kinematic chain,
which has two RR-joints and one ball screw unit with-
out guide mechanisms (as shown in Figure 1(b)),
is described below. The reference system OB � XB

YBZB and mobile system OP � XPYPZP are fixed at
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the center of base and mobile platform. The connect-
ing line of six upper hinge point Pi (I¼ 1–6) on the
mobile platform and six lower hinge point Bi (I¼ 1–6)
on the base forms a hexagon with a symmetrical dis-
tribution of 120�, respectively. Because of the exist-
ence of RR-joint, two inclination angle variables are
added to each limb. Therefore, the local coordinate
system OBi

� XBi
YBi

ZBi
(I¼ 1, . . . , 6) is established

based on the lower hinge point Bi(I¼ 1–6), and
XBi

-axis direction is from point OB to point Bi. The
second local coordinate system OPi

� XPi
YPi

ZPi

(I¼ 1, . . . , 6) is established based on the upper hinge
point Pi (I¼ 1–6), and XPi

-axis direction is from point
OP to point Pi.

Inverse kinematics modeling

The inverse kinematic solution is to solve for the driv-
ing distance of the actuator when the pose p of the
moving platform relative to the base is given. In ref-
erence system OB � XBYBZB, point Di represents
another rotating center of the lower offset joint adja-
cent to Bi, and point Ci represents another rotating
center of the upper offset joint adjacent to Pi, the i-th
limb between point Ci and Di is derived as below

Li ¼
OBCiDi ¼

OB

OP
T �

OP

OPi
T � PiPiCi �

OB

OBi
T � BiBiDi

ð1Þ

where matrix Y
XT represents the transformation matrix

from frame X to frame Y.

Complete error model

Kinematic parameter errors that include manufactur-
ing tolerance and clearances, joint installation error
and actuator control error can cause error in the

pose of the PKM. A schematic description of the
i-th kinematic chain of the PKM is shown in
Figure 2(a), where length Li is the distance between
points Ci and Di. Vector ui can be expressed as the
unit vector. Variable  Bi

is the angle between YBi
-axis

and line BiCi. Moreover, variable  Pi
is the angle

between the YPi
-axis and line PiDi. Variable ’bi is

the angle between XBi
-axis and XB-axis, and variable

’pi is the angle between the XPi
-axis and XP-axis.

Offset distance LPi is the vertical distance between
upper hinge point Pi and pointDi, and LBi is the vertical
distance between lower hinge point Bi and point Ci.

An error diagram that describes the i-th kinematic
parameter error chain contribution to the pose error
of the platform is displayed in Figure 2(b). The circles
indicate the error boundaries about the nominal
points, dotted lines indicate nominally closed loops,
and solid lines indicate actual closed loops due to
kinematic errors. A differential error model is
obtained by differentiating equation (1) as follows

�Liui þ Li�ui ¼ �
OB

OP
x

� �
þ �ðOB

OP
hÞ � OB

OP
R

� �
�

OP

OPi
RPiCi þ

OP

OPi
xi

� �
þ � � �

þ
OB

OP
R�

OP

OPi
xi � �

OB

OBi
xi þ � � �

þ
OB

OP
R

OP

OPi
R�OPiCi �

OB

OBi
R�OBiDi

ð2Þ

where OB

OP
x ¼ ½ x y z � and OB

OP
h ¼ ½� �� � are the

position and orientation vectors of the top center
position, respectively;

OB

OP
R ¼

c�c� c�s�s��s�c� c�s�c�þs�s�

s�c� s�s�s�þc�c� s�s�c��c�s�

�s� c�s� c�c�

2
64

3
75

Figure 1. (a) 6RRRPRR PKM and (b) schematic diagram of the i-th actuator.
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represents global rotation matrix from frame
OP � XPYPZP to frame OB � XBYBZB;

OB

OBi
R ¼

c’bi �s’bi 0

s’bi c’bi 0

0 0 1

2
64

3
75

represents local rotation matrix from the i-th frame
OBi
� XBi

YBi
ZBi

to frame OB � XBYBZB;
OB

OBi
xi is the position vectors from the i-th frame

OBi
� XBi

YBi
ZBi

to frame OB � XBYBZB;

