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ABSTRACT

Phase feedback is commonly utilized to set up a MEMS oscillator. In most studies, the phase delay is fixed on p/2 for a maximum oscillation
amplitude. In this letter, we study the dynamics of synchronization in a nonlinear micromechanical oscillator operating on different phase
delays. The analytical and experimental results show that the synchronization region shifts and the size of this region varies depending on
the phase delay. The frequency stability of the self-sustained oscillator holds the best in the case of phase delay equal to p/2 and can be
further improved to the same level after synchronization. Our work reveals the effects of phase delay on synchronization and presents an
easy-to-implement strategy for tuning the synchronization by controlling the phase delay of the oscillation feedback circuit in a nonlinear
micromechanical oscillator.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090977

Micro/nanomechanical oscillators1,2 have been widely used in
frequency-shift based sensors3 due to their advantages of low
power consumption and easy miniaturization and integration with
electronics and have currently become potential alternatives as the
frequency reference for timing4 to quartz-crystal based oscillators
which is always kept in the linear regime and requires high carrier
power to suppress phase noise.5 Due to the size effect,6 micro/
nanoresonators are easier to be excited into the nonlinear regime7

with performance degradation.8,9

Efforts have been invested to circumvent these defects to improve
the frequency stability and reduce the phase noise using the synchroni-
zation phenomenon,10,11 which is a ubiquitous phenomenon12 first
found by Huygens in coupled pendulums13 and conventionally
defined as an adjustment of rhythms of oscillators in the presence of
weak coupling.14 When two identical micromechanical oscillators are
electrically synchronized, their frequency stability can be improved up
to sevenfold.15 Previous studies show that the frequency stability
can be improved nearly tenfold at 2 s (integration time) and can be
further improved by a larger perturbation,16 and even in high order
synchronization (3:1), improvements can be observed as well.17 Two

anharmonic nanomechanical oscillators suppress the phase noise up
to half in the phase synchronized state.18 In addition, synchronization
has shown its potential for mass sensing applications in oscillation
arrays by enhancing the frequency stability.19 However, due to micro-
machining error, the synchronous state of independently running
oscillators faces difficulties owing to its narrow synchronization region
and limited tuning approach, especially in high order synchroniza-
tion.20,21 In classic models, the synchronization region is tiny and pro-
portional to the perturbation.22 Research studies have been conducted
to clarify the significant role nonlinearity played in enhancing the syn-
chronization region.23,24 Extra frequency tuning approaches are
employed to compensate the frequency detuning to form synchroniza-
tion, i.e., electrostatic softening spring effect,15 amplitude-frequency
effect,20 and piezoresisitive effect.17 A suitable synchronization region
(the location of synchronizing frequency and the size of the synchroni-
zation region) will make synchronization easy to achieve and applica-
ble for a variety of fields.

To address this problem, we present a strategy for tuning the syn-
chronization using phase delay within the feedback loop, which is easy
to implement. In the aforementioned studies, phase feedback is
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commonly used together with micro/nano electro mechanical system
(M/NEMS) resonators to setup the oscillators25 which meanwhile are
essential components14 in these synchronization processes. Both theo-
retically21,26 and experimentally,15–17,23 the phase delay is shifted to p/
2 for a maximum amplitude with a high signal to noise ratio while its
effects on synchronization in nonlinear nano/micromechanical oscilla-
tors have not been studied yet.

In this letter, a phase feedback oscillator is implemented combining
a micromechanical resonator working in its nonlinear regime with a
phase feedback sustaining circuit with a tunable phase delay. We study
the effects of phase delay on the synchronization region both analytically
and experimentally. The micromechanical clamped to clamped (C-C)
beam resonator is fabricated by a standard Silicon-On-Insulator (SOI)
process, whose dimensions are 478 lm long, 10 lm wide, and 25 lm
thick, respectively. It is electrically actuated and sensed embedded in an
electrical circuit with a digital locked-in amplifier (LIA) HF2LI shown in
Fig. 1(a). The motional response is preamplified by a transimpedance
amplifier (TIA) and filtered by a low-pass filter (LPF) before being
loaded to the input port of LIA. Figure 1(b) shows a finite element
method (FEM) simulation of the resonator which operates in its princi-
ple flexural mode. The device is tested in a vacuum chamber at a pres-
sure below 2Pa at room temperature. The measured quality factor
Q� 18000, while Vac equals 10 mv [Fig. 1(c)]. The open loop responses
of the resonator are obtained with built-in phase-locked loop (PLL) off,
and the self-sustained oscillation is setup when PLL is on. The frequency
outputs are logged by a frequency counter.

