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ABSTRACT Space flexible manipulators are convenient for performing on-orbit service; however, the
vibration of the end effector is becoming increasingly serious because of the excessive length and mass of
the arm. To solve this problem, in this paper, neural network control based on a flexible multibody dynamic
model and disturbance observer is proposed. The dynamics model is based on the Lagrangian equation
and assumed mode method, and also considers the position and attitude constraint equations of the flexible
joint. The combination of a neural network controller and adaptive controller is introduced in detail, and a
switching mechanism is added to improve the global stability of the system. Considering the joint module as
an independent control system, a disturbance observer is added to the current loop of the control system, and
a filter is combined to effectively suppress the influence of friction and dynamic coupling on joint control
performance. The effectiveness of the proposed dynamic model and control scheme in terms of vibration
suppression is verified in experiments on the self-designed space flexible redundant arm.

INDEX TERMS Disturbance observer, dynamicmodel, neural network control, spacemanipulator, vibration
suppression.

I. INTRODUCTION
In recent years, the aerospace industry has placed increas-
ingly stringent requirements on the performance of space
manipulators [1], [2]. If the arms are required to be light
in weight, large in end load, and capable of capture maneu-
vers [3], its own elastic deformationmust be large, whichmay
cause system damage because of the resonance of the struc-
ture [4]. The arm needs to be redundant for better flexibility
and adaptability, which tends to increase flexibility.

In order to satisfy the requirements of flexibility and adapt-
ability, the operating arm needs to be redundant, which tends
to increase the flexible deformation [5], thus affecting the
position accuracy of the end effector. Therefore, the study of
space redundant flexible manipulators has a wide range of
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applicability [6], [7]. Space manipulators are complex sys-
tems with multiple degrees of freedom, strong coupling [8],
and nonlinearity [9], and both joints and connecting links
have some flexibility [10]. Therefore, there is a certain error
in modeling using traditional rigid system dynamics [11].
Particularly in the task of grabbing large loads, the impact
of this error will be even greater.

Generally, flexible robots must be infinite-dimensional
continuous distribution parameter models [12]. However,
the control of distributed parameter systems can only be
based on finite-dimensional model design [13]. Therefore,
how to establish a suitable and effective dynamics model,
and design a high-performance controller are the two main
problems in the research on flexible robots. The dynamics
of flexible robots has been studied for more than 30 years
[14], [15]. Meirovitch and Lim [16] and Caron et al. [17] con-
ducted early research on space flexible arms. Some scholars
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proposed a flexible arm control strategy based on unknown
dynamics models [18], [19], but its accuracy requires fur-
ther verification [20], [21]. Gao et al. [22] combined the
Lagrangian method with the assumed mode method to estab-
lish the dynamic equation. Su et al. [23] studied the trajec-
tory tracking problem of flexible arms. Feng et al. [24] and
Yang et al. [25] studied the dynamics model of flexible
multibody systems. However, many studies remain in the
simulation stage [26].

There are many control strategies for flexible arms.
Although impedance control is robust to disturbances [27],
it does not accurately control the magnitude of force/
torque [28]. The hybrid position/force control method is suit-
able for performing tasks that require touching or grabbing
objects [29]. The disadvantage is that when performing com-
plex operations, it is necessary to frequently switch between
force control and position control, thus system stability is
low [30]. The computed torque method takes into account
the dynamic model of the robot [31] and is suitable for
the trajectory tracking control of free-motion robots, but its
efficiency needs to be improved.

Because conventional control methods do not compensate
for nonlinear dynamics, these methods are not effective in
controlling flexible arms. Some scholars have begun to adopt
methods such as distributed control [32], [33],intelligent con-
trol algorithms [34], fuzzy control [35] and neural network
control [36]. Because the flexible robot dynamics model is
complex, the computational efficiency of other conventional
control methods is relatively low. The neural network solves
the problem of high linearization of the flexible manipula-
tor dynamics model and the low computational efficiency.
The neural network-based controller has good control perfor-
mance, but some versions are still at the simulation stage and
it does not consider the dynamic coupling problem between
joints, therefore, the vibration of the end effector is still large.

The control method proposed in this paper is a neural
network control method based on the dynamic model and a
disturbance observer. First, an integrated flexible multi-body
dynamics equation is established based on the Lagrange
equation and assumed mode method, and the position and
attitude constraint equations are also considered. The neu-
ral network control block diagram and the corresponding
dynamic control strategy are then detailed. Additionally,
a disturbance observer is added to the current loop to mitigate
the dynamic coupling between the flexible joints, thereby
effectively suppressing the effects of friction and dynamic
coupling on joint control performance. Finally, we also con-
ducted experiments to verify the proposed method. The
experimental results demonstrate that the proposed modeling
method and control strategy have good vibration suppression
effects.