OP

OPi
R ¼

c’pi �s’pi 0

s’pi c’pi 0

0 0 1

2
64

3
75

represents local rotation matrix from the i-th frame
OPi
� XPi

YPi
ZPi

to frame OP � XPYPZP;
OP

OPi
xi is the position vectors from the i-th frame

OPi
� XPi

YPi
ZPi

to frame OP � XPYPZP;
OPiDi ¼ 0 Lpi � c pi Lpi � c pi

� �T
is vector in

frame OPi
� XPi

YPi
ZPi

;
OBiCi ¼ 0 Lbi � c bi Lbi � c bi

� �T
is vector in

frame OBi
� XBi

YBi
ZBi

, and s(�)¼ sin(�), c(�)¼ cos(�).
It is assuming that the unit direction vector ui is

almost parallel to that in the nominal kinematic
model. Hence, �ui is zero, equation (2) is applied to
the six limbs of the PKM, and the complete error
model in matrix form can be obtained as follows

J1�D
_

¼ E�LþN1�PþN2�BþM1�LB þM2�LP

ð3Þ

where �L ¼ ½ �L1 �L2 �L3 �L4 �L5 �L6 �
T is

the length error vector of the limbs, which includes
the actuator error and the structure error; E 2 R6�6

is the unit matrix.

J1 ¼

uT1
OB

OP
R �

OP

OP1
RP1C1þ

OP

OP1
X1

� �� �
� uT1

..

. ..
.

uT6
OB

OP
R �

OP

OP6
RP6C6þ

OP

OP6
X6

� �� �
� uT6

2
6666664

3
7777775
2 R6�6

is the pose error transfer matrix;

�D
_
¼

� OB

OP
X

� �
�ðOB

OP
hÞ

2
4

3
5 2 R6�1

is the platform pose error; vector,

�B ¼

�OB

OB1
X1

..

.

�OB

OB6
X6

2
6664

3
7775 2 R18�1

and �P ¼

�OP

OP1
X1

..

.

�OP

OP6
X6

2
6664

3
7775 2 R18�1 are joint installation

error; vectors, �LB ¼

�LB1

..

.

�LB6

2
64

3
75 2 R6�1 and

Figure 2. (a) Schematic diagram of the i-th chain and (b) error diagram.
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�LP ¼

�LP1

..

.

�LP6

2
64

3
75 2 R6�1 are the offset error vectors of

the RR-joint; and

N1 ¼

�u1
TOB

OP
R � � � 0

..

. . .
. ..

.

0 � � � �u6
TOB

OP
R

2
664

3
775 2 R6�18,

M1 ¼

u1
TOB

OB1
ROB1 u1 � � � 0

..

. . .
. ..

.

0 � � � u6
TOB

OB6
ROB6u6

2
6664

3
7775 2 R6�6

N2 ¼

u1
T � � � 0

..

. . .
. ..

.

0 � � � u6
T

2
64

3
75 2 R6�18

and

M2¼

�uT1
OB

OP
R

OP

OP1
ROP1 u1 ��� 0

..

. . .
. ..

.

0 ��� �uT6
OB

OP
R

OP

OP6
ROP6u6

2
666664

3
7777752R

6�6

are the diagonal matrices that imply geometrically
how the non-actuation errors (RR-joint offset defects
and RR-joint installation) are mapped to the actuator
errors.

For the purpose of kinematic calibration, m meas-
urement configurations are selected. The PKM error
model that is derived from equation (3) is given as

m�D
_

¼ mJ��
_ ð4Þ

where m�D
_

¼ m � OB

OP
X

� �
�ðOB

OP
hÞ

" #
2 R6m�1 denotes the m

configurations errors; mJ ¼ mJ1
�1

mE mN1
mN2

mM1
mM2

� �
2 R6m�54 is the

Jacobian matrix including the m measurement config-

urations; and �q
_
¼ �L �P �B �LB �LP

� �T
2 R54�1 is the error vector, which includes the 54 kine-
matic parameters.

Cost function

The kinematic calibration of the 6RRRPRR PKM
involves 54 structure parameters identification.
It uses the residuals between the theoretical value of

the actuator input and the measured value which is
calculated using the inverse kinematic model and
actual pose to construct the identification equation.37

The cost function, defined for some measurement con-
figurations, is given as

CF ¼
Xm
j¼1

X6
i¼1

OB

OP
T �

OP

OPi
T � PiPiCi �

OB

OBi
T � BiBiDi

��� ���2�

� Li,j

� 	2i2
ð5Þ

where OB

OP
T �

OP

OPi
T � PiPiCi �

OB

OBi
T � BiBiDi

��� ���2 is the

norm of the limb length derived from the inverse kine-

matic at the actual pose j; and Li,j ¼ Loi þ�Li,j is the

i-th length which is a sum of the initial leg Loi and the
length variation �Li,j at nominal pose j. The least

squares approach based on the Levenberg–
Marquardt algorithm is used to minimize the cost
function.