The open loop responses of the resonator, actuated by a combi-
nation of a fixed Vdc value (15 V) with various Vac values (perturba-
tion off), are shown in Fig. 2. The comb fingers can linearly drive the

resonator for a large amplitude with the limited electrostatic softening
effect. The motion for this forced nonlinear micromechanical beam is
described using the Duffing equation27

m€x þ c _x þ kx þ k3x
3 ¼ F cosðxtÞ; (1)

wherem, c, k, k3, and F are the effective mass, damping coefficient, lin-
ear mechanical stiffness, cubic mechanical stiffness, and amplitude of
actuation force, respectively. In the closed loop model, the right-hand
side of the equation becomes F0 cos ð/þ /0Þ, where F0, /, and /0 are
the self-sustaining force, instant phase, and phase delay, respectively.
With the synchronization signal injected, the term of Fs cos ðxstÞ is
added as the perturbation, where Fs and xs are the perturbation force

and frequency, respectively. Redefining time units (t
ffiffiffiffiffiffiffiffiffi
k=m

p
! t) and

normalizing23 Eq. (1) by the linear mechanical stiffness k lead to the
following equation:

€x þ Q�1 _x þ x þ bx3 ¼ f0 cos ð/þ /0Þ þ fs cos ðXstÞ; (2)

where Q ¼
ffiffiffiffiffi
km
p

c denotes the quality factor, b ¼ k3
k ; f0 ¼

F0
k ; fs ¼

Fs
k ,

and Xs ¼ xsffiffiffiffiffiffi
k=m
p is the normalized perturbation frequency slightly

larger than 1. Without the external perturbation, the analytical solu-
tion can be solved using the harmonic approach.23 The harmonic solu-
tion xðtÞ ¼ A0 cos/ ¼ A0 cos ðX0tÞ can be obtained with a higher
order harmonic term approximated as cos3ð/Þ � 3=4 cos ð/Þ.22
With the solution being substituted into Eq. (2), we have

A0 ¼
Qf0 sin ð/0Þ

X0
; (3)

FIG. 1. (a) Schematic graph of the experimental setup. The black scale bar is
50 lm. (b) Structure of the beam microresonator and modal shape simulation in
COMSOL. (c) Linear frequency response of the resonator. The measured quality
factor Q� 18 000 while the resonator responses linearly under weak excitation
(Vac¼ 10 mV). The red line is the Lorentzian fitting curve.

FIG. 2. Open loop characterization of the resonator on various Vac values with a
fixed Vdc value (15 V). Response amplitude and phase as a function of swept
frequency.
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X2
0 � X4

0 þ
3
4
bQ2f 20 sin2/0 �

X3
0

Q tan/0
¼ 0: (4)

In the case of cot/0 � X3
0 � Q, the solution of Eq. (4) can be

obtained as

X0 ¼
1ffiffiffi
2
p 1þ ð1þ 3bQ2f 20 sin2/0Þ1=2
h i1=2

: (5)

After being injected with a small perturbation fs, the solution can be
assumed to have the form xðtÞ ¼ As cos/ ¼ As cos ðXst � /sÞ, since
the oscillation frequency is the same as the external perturbation in the
synchronization regime. By separating the terms proportional to
cosXst and sinXst and writing the complex form, we have

ð1� X2
s ÞAs þ

3
4
bA3

s � f0 cos ð/0Þ þ i f0 sin ð/0Þ �
XAs

Q

� �

¼ fs exp ð�i/sÞ: (6)