The remainder of the paper is organized as follows: In
Section II, the dynamic analysis of the manipulator is pre-
sented. In Section III, the vibration suppression control based
on a neural network is analyzed. In Section IV, the distur-
bance observer added to the current control loop is explained.

FIGURE 1. Space flexible arm for performing on-orbit service.

In Section V, the experiments for the proposed dynamics
model and control strategy are presented. In the final section,
the entire paper is summarized and conclusions are provided.

II. DYNAMIC ANALYSIS OF THE MANIPULATOR
As shown in Fig. 1, to better perform on-orbit service, it is
first necessary to perform dynamic analysis on the space flex-
ible arm. The dynamic equation of the manipulator provides
the relationship between the mechanism drive and the contact
forces acting on it [37].

The dynamics are divided into two parts: forward and
reverse dynamics. The forward dynamics are based on joint
moment vector τ of the robot to solve position Θ , velocity
Θ̇ , and acceleration Θ̈ of each joint. From a control point of
view, this is mainly used for the dynamic simulation of the
manipulator. The inverse dynamics are based on known posi-
tion Θ , velocity Θ̇ , and acceleration Θ̈ to determine desired
joint moment vector τ . This is mainly used for feedforward
control of the operating arm [38].

Because of the elastic deformation of the flexible arm of
the space operating arm, the vibration of the end effector is
generated, which poses a great challenge to the operation
precision and stability of the robot. Studying the dynam-
ics of a flexible arm is the basis for a dynamic response,
the design of the controller, and the suppression of vibration.
The Lagrangian method regards the robot system as a whole
and establishes differential equations based on kinetic energy
and potential energy in the generalized coordinate system.
Therefore, it has good mathematical properties and is very
suitable for theoretical analysis and control algorithm design.
The assumed mode method is used to consider the influence
of flexible deformation, and the system dynamics equation of
the space manipulator is established based on the Lagrangian
method.

A. DEFORMATION AND KINETIC ENERGY OF
FLEXIBLE BODIES
Fig. 2 shows the deformation of a flexible body based on
the assumed mode method [39], where

{∑
I
}
is the inertial
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FIGURE 2. Description of the flexible body.

coordinate system. The rotation center of the proximal joint
of each flexible body is taken as the origin, the tangential
direction of the flexible body is the x-axis and the direc-
tion of the joint rotation axis is the z-axis, which defines
the body-connected coordinate system Oixiyi (i = 1, · · · , n).
The rotation angle of each joint is θi (i = 1, · · · , n) and the
position vector of each joint in the inertial coordinate system
is Ri (i = 1, · · · , n). Assuming that point a is any point on
link i, the position vector of point a in the inertial coordinate
system is expressed as

ria = Ri +I Tiu′i = Ri +I Ti (ui + uit) , (1)

where u′i is the position vector of point a in the following
coordinate system Oixiyi, Ti is the transformation matrix of
the following coordinate system to the inertial coordinate
system, ui is the position vector of point a in the following
coordinate system before the deformation of the flexible body
and its value is constant, and uit is the deformation vector
of point a on the flexible body in the following coordinate
system.

According to the assumed mode method, the deformation
amount of the i-th link of the flexible robot can be described
as

uit =
n∑
j=1

ϕij (x) qij (t) = Φiqit , (2)

whereΦi is the modal matrix, qit is the deformed generalized
coordinate, and n is the modal number. Then (1) can be
written as:

ria = Ri + Ti (ui +Φiqit) . (3)

Integrating (3), so that the velocity vector of the point in
the inertial system can be obtained as:

ria = Ri + Tiu′i + TiΦiqit . (4)

Ri, Pi, and qit are selected to describe the generalized
coordinates of the following coordinate system, generalized
coordinates of the pose, and generalized coordinates of the
deformation, respectively, where Pi = [P0,P1,P2,P3]T is
the attitude quaternion and satisfies PiPTi = 1. Then the

kinetic energy of the flexible body is

Ki =
1
2

∫
V
ρ ṙTia ṙiadV , (5)

where ρ is the density of the flexible body. Substituting (4)
into (5) yields

Ki =
1
2
q̇Ti Miqi, (6)

where qi =
[
RTi ,P

T
i , qit

]T is the generalized coordinate, Mi
is the mass matrix [40] of the flexible body and a symmetric
matrix:

Mi =

Mtt Mtr Mtf
Mrr Mrf

· · · Mff

 , (7)

where Mtt is the mass of the translational characteristic, Mtr
is the mass of the translational and rotational coupling char-
acteristics, Mtf is the mass of the translational and flexible
vibration coupling characteristics, Mrr is the mass of the
rotational characteristic, Mrf is the mass of the rotational
and flexible vibration coupling characteristics, andMff is the
mass of the flexible vibration characteristics.