Kinematic calibration simulation

Structural parameter identification

In this section, structure parameter identification is
carried out by minimizing the cost function. The �
represents nominal parameters. For the purpose of
simulation, random errors in the range of –
1mm4 error4 1mm are added to the nominal par-
ameters to obtain simulated actual parameters �1. The
identification procedure consists of the following steps:

1. Nominal parameters � and simulated actual par-
ameters �1 of the PKM are given (as listed in
Tables 1 and 2);

2. Choosing the m nominal poses of the moving plat-
form, as shown in Table 3. The moving platform
must be within the workspace;

3. Using nominal parameters � and m nominal poses,
the nominal limbs are obtained in the inverse
kinematics;

4. Using simulated actual parameters �1 and m nom-
inal limbs, the m actual poses (denoted as pm) are
calculated in the forward kinematics;

5. Assuming the 54 unknown structure parameters
and m actual poses pm, the m groups limb func-
tions are acquired in the inverse kinematics;

6. Establishing the cost function � of kinematic cali-
bration and using the Levenberg–Marquardt algo-
rithm to minimize this cost function, the known
structure parameters �0 is updated by identifying
structure parameter error ��;

7. If structure parameter error ��< e, the param-
eters of kinematic model is modified into the
controller, else go back to the step (5). The
above identification procedure is outlined in
Figure 3.
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To verify the efficiency of the kinematic calibra-
tion, nine poses were randomly selected in the work-
space of the PKM. For a threshold e of 1e-7, the
identification algorithm was observed to converge
after six iterations. The identification results of
the 54 structure parameter errors are shown in
Figure 4(a). The X-axis represents the structure par-
ameter classification: it displays the construction of
the limb length error, upper joint position error,
lower joint position error, and RR-joint offset dis-
tance error. Figure 4(a) shows that the identification
results are in good agreement with the nominal par-
ameter errors.

During the calibration experiment, the segment
enclosed by red dots in Figure 3 needs to be measured

using configuration measurement equipment (such as
a laser tracker (LT)). To verify the robustness of the
kinematic calibration, random measurement noise in
the range of �0.02mm4error40.02mm for position
and �0.004�4error40.004� for orientation are also
taken into consideration to obtain the actual config-
urations. Figure 4(b) shows that the calibration results
using the 29 random measurement configurations
with the measurement noise in the workspace are
very different from the given structure parameter
errors: the maximum deviation is about 1.1mm. As
an increasing number of measurement configurations
in the workspace are selected, the maximum deviation
is reduced. The calibration results using 256 random
measurement configurations with the measurement
noise are close to the given structure parameter errors:
the maximum deviation is reduced to almost 15 lm.

Verification of complete error model

In order to verify the effect of error model on kine-
matic calibration, the complete error model and non-
complete error model that neglects RR-joint offset
distance error are applied to kinematic calibration
of the 6-RRRPRR PKM, respectively. Nine nominal
poses are randomly selected in the workspace of the
moving platform, and the nominal length is calculated
by the inverse kinematics with updated structure

Table 1. Nominal parameters � of the PKM (units: mm).

I 1 2 3 4 5 6

XBi 173.867 �46.587 �127.279 �127.279 �46.587 173.867

YBi 46.587 173.867 127.279 �127.279 �173.867 �46.587

ZBi 0.000 0.000 0.000 0.000 0.000 0.000

XPi 84.852 31.058 �115.911 �115.911 31.058 84.853

YPi 84.852 115.911 31.058 �31.058 �115.911 �84.853

ZPi 0.000 0.000 0.000 0.000 0.000 0.000

LBi 5.000 5.000 5.000 5.000 5.000 5.000

LPi 5.000 5.000 5.000 5.000 5.000 5.000

Li 230.715 230.715 230.715 230.715 230.715 230.715

Table 2. Actual parameters �1 of the PKM (units: mm).