For a small perturbation fs, the solutions of Xs and As are close to those
of X0 and A0, respectively.23 Introducing the small perturbation
parameter e ¼ fs=f0, we write

Xs ¼ X0 þ edX;As ¼ A0 þ edA: (7)

Substituting Eq. (7) into Eq. (6), by neglecting higher order terms, Eq.
(6) becomes

3QbA0 sin/0

2X0
þ f0 cos/0 �

i
A0

� �
dA

� 2Q sin/0 þ
i

X0

� �
dX ¼ exp ð�i/sÞ : (8)

For the solvable condition of dA for a given value dX, we thus have
the predicate condition

3QbA2
0 sin/0

2X2 þ f0A0 cos/0

X
þ 2Q sin/0

� �2

dX2

� 1þ
�
3QbA2

0 sin/0

2X0
þ f0A0 cos/0

�2

: (9)

The condition given in Eq. (9) limits the values of dXr to a critical
interval [�dXr ; dXr]. Then, the synchronization region can be
obtained as X0 � edXr � Xs � X0 þ edXr . To find the quantitative
value of dXr in Eq. (9), we extract the oscillation parameters from the
open loop tests. The natural frequency is 2p� 208 070Hz. The ampli-
tude of the oscillation is scaled to be expressed by voltage. In Eq. (2),
f0 ¼ 3:29lV and b ¼ 4:88V�2. The two dashed lines in Fig. 3(a)
show the calculated synchronization region as a function of phase
delay from 40� to 90�. The dashed line in Fig. 3(b) shows that the loca-
tion of the region can be shifted from 208 588Hz to 209 460Hz up
and down depending on the value of phase delay. The size of the ana-
lytical synchronization region remains the largest when /0 equals p/2
as shown in Fig. 3(b).

The closed loop experiments are performed to verify the relation-
ship between the synchronization region and phase delay. To facilitate
the experiments on the effect of phase delay, we utilize the LIA with
built-in PLL, consisting of a phase detector, tunable phase delay, and
amplitude controlled output, to directly tune the value of /0 with the

exciting voltage Vac and bias voltage Vdc fixed on 400mV and 15V,
respectively. The oscillation frequency, amplitude, and phase can be
read out simultaneously. The correspondence between oscillation fre-
quency and tuned phase delay can thus be obtained. The synchroniza-
tion perturbation is generated by a function generator (Agilent
33250A) fixed on 10mV injected with the self-sustaining force driving
the resonator. The perturbation frequency is swept up and down in
the vicinity of the oscillation frequency to find the synchronization
region in which the oscillation frequency is locked to perturbation fre-
quency. In upward sweeping, the oscillation frequency is suddenly
entrained by the perturbation and goes up along with the perturbation
frequency until desynchronization happens at Xu while desynchroniz-
ing at Xl in the downward sweeping case. We plot the measured syn-
chronization boundary and between which, the red diamonds and the
orange stars, the region lies as shown in Fig. 3(a). Figure 3(b) shows
the synchronization region Xu � Xl as a function of phase delay. We
observed that the location of the synchronization region shifts and the
size of the synchronization region varies depending on the phase delay.
To have a better insight into these operation points, numerical results
are shown in Fig. 4. The bifurcation diagram is obtained based on Eq.
(2) with the unperturbed case considered (fs¼ 0) using MatCont.28

With the phase delay changing from 20� to 90� in steps of 5� shown as
the red dots, the corresponding upper and lower synchronization
boundaries are depicted (the short bars near the red dots) under
400mV Vac excitation (the dashed line). The inset picture in Fig. 4
indicates that the operation points move from 30� to 90�. For each

FIG. 3. Analytical and experimental results of the synchronization region. (a)
Synchronization region as a function of phase delay. The blue dots show the self-
oscillation frequency. The inset graphs show the up-sweeping and down-sweeping
of the selected experimental operation points. (b) The size of the synchronization
region as a function of phase delay. The stars and dashed line present the experi-
ments and analytical results, respectively.
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phase delay operation point, the synchronization region size might be
small (from 50 to 150Hz) as shown in Fig. 3 and the small bar in
Fig. 4. Nevertheless, the region can be expanded to the hysteresis area
with continuous tuned phase delay for approximately 10 times
enhancement, as shown in the colored area in the case of 400mV ac
excitation. To obtain an analytical expression of the synchronization
range with phase delay, we solved Eq. (4) approximately under
assumption cot/0X

3
0 � Q. For a relatively small phase delay, this

could bring some error; however, for a large phase delay /0; cot/0
approaches 0, and the prediction is accurate enough.