Then (6) can then be written in the form of a matrix:

Ki =
1
2

[
ṘTi , Ṗ

T
i , q̇

T
it

]Htt Htr Htf
Hrr Hrf

· · · Hff

 Ṙi
Ṗi
q̇it

 . (8)

It can be seen from (8) that the kinetic energy of flexible
body i is related to the mass, moment of inertia, flexible
vibration mode matrix, and generalized coordinates.

B. VIRTUAL WORK AND GENERALIZED FORCE
Because the flexible arms are elastically deformed, there
is elastic potential energy. Therefore, based on the theory
of elastic mechanics, the linear elastic hypothesis of the
deformation of the flexible body is assumed, and the virtual
work expression of the internal force caused by the elastic
deformation of the flexible body is

δWi = −

∫
V
σ T δεdV = −

∫
V
(Eε)T δεdV , (9)

where σ , ε, and E denote the stress, strain, and elastic modu-
lus of the elastomer, respectively.

Let ε = Duit = D (Φiqit), where D denotes the differential
operator matrix. Then (9) can be expressed as

δWi = −

∫
V
qTit (D ·Φi)

T ET (D ·Φi) δqitdV

= −qTit

[∫
V
(D ·Φi)

T ET (D ·Φi) dV
]
δqTit

= −qTit Sff δqit , (10)

where S is the modal stiffness matrix.
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Further extending (10) to matrix form with generalized
coordinates yields

δWi =

[
RTi ,P

T
i , q

T
it

]0 0 0
0 0 0
0 0 Sff

 δRiδPi
δqit


= −qTi Siδqi, (11)

where Si is a generalized stiffness matrix.
Assuming that the resultant force of point a acting on

flexible body i is Fi, the virtual work caused by Fi is

δW = Fiδria = Fi

 n∑
j=1

∂ria
∂qj

δqj


=

n∑
j=1

(
Fi
∂ria
∂qj

)
δqj

n∑
j=1

Qjδqj, (12)

where Qj is the generalized force corresponding to general-
ized coordinate qj and n is the number of generalized coor-
dinates, from which it can be seen that the generalized force
acting on the flexible body i is expressed as

Qi =
n∑

k=1

Fk
∂rk
∂qi

. (13)

C. POSITION AND ATTITUDE CONSTRAINT EQUATION
The two adjacent joints (flexible bodies) are connected by
mechanical structural constraints. Additionally, the constraint
equation of the complete constraint is a function of general-
ized coordinate q and time t in the multibody system [41].
Because the robot arm in this paper consists of a plurality
of joints with only rotational degrees of freedom, there are
three position constraint equations and two attitude constraint
equations between the two flexible bodies.

As shown in Fig. 3, assuming that the two flexible bodies i
and j are connected by r ij, according to the principle of elas-
tic deformation of the flexible body, the position constraint
equation is obtained as follows:

Cp =
[
Rjo + T

j
(
u
′j
o + u

j
t

)]
−

[
Rio + T

i
(
u
′j
o + u

j
t

)]
= 0,

(14)

where T j and T i are transformation matrices.

FIGURE 3. Positional constraints between adjacent joints.

FIGURE 4. Attitude constraint between adjacent joints.

As shown in Fig. 4, assuming that the unit direction vec-
tors of the coordinate system of the hinge point between

the flexible bodies i and j are
[
ei1 e

i
2 e

i
3

]T
and

[
ej1 e

j
2 e

j
3

]T
,

respectively, and is the direction of the joint rotation axis, then
the attitude constraint equation is

Cr =

[(
ei3
)T

ej1(
ei3
)T

ej2

]
= 0. (15)

D. FLEXIBLE MULTI-BODY DYNAMIC MODEL
OF SPACE ROBOT
Because the Lagrangian equation is an energy-based dynam-
icsmethod, the dynamic equation can be derived from a scalar
function [42]. This scalar function is also the Lagrangian
function, which represents the difference between the
kinetic energy and potential energy of a robot system. The
Lagrangian function of the manipulator in this paper is
expressed as

L (qi, q̇i) = K (qi, q̇i)−W (qi) , (16)

where K and W represent the total kinetic and poten-
tial energy of the manipulator, respectively. Additionally,
the Lagrangian equation of the arm is obtained as follows:

d
dt

(
∂L
∂ q̇i

)
−
∂L
∂qi
= τi. (17)

Substituting (8), (11), and (13) into (17) yields the dynamic
equation as follows:

Mi (qi) q̈i + C (qi, q̇i) q̇i + Sqi + g (qi) = Qi, (18)

where g (qi) is the vector of the gravity term, and C (qi, q̇i) is
the velocity product term and is given as follows:

C (qi, q̇i) =
dMi

dt
q̇i −

1
2
∂Mi

∂qi
q̈i, (19)

where the first item is the Coriolis force and the second item
is the centrifugal force.