I 1 2 3 4 5 6

XBi 173.961 �46.995 �126.790 �127.901 �46.214 173.234

YBi 46.324 174.118 127.840 �128.117 �173.008 �46.036

ZBi �0.026 �0.128 �0.106 �0.387 0.017 0.022

XPi 85.488 31.648 �115.622 �116.154 31.681 84.918

YPi 84.554 116.789 31.810 �30.958 �115.666 �84.679

ZPi �0.585 �0.398 �0.058 �0.539 0.689 �0.610

LBi 5.040 5.033 5.008 5.040 5.033 4.936

LPi 4.926 5.100 4.934 4.907 5.012 5.076

Li 230.441 230.381 230.443 230.651 230.526 231.138

Table 3. Workspace and limb stroke of the 6RRRPRR PKM.

Axis Min (mm or deg) Max (mm or deg)

X translation –25 25

Y translation –25 25

Z translation 200 240

X rotation –15 15

Y rotation –15 15

Z rotation �20 20

Limb stroke 195 265
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Figure 3. Kinematic calibration flowchart of a PKM.

Figure 4. Results of structure parameter error identification.
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parameters. Combining with the forward kinematics
of actual parameters, nine actual poses are calculated,
respectively.

The maximum position errors between the actual
and nominal poses in the translation are shown in
Figure 5, and the maximum attitude angle errors
between the actual and nominal poses in the rotation
are shown in Figure 6, where the X-axis represents the
selected poses, and the Y-axis represents the position
deviation and the attitude angle deviation. It is also
found that kinematic calibration that neglects RR-
joint offset distance error only makes pose accuracy
at the resolution micrometer and arc second levels. An
enormous improvement is achieved in the kinematic
calibration when complete error model is employed.

Evaluation of the optimal calibration
configuration set

To reduce the influence of external measurement noise
on the kinematic calibration, the selected calibration
configuration should extend through all reachable
DOF as much as possible. Moreover, to increase the
homogenization of the calibration results, a sufficient
number of measurement configurations is regarded as

beneficial.38 However, it is impracticable to take a set
of measurements that comprehensively cover the
entire workspace. The optimal measurement configur-
ations hence need to be determined.

Feasible configuration set

To overcome the problem of local convergence and
improve the efficiency of the optimal configuration
selection algorithm, the optimal configuration was
determined from a finite calibration configuration
set (called the feasible configuration set). The
Jacobian condition number is often used as an index
to describe the accuracy/dexterity of the PKM.39 A
top center pose of the moving platform with a large
Jacobian condition number should be selected as a
feasible configuration.

As shown in equation (4), the Jacobian matrix mJ is
determined by the pose of the moving platform. The
workspace and limb strokes are listed in Table 3, and
the initial height of the moving platform is 220mm.
To evaluate the influence of position on the Jacobian
condition number, it is necessary to move the
platform to the initial orientation angle. The
Jacobian condition number nephogram is shown in
Figure 7,where Tx and Ty represent translation
motion along X- and Y-axis, respectively, and Tz rep-
resents five points with the same distance from the
initial height to the maximum value along Z-axis. It
is obvious from Figure 7 that when Z-axis translation
Tz is a fixed value, a larger Jacobian condition
number is generated at the points where the positive
and negative boundaries of X-axis intersect the posi-
tive and negative boundaries of Y-axis, respectively.
When X- and Y-axis translations are constant, the
Jacobian condition number increases and the peak
occurs at the highest value along Z-axis.

To evaluate the influence of orientation on the
Jacobian condition number, it is necessary to move
the moving platform to the initial position. The
Jacobian condition number nephogram is shown in
Figure 8, where Rx and Ry represent the rotation

Figure 5. The position accuracy of non-complete and

complete error model.

Figure 6. The orientation accuracy of non-complete and

complete error model.

Figure 7. Jacobian condition number with respect to

position.
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along X- and Y-axis, respectively, and Rz represents
three values with the same angle from zero to max-
imum around Z-axis. It is obvious from Figure 8 that
when Z-axis rotation Rz is fixed, a larger Jacobian
condition number is generated at the angles where
the positive and negative boundaries of X-axis inter-
sect the positive and negative boundaries of Y-axis,
respectively. When X-axis and Y-axis rotations are
constant, the Jacobian condition number increases
and the peak occurs at the highest value around Z-
axis.

The above analysis shows that the feasible calibra-
tion configuration set of the PKM is at the boundaries
of the workspace. Two boundary poses of the six
DOF can be selected. Thus, the feasible configuration
set comprises the 64(26) boundary poses of the
moving platform.

