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Abstract: High-quality ghost imaging (GI) under low sampling is very important for scientific
research and practical application. How to reconstruct high-quality image from low sampling has
always been the focus of ghost imaging research. In this work, based on the hypothesis that the
matrix stacked by the vectors of image’s nonlocal similar patches is of low rank and has sparse
singular values, we both theoretically and experimentally demonstrate a method that applies the
projected Landweber regularization and blocking matching low-rank denoising to obtain the
excellent image under low sampling, which we call blocking matching low-rank ghost imaging
(BLRGI). Comparing with these methods of "GI via sparsity constraint," "joint iteration GI"
and "total variation based GI," both simulation and experiment show that the BLRGI can obtain
better ghost imaging quality with low sampling in terms of peak signal-to-noise ratio, structural
similarity index and visual observation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ghost imaging (GI) is a newly developed imaging technique based on the correlation of the light
field fluctuations, and it reconstructs the object by means of intensity correlation of the object
beam and the reference beam. The total intensity of object beam which contains the object’s
information is collected by a bucket detector, and the reference beam is detected by a detector
with spatial resolution directly [1,2].

In 2008, computational ghost imaging (CGI) was proposed by Shapiro [3] and first experimen-
tally verified by Bromberg [4]. Since then, many researchers have begun to pay close attention to
the practical application of ghost imaging [5,6] due to its flexible optical design, compatibility with
computer processing programs, and high signal-to-noise ratio (SNR) compared with conventional
GI [7–9]. Sun and others [10] successfully achieved 3-D computational imaging with multiply
single-pixel detectors and digital light projector (DLP), and further promoted the application of
computational ghost imaging technology in the actual scene [11,12].

In order to apply ghost imaging to reality, it is necessary to solve the problem of long imaging
time and low imaging quality. Recently, various ghost imaging algorithms have been proposed
to solve these two problems, among which the most popular is compressive ghost imaging. It
reconstructs the image based on compressive sensing. As a new signal processing method,
compressive sensing exploits the sparse nature in the structure of natural images [13] and enables
ghost imaging from sub-Nyquist sampling. It can obtain high quality reconstruction images
while largely reduce the acquisition time [13–17].
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As far as we know, there are two main classses of compressive ghost imaging methods: one
relies on a regularization step followed by denoising [18–21], whereas another one is based on a
variational optimization problem and penalty terms. The first category of method preserves the
features like edges but suffer from ringing artifacts near edges. Another category of compressive
ghost imaging method is to exploit the pixel-wise prior knowledge (e.g. minimizing the total
variation to enforce to the local smoothness) or global prior features (e.g. forcing sparsity of
discrete wavelet transform coefficients to ensure the dominance of low frequencies) of natural
images for higher imaging quality [22–25].
Due to the property of image nonlocal self-similarity, we can obtain many patches similar

to the given patch across the whole image. In this paper, we stack the vectors of these similar
patches to a low-rank matrix and design the threshold shrinkage algorithm by approximating the
low-rank matrix. We integrate the low-rank method into the compressive ghost imaging scheme,
which we call blocking matching low-rank ghost imaging (BLRGI). The iterative process consists
of two parts: regualrization and denoising. The output of the regularization process is a sharp
but noisy estimated image. During the denoising process, the low-rank matrix approximation
method is applied to the output of the regularization step to suppress the undersampling noise
and artifacts. Furthermore, we update the estimation of noise variance to compute a threshold
parameter in each iteration. Simulation and experiment manifest that the proposed algorithm
could obtain the high imaging quality in both numerical and visual perception.

To our knowledge, the paper [25] proposed a ghost imaging method under low-rank constraint,
it takes advantage of regularity between rows or columns of a two-dimensional image. Compared
to using low rank constraints directly on the entire image, our approach has the following
advantages: first,we use a decoupled iterative scheme with SVD shrinkage, in which an efficient
projected Landweber regularization is used in the preprocessing step for extracting more details;
second, in the denoising step, we utilize the property of image nonlocal self-similarity and process
the regularized image in a sliding window manner, where the block has a fixed size. we stack
the array of these similar blocks to a low-rank matrix, the noise is attenuated by the threshold
shrinkage. Using similar blocks for low rank constraints, the noise can be removed effectively
while maintaining image texture detail. Our method can obtain high quality reconstructed images
by alternately performing the regularization and denoising steps.

2. Block mathcing low-rank ghost imaging

Our scheme diagram is presented in Fig. 1. From this figure, we can see that the proposed
method in this paper contains the regularization and denoising steps, and these two steps are
alternately carried out in our scheme. In particular, our scheme is based on the decoupling of the
regularization and denoising steps in the GI process: (1) the projected Landweber regularization
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in the first step and (2) a denoising step using a blocking matching low-rank approach. We will
describe these two steps in detail in this section.
In GI, the speckle field of the m−th sampling is recorded as Im(i, j) (m = 1, 2, 3, . . . ,M

represents the number of sampling), and the transmission beam modulated by the object with
transmission coefficient O(i, j) (the size is r × c) is measured by the bucket detector. The result of
the m−th sampling is recorded as Bm. Then, each of the speckle intensity Im(i, j) is rearranged as
a row vector Ψm of size 1 × N (N = r × c). Repeated M times, we obtain the following M × N
sensing matrix A:

A =



Ψ1

Ψ2
...

ΨM


=



I1(1, 1) I1(1, 2) · · · I1(r, c)
I2(1, 1) I2(1, 2) · · · I2(r, c)

...
...

. . .
...

IM(1, 1) IM(1, 2) · · · IM(r, c)


(1)

The M results from the bucket detector can be arranged as a M × 1 column vector Y:

Y = [B1,B2, . . . ,BM]T (2)
If we denote the unknown target object O(i, j) as an N dimensional column vector X (N × 1),
then, we will have the framework Y = AX, the matrix form is expressed as following:

Y =



B1

B2
...