For a closed-loop system, if the system has n degrees of
freedom and the two flexible bodies are connected by a rotary
joint, then the dynamic equations of the nmoving bodies can
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be assembled by combining constraints (14) and (15). The
dynamic equation of the multibody system is

M (q) q̈+C (q, q̇) q̇+Sq+g (q) = τ + τ a + τ c

Ci (q, t) = 0 (i = 1, · · · , k) , (20)

where k is the number of constraint equations, M =

diag [M1,M2, · · · ,Mn] is the diagonal mass matrix, q =[
qT1 , q

T
2 , · · · , q

T
n
]T is the generalized coordinate matrix,

S = diag [S1, S2, · · · , Sn] is the diagonal stiffness matrix,
g (q) =

[
gq1, τq2, · · · , τqn

]T is the gravity matrix, and
τ =

[
τT1 , τ

T
2 , · · · , τ

T
n
]T is the generalized force matrix.

τ a is the known active force vector, which depends on the
force elements (springs, dampers, and actuators) acting on the
closed-loop joints; τ a = 0 if there are no such elements. τ c

is the constraint force vector and is expressed as

τ c = CT
j λ, (21)

where Cj =
[
CT
j1,C

T
j2, · · · ,C

T
jk

]
is the Jacobian matrix of

the constraint equation and λ = [λ1, λ2, · · · , λk ]T is the
vector of the unknown constraint variable (λ also called the
Lagrangian multiplier). If the arm is over-constrained, then
CT
j is null space and the component of λ in this null space is

unknown.
Equation (20) is a differential algebraic mixture equation.

Although the number of equations is large and the matrix
is highly sparse, (20) is suitable for both complete and
non-holonomic constraints. To solve the problem efficiently,
an acceleration constraint equation is introduced to convert
(20) into a closed dynamic equation and then it can be solved.

At the acceleration level, the closed loop constraint can
be expressed in the form of a linear equation. Constraint
equation Ci (q, t) is subjected to the second-order continuous
derivation of time t . Because the equations are linearly inde-
pendent of each other, the acceleration constraint equation is
obtained as follows:

Cjq̈ = ψ, (22)

where ψ is the right-hand side of the acceleration constraint
equation.

According to (20), (21), and (22), the closed multibody
system dynamics equation is obtained as[
M CT

j
Cj 0

] [
q̈
−λ

]
=

[
τ+τ a − (C (q, q̇) q̇+g (q)+Sq)

ψ

]
.

(23)

If Cj is full rank, then the system matrix is a non-singular
matrix, and the independent variables q̈ and ψ can be solved
directly. Then q̇ and q can be obtained by integrating the q̈;
otherwise, the system matrix is singular and at least one
element in Lagrangian multiplier λ is indeterminate. If a
singular matrix is generated, then a numerical rank test pro-
cedure is introduced, and (22) can be solved by the Gaussian

elimination method [43]. Then the solution is obtained as
follows:

q̈ = Ly+ q̈0, (24)

where q̈0 is one special solution of (22), L is an n ×(
n− rank

(
Cj
))

matrix and satisfies CjL = 0, y is a vector
containing n− rank

(
Cj
)
unknowns, and the subsets of y and

q̈ are linearly independent. Substituting (24) into (20) and
multiplying by LT on both sides of the equation to eliminate
τ c results in the following:

LTM (q)Ly

= LT
[
τ + τ a − C (q, q̇) q̇− Sq− g (q)−M (q) q̈0

]
.

(25)

Assuming that nc represents the number of constraints of
the closed-loop joint, this method is very efficient when the
value of n− nc is small or when Cj is degenerate-rank [44].
For space robots in a microgravity environment, all the

above gravity terms are zero. Therefore, based on the flexible
multi-body dynamics (20), the system dynamics equation of
the space flexible manipulator shown in Fig. 4 is obtained as
follows [45]:Mp Mpa Mpf

MT
pa Ma Maf

MT
pf MT

af Mf

 ẍpΘ̈
q̈f

+
 vp
vm
vf

+
 0

0
Sff qf


=

Fpτa
0

+
 JTpJTa

0

Fe, (26)

where Mp is the inertia matrix of the pedestal, Ma is the
inertia matrix of the arm, Mf is the inertia matrix of the
flexible mode, Mpa is the coupled inertia matrix between
the pedestal and the arm, Mpf is the coupling inertia matrix
between the pedestal and the flexible mode, and Maf is the
coupled inertia matrix between the arm and the flexiblemode;
xp is the pose matrix of the pedestal, Θ = [θ1, θ2, · · · , θ9] is
the vector of the joint angle, and qf is the modal coordinate
matrix of the flexible arm; vp, va, and vf represent the velocity
nonlinear term of the pedestal, arm, and modal coordinates,
respectively; Sff is the modal stiffness matrix; Fp is the force
and moment acting on the pedestal and τa is the driving
torque of the joint of the arm; and Fe is the external force
and moment acting on the end effector of the arm, Jp is the
Jacobian matrix of the end effector of the arm relative to the
pedestal, and Ja is the Jacobian matrix of the end effector
relative to the joint.