Optimization criteria

To evaluate the goodness of the measurement config-
uration, Borm–Meng and Driels-Pathre proposed the
observability indexes.40,41 It is assumed that �

�
�q

_	
is

the perturbation of the kinematic parameter error �q
_
,

and m�
�
�D

_ 	
is the perturbation of the m configuration

errors m�D
_

. According to equation (4), the goodness
obeys the inequality

� �q
_

� ���� ���
�q
_

��� ��� 4 mJk k mJ�1
�� �� m� �D

_
� ���� ���
m�D

_
��� ��� ð6Þ

where mJk k mJ�1
�� �� is the amplification factor of

m�
�
�D

_ 	
relative to �

�
�q

_	
. This amplification factor

has a minimal value equal to one. Minimizing this
factor permits us to ensure that perturbation �

�
�q

_	
is ‘‘homogenized’’ when identifying the kinematic

parameter errors. Therefore, observability index
O mJð Þ was defined as follows42

O mJð Þ ¼ mJk k mJ�1
�� �� ð7Þ

Algorithm for optimal measurement configuration
selection

To ensure calibration accuracy, improve measurement
efficiency, and reduce measurement cost, an optimal
measurement configuration selection algorithm that
includes the optimal number and combinations of
measurement configurations was proposed. It is sup-
posed that � is the N-dimensional feasible configur-
ation set (i.e. N¼ 64), and Pi is the i-th measurement
configuration of �. Moreover, � i ¼ ½P1 � � � Pi �

which includes the i measurement configurations is
the initial measurement configuration set. Set �R

which is equal to �� � i and consists of the N�i feas-
ible configuration set is a subset of �. Configuration
Pj
þ is a configuration randomly chosen from �R, and

�þiþ1 ¼ add � i,Pj
þ

� 	
is obtained by adding Pj

þ to � i. In
addition, � iþ1 ¼ add � i,Piþ1

� 	
which includes the iþ1-

th measurement configuration is the iþ 1-th optimal
measurement configuration added to set � i, and
O mJð� iÞ
� 	

is the observability index associated with
the i measurement configurations.

Initially, � i is randomly selected inside �. Then, it
uses a one-by-one comparison method that is indi-
cated by the red dotted line in Figure 9 to add the
iþ 1-th calibration pose to the previous configuration
set � i from the remaining measurement configuration
set �R. Observability indices O mJ �þiþ1

� 	� 	
and

O mJ � i
� 	� 	

are compared to determine whether � i has

Figure 8. Jacobian condition number with respect to

orientation.

Figure 9. Algorithm for selecting the optimal measurement

configuration.
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been updated. By iterating the above optimal selection
process, the m optimal calibration configurations are
determined. A detailed description of this process is
given in Figure 9.

To determine the optimal measurement configur-
ations, nine of the 64 feasible configuration set are
first randomly selected. The 10-th optimal measure-
ment configuration is determined and then added to
the set �9 according to the selection algorithm in
Figure 9. The above process is repeated until the
observability index approaches a stable value. Thirty
optimal selection procedures about the random meas-
urement configuration set �9 were performed. To
avoid ambiguity, the five representative optimal selec-
tion results are shown in Figure 10.

As is evident from Figure 10, each optimal selec-
tion procedure converges to a certain standard value.
To further observe the variation behavior of the opti-
mal selection procedure, the observability index for
13–44 configurations is amplified by a factor of 100.
Using the optimal measurement configuration selec-
tion algorithm (Figure 9), the 10-th pose was added to

the initial configuration set, and the observability
index of each optimal selection procedure decreased
from 10 to 27 calibration poses. Finally, each optimal
selection procedure stabilized as the number of the
calibration configurations increased. Note that the
fourth selection procedure converges to the minimum
observability index value for a measurement configur-
ation set of 29 or more poses. Therefore, a measure-
ment configuration set that includes 29 poses is
considered to be an optimal measurement configur-
ation for kinematic calibration.

Optimization verification

To illustrate the efficiency of the optimal measure-
ment configurations, the results of the identification
error in the structure parameter based on the 256 ran-
domly selected measurement configurations and 29
optimal measurement configurations in the feasible
pose set are shown in Figure 11. The X-axis represents
the structure parameter number. The Y-axis repre-
sents the actual structure parameter errors,

Figure 10. Observability index of the calibration configuration set.