In addition, the effects of phase delay on the frequency stability
are studied evaluated by Allan deviation.29 The oscillation signals are
logged out by a frequency counter after being filtered by a LPF shown
in Fig. 1 with the self-oscillation driving condition remaining
unchanged. Figure 5 shows the Allan deviation of the oscillation fre-
quency measured for 300 s with a sample time of 0.1 s in the two cases
of before synchronization and after synchronization. We can find that
in the unsynchronized case, the oscillation is more stable when the
phase delay /0 is p/2, which is in agreement with those in Refs. 30 and
31, as shown by the black dotted-line in Fig. 5(a). As /0 goes away
from p/2, the frequency stability decreases up to half order from
180ppb to 1094 ppb at 5 s (integration time). Once the oscillator is
synchronized to the external perturbation, all of the frequency stability
is improved to the same level (less than 100 ppb), as shown in
Fig. 5(b). These results imply that phase delay affects the self-sustained
oscillation on frequency stability, and this effect can be suppressed
after synchronization. Figure 6 makes a more straightforward compar-
ison of the frequency stability of different phase delays under various
conditions based on the value of Allan deviation at a 1 s integration
time. The circle dots with solid lines and the square dots with dashed
lines depict the cases of before synchronization and after

synchronization, respectively. Under each Vac excitation [Fig. 6(a)],
the unsynchronized oscillator performs best while phase delay equals
90� (the bifurcation point BP1). After synchronization, the perfor-
mance in each case is promoted to the same level. As shown in Eq. (3),
phase delay affects the oscillation amplitude. To separate the ampli-
tude effect, the Allan deviations at 1 s of various Vac values (200, 255,
310, and 380mV) with a fixed phase delay of 90� and the correspond-
ing various phase delays (30

�
; 40

�
; 50

�
; 60

�
; 70

�
) with Vac fixed at

400mV for the same amplitude are directly compared in Fig. 6(b).
The blue dots with solid lines show the frequency instability brought
by nonlinear oscillation with Vac and amplitude increasing.
Differences of Allan deviation at 1 s between each corresponding red
dot and blue dot uncover that even for the same amplitude, the phase
delay would bring more frequency instability. Yet after synchroniza-
tion, the frequency stability can be improved to the same level [the
dashed lines in Fig. 6(b)].

In conclusion, the synchronization region is measured when the
feedback phase delay was directly tuned, and the results reveal the

FIG. 4. Bifurcation diagram (blue line) and phase delay operation points (red dots)
with the corresponding synchronization region (black bars) of the nonlinear oscilla-
tor. The inset graph shows the corresponding amplitude and phase branches of the
response of the oscillator. The two bifurcation points (BP1 and BP2) are indicated.
The colored area demonstrates the achievable synchronization region obtained by
tuning phase delay.

FIG. 5. Allan deviation of the oscillation frequency with the phase delay ranging
from 40� to 90�. (a) Frequency stability without synchronization. (b) Frequency sta-
bility under synchronization. Dark yellow represents the frequency stability of the
perturbation from the function generator.
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effects of phase delay on synchronization that the location of the syn-
chronization region can be shifted, its size varies depending on the
value of phase delay, and the frequency stability can be improved and
maintains the same level after synchronization. This work bridges the
synchronization region with the hysteresis area in nonlinear oscillators
and provides an easy-to-implement approach for tuning the synchro-
nization region, which makes it easier for synchronizing two oscillators
to overcome the microfabrication error or even the narrow synchroni-
zation region of high order synchronization. In our experiments, the
synchronization region can be easily tuned up to several kilohertz (for
10 times enhancement), which would highly lower the difficulty to
implement synchronization.
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