III. VIBRATION SUPPRESSION CONTROL BASED
ON A NEURAL NETWORK
Two types of robot arm dynamic control methods exist. One
is based on model-free control, but its transient response is
not ideal. The other is based on the control of the dynamic
model, whose control performance depends on the accuracy
of the model [46]. Because of the complexity and variability
of the environment, it is difficult to obtain accurate dynamic
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models. Additionally, the flexible arm produces large elastic
deformation during large movement, and may even cause
a large vibration [21]. This vibration can seriously affect
the positioning accuracy of the arm [23], [47]. Therefore,
in this paper, the dynamic model is compensated for using
the powerful approximation ability of the neural network,
thereby reducing the tremor of the end effector and improving
positional accuracy.

A. NEURAL NETWORK CONTROL SYSTEM
Many researchers have proposed intelligent control methods
[48], [49], but control methods based on neural networks
combined with dynamic models are still relatively rare, par-
ticularly in space manipulators.

The neural network algorithm is a distributed parallel infor-
mation processing algorithm. The basic principle is to use
the data collected by the sensor as the input information of
the neural network. After parallel processing by the neural
network, the angular increment of the current desired motion
direction is used as the output. Therefore, motion control
planning of the robot is achieved.

The overall control block diagram of the flexible arm
consists of four parts. As shown in Fig. 5, the functions of
each part are as follows:

FIGURE 5. Model of a space flexible arm system.

Part A is a multi-layered neural network controller that
transforms the desired trajectory into the pose and rotational
angle of the joint. In the simulation, the learning samples of
the neural network are obtained by the previously established
dynamic model. The neural network learns to approximate
the inverse model of the flexible arm in advance, thereby
quickly completing the required computing tasks.

Part B is a complete closed loop controller. The manipula-
tor is controlled based on the dynamic model to achieve the
desired trajectory. It is mainly based on the adaptive control
of passivity. This is because the tracking error generated by
the traditional robust controller is repeated when the arm is
reciprocating, but the tracking error generated by the adaptive
controller is gradually reduced as the control parameters are
updated in time. Additionally, an adaptive controller is used
for online parameter estimation.

Part C is a joint angle controller. It controls the angle and
speed of the joint through servo control.

Part D is used to monitor the position and speed of the
arm in real time. The specific implementation process is that
data are transferred to the sensor and the dynamics calculation
module, and the feedback amount needed for the final closed
loop is obtained.

The neural network is used as a real-time controller. When
the inputs are xe and ẋe, the outputs, for example, xm, ẋm, ẍm,
vm, qm, τm, θm, are quickly calculated depending on the needs
of the controller of Part B.

The mathematical description of the neural network algo-
rithm is as follows:

Step1: Initialization. The appropriate input mode is
designed according to the specific application requirements
and the characteristics of the original training data, and a
combined neural network based on Radial Basis Function -
Back Propagation (RBF-BP) [50] is created. The weight vec-
tor wi,j and the threshold value Ωj of the combined network
are initialized to a random number between 0 and 1. At the
same time, set the maximum number of iterations N and the
target error E, and set the Sum of Squared Error (SSE) of the
network to 0. The following iterative calculation is performed
according to the number of iterations t = 1,2, · ··,N .
Step2: An input sample vector and a corresponding

expected output vector is taken from the training set. The
input sample vector xi is supplied to the RBF subnet in the
combined neural network according to the input mode. And
set the transfer function of the hidden layer node of the RBF
subnet to the following Gaussian kernel function.

u (j) = exp

 N1∑
j=1

|xi − w1,j|
2/2σ 2

j

 , (27)

where j = 1,2, · ··,N1 and u (j) represents the output of the jth
hidden layer node; wi,j represents the weight vector of the jth
node of the input layer to the hidden layer, that is, the center
of the Gaussian kernel function of the jth node; σ 2

j is the
Gaussian kernel function width of the jth node.

Step3: Set the transfer function of the hidden layer node
of the BP subnet in the combined neural network to the
following Sigmoid type function.

F (Y ) = 1/
(
1+ e−Y

)
. (28)

Then its output is

V (k) = F

 N2∑
j=1

w2,k (j) u (j)

 , (29)

where k = 1,2, · ··,N2, and w2,k represents the weight vector
which connects the jth node of the first hidden layer to the kth
node of the second hidden layer, N2 represents the number
of second hidden layer nodes.
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FIGURE 6. Control block diagram of the flexible arm.