Figure 11. Errors of the kinematic parameters.
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identification structure parameter errors for the 256
random poses, and identification structure parameter
errors for the 29 optimal poses. It is evident that an
enormous improvement is achieved in the kinematic
calibration when the optimal measurement configur-
ation is employed.

To further evaluate the performance of the optimal
measurement configuration, the peak value and stand-
ard deviation of the position and orientation of 29
calibration configurations were measured in the struc-
ture parameter errors before calibration, after 256
random calibration configurations, and after 29 opti-
mal calibration configurations. The results are listed
in Table 4. This table shows that the accuracy in the

position and orientation of the moving platform is
clearly improved.

Calibration experiment

Experiment setup. In this section, a calibration experi-
ment was performed on a PKM developed for the
SMAM. Considering the adjustment accuracy of
the SMAM, a Leica-AT901-LR LT is used to measure
the positions of the spherical mounted retroreflectors
(SMRs) which are placed on the reflector holders with
the accuracy of 10 umþ 5 um/m within the workspace
2.5m� 5m� 10m. The experimental setup is shown
in Figure 12.

Table 4. Statistical values for the 29 calibration configurations.

Error description

Calibration state

Position error (mm) Orientation error (�)

Peak value Std Peak value Std

Before calibration 0.1496 0.0673 –0.0247 0.0099

After calibration-256 random poses 0.0280 0.010 0.0069 0.0044

After calibration-29 optimal poses 0.0212 0.0089 0.0047 0.0035

Figure 12. Configuration measurement experiments using a high-precision LT.
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The pose measurement tool (as shown in Figure 12)
processed three datum holes used to place reflector
holder. Each datum hole was distributed at 120�, and
RD represents the distribution radius from the center
point to the measurement points. Two datum points
were symmetrically fixed to the plate tool. A removable
reflector holder was placed along the edge of the base
platform. The original point of OP was defined at the
center of the three SMRs; the ZP axis was perpendicu-
lar to the plane which was formed by the centers of
SMRs; and the XP axis passes through the datum
hole #5. The base coordinate system (OB-XBYBZB)
was set up as follows. Some measuring points were
randomly selected to fit the upper surface of the
lower platform, and the normal of this surface was
the Z-axis. Several points were measured along the
edge of the lower platform, as shown in Figure 12.
A circle was fit with these points, and the center OB

of this circle was considered as the origin of system
OB-XBYBZB. The reference points P1 was determined
by the midpoint between datum point 1 and datum
point 2; the XB axis passed through the reference
point P1 and the origin OB.

The measurement configuration from the moving
coordinate system (OP-XPYPZP) to base coordinate
system (OB-XBYBZB) was obtained by the
PolyWorks software. In the kinematic calibration,
the frame would have an offset along ZB (or ZP)
axis to the geometric center of the base (or moving
platform) based on the thickness of the base (or
moving platform) and the reflector holders, and the
radius of the SMR to make the identified parameters
closer to their mathematical ones.

Structural parameter identification

The 29 measurement configuration results of the opti-
mization selection procedure were used to identify the
54 structure parameters of the SMAM. The 29 groups
of nominal limb variations were calculated using the
inverse kinematic model, and the SMAM was driven
by the controller. The actual 29 measurement config-
urations of the moving platform were obtained by the
LT. The measurement procedure was as follows:

Step 1: Place the LT on the ground facing the auxil-
iary equipment, ensuring that the measurement
distance is approximately 1.2m, and the pitch
angle is about zero.

Step 2: Automatically generate a measurement path
and control code, and load the code into the
SMAM control system.

Step 3: Power the LT controller and the tracking
head, preheat the LT and calibrate it, and ensure
the detection accuracy of LT.

Step 4: Move the SMR on datum hole #3 (as shown in
Figure 12) without interrupting the laser path.
Launch the control code and automatically collect
the data along the measurement path, pausing the

platform for 3 s at each nodal point for measure-
ment. The 29 coordinate points are measured.

Step 5: Manually move the SMR to datum hole # 4,
and repeat Step 4 to complete the measurement of
the position data.

Step 6: Move the SMR to datum hole # 5, and repeat
Step 4 to complete the measurement of the pos-
ition data.

The calibration experiment of the SMAM was per-
formed according to the above kinematic calibration
process shown in Figure 3. The 54 identified structure
parameter errors are listed in Table 5.