Step4: Calculate the output value of the mth node of the
output layer according to the following formula

y (m) = F

[ N3∑
k=1

w3,m (k) v (k)

]
, (30)

wherem = 1,2, · ··,N3, and w3,m represents the weight vector
which connects the kth hidden layer node of the third layer to
the mth node of the output layer, N3 is the number of output
layer nodes.

Step5: Calculate and verify the SSE of the network output
layer based on the actual output and the expected output.

SSE =
N3∑
k=1

[Tm − y (m)]2, (31)

where Tm represents the expected output vector.
Step6: Calculate the error vector ERRm of each neuron in

the output layer.

ERRm = y (m) [1− y (m)] [Tm − y (m)] . (32)

Step7: Modify each weight vector and threshold vector in
the network according to the following formula.

wi,m = wi,m + α · ERRm · y (m)Ωm = Ωm + α · ERRm,

(33)

where α is the learning efficiency.
Step8: The iteration ends when one of the follow-

ing two conditions is satisfied, and the weight vector
wm (t) , (m = 1,2, · ··, T ) is output as the result. (1) When
the SSE is equal to or less than the target error, the network
converges;
(2) when t = T the network does not converge.
Otherwise, go back to step 2.
The main contribution of this method is the combination of

traditional model-based control method and neural network
method. The nonlinearity of the dynamic model is compen-
sated by using the powerful approximation of the neural net-
work. This can reduce the tracking error and greatly improve
the calculation efficiency.

B. DYNAMICS CONTROL STRATEGY
The purpose of studying the dynamic control strategy is to
accurately offset various uncertainties in the robot’s motion,
including modeling errors, load changes, and possible com-
putational errors. PID control is generally used in robot
control, but this control method does not compensate for
nonlinear dynamics, so it is not effective in the control of
flexible manipulator.

For clarity of expression, we use the symbol (̂•) to rep-
resent the calculated or characterized value of (•), and their
difference (̃•) = (̂•) − (•) represents the error or mismatch
between the theoretically accurate inverse dynamics control
of the system and the actual control. Because the dynam-
ics can be considered as an input transformation, that is,
they transform the problem from selecting the torque input
to selecting the acceleration input command, the dynamic
equation (20) can be rewritten as

M (q) q̈+ C (q, q̇) q̇+ g (q) = u. (34)

To eliminate the influence of nonlinearity on motion con-
trol, we choose the control input to be

u = M (q) a+ C (q, q̇) v+ g (q)− Eξ, (35)

where a = v̇ = q̈d −Λ ˙̃q, v = q̇d −Λq̃, ξ = q̇− v = ˙̃q+Λq
and E and ξ are diagonal matrices of constant positive gain.

Rewriting the input u of motion control yields

u = M̂ (q) a+ Ĉ (q, q̇) v+ ĝ (q)− Eξ. (36)

Combining (34) and (36) yields

M (q) ξ̇ + C (q, q̇) ξ + Eξ = ∆θ̃, (37)

where ∆ is a regression function, vector θ̃ = θ̂ − θ , and θ̂
represents a time-varying estimation of true parameter vector
θ . According to the gradient update rule [51], the following
equation is obtained:

θ̂ = −Γ −1∆T (q, q̇, a, v) ξ, (38)

where Γ is a constant symmetric positive definite matrix.
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It can be seen from (37) that the closed-loop system is still
a nonlinear coupled system. Therefore, the characteristics of
the tracking error gradually converge to zero which is not
obvious. To solve this problem, we introduce the positive
definite term 1

2 θ̃
TΓ θ̃ in traditional Lyapunov function V to

obtain the following functional form [52]:

V =
1
2
ξTM (q) ξ + q̃TΛEq̃+

1
2
θ̃TΓ θ̃. (39)

Calculating V̇ along the trajectory of (37), the following
equation is obtained:

V̇ = −q̃TΛTEΛq̃− ˙̃qTE ˙̃q+ θ̃T
(
Γ
˙̂
θ +∆T ξ

)
, (40)

where ˙̃θ = ˙̂θ because parameter vector θ is a constant value.
Substituting (38) into (40) and using the antisymmetric

property, the following equation is obtained:

V̇ = −q̃TΛTEΛq̃− ˙̃qTE ˙̃q = −eTXe 6 0, (41)

where e =

(
q̃
˙̃q

)
is the tracking error and

X =
(
ΛTEΛ

0
0
E

)
.

Therefore, the equilibrium point e = 0 in the error space is
globally asymptotically stable, that is, the closed-loop system
satisfies the Lyapunov stability theorem.

Since V̇ is a quadratic function of the error vector e (t),
integrate the two sides of equation (41) to get∫ t

0
V̇ dt = V (t)− V (0) = −

∫ t

0
eT (t)Xe (t) dt, (42)

where e (t) is a square integrable vector and V̇ is bounded.
According to Barbalat’s lemma [53], the tracking errors q̃ and
˙̃q are asymptotically converged to zero when t →∞.
Unlike traditional neural networks, a switching mecha-

nism is introduced in the controller to ensure global stability.
In practice, the discontinuity of control can cause chattering
[54], and an additional control ε can be introduced in V̇ to
overcome the instability in uncertainty. Then (41) becomes

V̇ = −eTXe+ eTPA {ε + δ} , (43)

where P is a symmetric positive definite matrix and P > 0,

A =
(
0
I

)
.

For discontinuous control, the additional item ε is defined
as follows:

ε =


−ρ (e, t)

ATPe
||ATPe||

, if ||ATPe|| > η

−ρ (e, t)
η

ATPe, if ||ATPe|| 6 η

(44)

where where ε represents an additional input on the control,
and the design of ε is used to ensure the final boundedness of
the tracking error e, limit ρ (e, t) is a function of the tracking
error and time, and ρ (e, t) > ||δ||.

FIGURE 7. Block diagram for the disturbance observer.

IV. DISTURBANCE OBSERVER
To suppress the effect of dynamic coupling between joints,
a disturbance observer [1] is added to the current control loop.
The low-pass filter Qd effectively suppresses the effect of
friction and dynamic coupling on joint control performance.
The current controller can be designed using the nominal
model because the dynamic characteristics of the disturbance
observer approximate those of the nominal model of the
object. It is assumed that the discrete transfer function of the
joint is

Gp
(
z−1

)
=
Bp
(
z−1

)
Ap
(
z−1

) , (45)

where Bp
(
z−1

)
and Ap

(
z−1

)
are numerator and denominator

polynomials, respectively.
The pulse transfer function of the nominal object model is

expressed as

Gn
(
z−1

)
=
Bn
(
z−1

)
An
(
z−1

) , (46)

where Bn
(
z−1

)
and An

(
z−1

)
are numerator and denominator

polynomials, respectively.
Fig. 7 shows a block diagram of the discrete-time dis-

turbance observer, where u is the input of the disturbance
observer, y is the system output, n is the measurement noise,
and d is the disturbance torque. The transfer function from
input u to output y is therefore

Guy =
Bp

Ap (1− QdBn)+ AnQdBp
. (47)

Similarly, the transfer function from external disturbance d
to output y is

Guy =
Ap (1− QdBn)

Ap (1− QdBn)+ AnQdBp
. (48)

A filter is used to reduce the effect of external noise.
Low-pass filter Qd

(
z−1

)
satisfies Qd

(
z−1

)
Bn
(
z−1

)
= 1 in

the low-frequency band and satisfies Qd
(
z−1

)
Bn
(
z−1

)
= 1

in the high-frequency band.
Because the disturbance observer is designed to solve the

inverse model of the nominal object Gn
(
z−1

)
, Bn

(
z−1

)
is

decomposed as

Bn
(
z−1

)
= B+n

(
z−1

)
B−n

(
z−1

)
, (49)
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where B+n
(
z−1

)
and B−n

(
z−1

)
are a cancelable stable zero

polynomial and non-cancelable unstable zero polynomial,
respectively. It is assumed that the non-cancelable polynomial
B+n

(
z−1

)
has the form

B−n
(
z−1

)
= b1z−1 + b2z−2 + · · · + bmz−m

= z−m
(
b1zm−1 + b2zm−2 + · · · + bm

)
= z−mB̄−n (z) . (50)

Filter Qd
(
z−1

)
is then designed to have the form

Qd
(
z−1

)
=

Qf
(
z−1

)
B+n

(
z−1

)
B̄−n (z)∗

, (51)

where Qf
(
z−1

)
represents a low-pass filter. B̄−n (z)

∗ is the
complex conjugate of B+n

(
z−1

)
:

B̄−n (z)
∗
= b1z−(m−1) + b1z−(m−1) + · · · + bm. (52)

Following the conjugate transformation, (52) can be
changed to a stable achievable polynomial. Equations (50)
and (52) yield

B
(
z−1

)
Qd

(
z−1

)
=
B−n

(
z−1

)
Qf
(
z−1

)
B̄−n

(
z−1

)∗ , (53)

where
B−n
(
z−1

)
B̄−n (z−1)

∗ represents a stable all-pass filter andQf
(
z−1

)
has a low-pass characteristic. In the low-frequency band,
Bn
(
z−1

)
Qd

(
z−1

)
= 1 is satisfied, and the effects of

model mismatch and disturbance are suppressed. In the
high-frequency band, Bn

(
z−1

)
Qd

(
z−1

)
= 0 is satisfied

and the effect of noise is suppressed. In the low-frequency
range, the high equivalent gain of the forward channel results
in the dynamic characteristics of the disturbance observer
approximately having the form

Guy =
B+n

(
z−1

)
B̄−n (z)

∗

An
(
z−1

) . (54)

The joint module is considered to be an independent con-
trol system and cross-coupling is considered to be an exter-
nal disturbance torque. The n-rank single-channel system
dynamics model is described as

Guy
(
z−1

)
=

Bn
(
z−1

)
An
(
z−1

)
=

b1z−1+b2z−2+· · ·+bn−1z−n+1+bnz−n

1+ a1z−1 + a2z−2+· · ·+an−1z−n+1+anz−n
.