To validate the above calibration experiment, kine-
matics parameters that listed in Table 5 were updated
in the controller system. The 29 optimal calibration
poses with and without kinematic calibration are
shown in Figure 13, the positioning accuracy of
moving platform has been obviously improved. The
experiment results show that the errors in the position
and orientation vary substantially depending on the
different calibration configurations.

The X-axis translation error is about 0.4mm, and
the Z-axis rotation error is about 0.1� before calibra-
tion. The positioning errors and the orientation errors
are relatively homogeneous in different calibration
poses after calibration. The maximum positioning
error is reduced to about 0.01mm, and the maximum
orientation error is reduced to about 0.004� after cali-
bration. The absolute accuracy of the SMAM is hence
clearly improved.

Calibration experiment verification

To evaluate the global absolute accuracy of the
SMAM, the workspace was divided into four sets
through the plane x¼ 0 and y¼ 0, and there were 27
nodal points as measured points in 3� 3� 3 magic
box, measured path was planned form the start
nodal point to the end nodal point, as illustrated in
Figure 14. Eight random poses which involve rotation
around the X-axis, Y-axis, and Z-axis needed to be
detected at each nodal point, and the coordinate of
datum holes #3, #4, and #5 would be measured at
each pose by the LT. Therefore, a total of 216 poses
and 972 (27� 8� 3) points needed to be measured.

The statistical results were presented in Table 6. The
peak value of position error for 216 positions with and
without calibration was 0.012mm and 0.534mm,
respectively, and the corresponding standard deviations
were 4.7e-3mm and 0.076mm, respectively. Similarly,
the peak value of orientation error with and without
calibration were 0.0051� and 0.122�, respectively, and
the corresponding standard deviations with and with-
out calibration were 0.0015� and 0.054�, respectively.
As Figure 13 showed, the peak value errors with and
without calibration occurred near the boundaries of the
workspace. This phenomenon confirmed the necessity
of optimal measurement configuration selection.
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Table 5. Identified structure parameter errors (Unit:mm).

Numbers

Limb

�L

Upper offset

�LP

Lower offset

�LB

Upper joint

(�XP �YP �ZP)

Lower joint

(�XB �YB �ZB)

I �0.036 0.008 �0.017 �0.049

0.017

–0.085

0.086

�0.077

�0.089

II 0.079 �0.013 0.007 �0.108

0.047

�0.124

0.051

�0.048

0.030

III 0.042 0.014 �0.009 0.103

0.012

�0.124

0.031

0.049

0.027

IV 0.064 0.015 �0.019 0.039

0.063

�0.131

�0.012

�0.022

0.011

V �0.070 �0.005 �0.017 �0.007

0.006

�0.026

�0.015

0.103

0.098

V 0.052 �0.013 0.009 0.038

0.109

�0.015

0.059

0.100

�0.066

Figure 13. Error curves of 29 calibration poses.
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Conclusions

In this paper, an accurate and efficient kinematic cali-
bration based on the complete errormodel and optimal
measurement configuration was proposed to improve
the kinematic characteristics of the 6RRRPRR
PKM. The conclusions were drawn as follows:

1. Considering the influence of RR-joint defects on
the kinematic calibration precision, an error
model including 54 structure parameter errors
was derived. To verify the effectiveness of the com-
plete error model, a comparison with non-com-
plete error model was carried out by dealing
with the calibration of the 6-RRRPRR parallel
kinematic machine. An enormous improvement
is achieved in the kinematic calibration when com-
plete error model is employed.

2. In order to a compromise between calibration
accuracy and efficiency, an optimal measurement
configuration selection algorithm which included
the optimal number and combinations of measure-
ment configurations was proposed to determine
the 29 optimal measurement configurations.
A simulation was carried out to verify the effi-
ciency and robustness of the calibration algorithm.
Notably, using a few carefully chosen configur-
ations is more effective for calibration than using
many random configurations.

3. The kinematic calibration experiment based on a
SMAM was carried out. The calibration results
showed that maximum position error was reduced
to 1.2e-2mm, and the maximum orientation error

was reduced to 0.0051�. The pose errors of the
moving platform were substantially suppressed in
the global workspace.

4. The experimental results showed that the pro-
posed calibration method based on the complete
error model and optimal measurement configur-
ation was valid and effective, and can improve
the pose accuracy of the 6-RRRPRR secondary-
mirror positioning mechanism.
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