(55)

The controller is assumed to have an integral action. Con-
troller K

(
z−1

)
that can implement any pole configuration is

K
(
z−1

)
=
S
(
z−1

)
R
(
z−1

)
=

s0 + s1z−1 + · · ·+sn−1z−n+1(
1−z−1

) (
r0 + r1z−1+· · · + rn−2z−n+2

) . (56)

FIGURE 8. Vibration suppression of the end effector.

The system characteristic polynomial of order 2n− 1 is

A
(
z−1

)
R
(
z−1

)
+ B

(
z−1

)
S
(
z−1

)
= Ac

(
z−1

)
Ao
(
z−1

)
,

(57)

where Ac
(
z−1

)
is the nth-order characteristic polynomial

of the controller, whereas Ao
(
z−1

)
is the (n − 1) th-order

characteristic polynomial of the observer.
The establishment of the disturbance observer greatly

reduces the dynamic coupling between the joints of the
flexible manipulator, which makes the control precision of
the robot higher. At the same time, the combination of the
disturbance observer and the neural network control strategy
can also greatly reduce the scale of the neural network and
overcome the problems of slow convergence of the neural
network.

V. EXPERIMENTS
The main purpose of this section is to verify the vibra-
tion suppression capability based on neural network control.
As shown in Fig. 8, a water bottle was placed at the end
effector of the arm. When the position of the end effector was
kept constant, the arm continuously reciprocated to observe
the vibration of the water bottle. After the neural network is
trained by RBF-BP algorithm for more than 9 × 106 times,
the average error is less than 0.2% and the neural network has
well approximated the dynamics model of the end effector.
Fig. 9 shows the joint angle and angular velocity of the
flexible arm during motion. Fig. 10 shows the control torque
of the nine joints of the arm.
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FIGURE 9. Movement of each flexible joint (a) rotation angle;
(
b
)

angular
velocity.

FIGURE 10. Control torque of each joint.

Fig. 11 shows the position control error under the dis-
tributed PID control and the disturbance observer. Because
the peak error of the motion state was concentrated in the
startup phase, the partial error shown in Fig. 12 was selected
for comparative analysis. Fig. 12 shows the tracking error
response curve of the end effector in the x and y directions.
It can be seen from the graph that, based on the same flexible
multi-body dynamics model, if only adaptive control was
used, then the peak error of the robot end effector in the
x-direction was 6.4 mm and the peak error in the y-direction

FIGURE 11. Position control error of the manipulator.

FIGURE 12. End tracking error response: (a) only by adaptive control;
(
b
)

by neural network control and a disturbance observer.

was 5.7 mm. When the neural network mechanism and dis-
turbance observer were added to the controller, the peak error
in the x-direction was only 3.0 mm, and the error in the
y-direction also reduced and was 2.6 mm.

Since the data we collected is on the ground, the original
error is inherently large due to the self-weight of the flexible
manipulator. However, it does not affect the effectiveness of
the proposed method and its contribution to the vibration
suppression of flexible manipulator. The experimental results
demonstrate that the vibration suppression effect of the con-
troller based on a neural network and disturbance observer is
good. Because the neural network algorithm compensates for
the dynamics, the disturbance observer reduces the dynamic
coupling between the joints; thus, the tremor of themulti-joint
arm is greatly reduced.

VI. CONCLUSION
Because the tremor of the flexible space manipulator is rela-
tively common, in this paper, a complete dynamic modeling
method and control strategy to mitigate this tremor were
proposed. First, a flexible multi-body dynamics model of
the space manipulator was established based on the assumed
mode method and the Lagrange equation. Then, a controller
based on the neural network was designed for the arm, and a
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switching mechanism was added to the neural network con-
troller to ensure global stability. Additionally, a disturbance
observer was added to the current control loop to mitigate
the dynamic coupling between the joints. Thus, the integrated
controller greatly improved the vibration damping effect of
the arm. Finally, vibration suppression verification of the arm
was conducted. The controller based on the neural network
and a disturbance observer reduced the tracking error of end
effector by almost half compared with using only the adaptive
control strategy. The experiment proves that the proposed
method also has good application value for the vibration
suppression of ground robots.
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