BM


=



I1(1, 1) I1(1, 2) · · · I1(r, c)
I2(1, 1) I2(1, 2) · · · I2(r, c)

...
...

. . .
...

IM(1, 1) IM(1, 2) · · · IM(r, c)





x1
x2
...

xN


(3)

The image reconstruction is to obtain unknown X by solving inverse problem Y = AX. And if
the number of sampling M is less than N (M < N), this problem is ill-posed. When the random
speckle matrix A and bucket values Y from the ghost imaging system are obtained, then we will
apply our scheme to reconstruct image from these data. Next, we will introduce this method in
detail.

2.1. Proposed ghost imaging scheme

In common, the quality of imaging result by second-order correlation imaging equation is poor
at low measurement times. We expect to obtain high quality reconstructed image with fewer
sampling numbers. The compressive ghost imaging could get high-quality imaging results with
fewer measurements. The method proposed in this paper belong to one of them. Our method is
based on iterative regularization and denoising steps.

Step 1: Projected Landweber regularization. In the regularization step, we obtain the
preprocessed image by the following projected Landweber iteration regularization (PLIR).
Compared with other regularization methods (such as Tikhonov regularization), the projected
Landweber iteration regularization method is beneficial for solving large problems, and the
results are stable and easy to implement. The result of PLIR is defined as X(k) (in our method, we
set X(0) = 0.):

X(k) = X(k−1) + DAT (Y − AX(k−1)), k = 1, 2, . . . ,K (4)
where D is set as pseudo-inverse of ATA. Here, X(k) is the approximate image in the k iteration,
AT denotes the transposition matrix of A. By taking this regularization step, we first obtain initial
estimation image X(1) with noise from Y ,A,X(0) in a single iteration.



Research Article Vol. 27, No. 26 / 23 December 2019 / Optics Express 38627

The goal of ghost imaging is to reconstruct a sharper image with low sampling. In the
regularization step, Eq. (4) has the negative side effect of introducing new artifacts. This
regularization step is recorded as X(k) = PLIR(A, Y ,X(k−1)). To suppress the amplified noise and
artifacts introduced in Eq. (4), we apply the blocking matching low-rank minimization method to
filter the preprocessed image X(k) in the denoising step.

Step 2: Block matching low-rank denoising. The block matching low-rank (BMLR)
approach has shown promising performance in image denoising problem. Hence, we integrate it
into the compressive ghost imaging scheme.

The low-rankmatrix recovery problem aims to estimate a low-rankmatrix S from its observation
matrix X. This is a non-convex problem and can be solved by convex relaxation with the following
nuclear norm:

Ŝ = arg min
S
‖S‖∗, s.t.‖X − S‖22 ≤ η2 (5)

where ‖S‖∗ denotes the nuclear norm of a matrix S and is defined as the sum of S’s singular
values, that is, ‖S‖∗ =

∑
i σi(S), σi(S) denotes the i−th singular value of S, η is a small number

and measures the proximity between X and S. To solve the Eq. (5), the following method is used
in the SVD domain:

(U, Σ,V) = arg min
U,Σ,V

‖X − UΣV ‖22 +
∑

i
σi(S) (6)

Here, U and V are the orthogonal matrices. The authors of [26] have proved that the optimal
solution of Eq. (6) can be simply achieved by the singular soft-thresholding operation:



(U, Σ,V) = SVD(X)
Σ̂ = Sτ(Σ)

(7)

where Sτ denotes the soft-thresholding opreatior with threshold τ, and the reconstructed data
matrix Ŝ can be obtained conveniently by Ŝ = UΣ̂VT .
We explore the nonlocal self-similarity approach based on the SVD. For a given reference

patch p from a noisy image, we select a group of patches from the image which are similar to p.
The similarity of two patches is defined in [27]. Let us suppose that there are N(p) such similar
patches (including p) which are labeled as j, where 1 ≤ j ≤ N(p). Next, we stack these similar
patch vectors to form a matrix Xp = [x1, x2, . . . , xj, . . . , x |N(p) |]. Hence, this matrix is a low-rank
matrix and has sparse singular values. We apply the low-rank minimization method to reduce the
undersampling noise.

For each local patch xp (size:b × b) from image Xk, we could search a group (number:N(p)) of
its nonlocal similar patches in the image (in practice, in a large-enough image area) by block
matching. Here, we define the block distance as the l2-norm of the difference between the two
blocks to achieve this:

d(xp, x̄p) = 1
b2
‖xp − x̄p‖22 (8)

where x̄p is an arbitrary block in the searching neighborhood. We select N(p) patches with a
minimum block distance, and N(p) is set differently according to different images and sampling
numbers.
By stacking these similar patches’ vectors into a b2 × N(p) matrix, denoted by Xp, we get

Xp = Sp + Γp, where Sp and Γp denote the patch matrices of clean image and undersampling
noise, respectively.

Then, we utilize the SVD to calculate the singular values of the matrix formed by these similar
patches. For the natural image, Sp should be a low-rank matrix, thus, we could apply the low-rank
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matrix approximation [Eq. (7)] to estimate Sp from Xp:

Ŝp = arg min
Sp
‖Sp‖∗, s.t.‖Xp − Sp‖22 ≤ η2 (9)

The ‖Sp‖∗ denotes the nuclear norm of a matrix Sp.
The optimal solution of Eq. (9) can be obtained by the singular soft-thresholding operation.



(Up, Σp,Vp) = SVD(Xp)
Σ̂p = Sτp (Σp)

(10)

where Up and Vp are the orthonormal matrices. The reconstructed image matrix Ŝp is obtained
by Ŝp = UpΣ̂pVT

p .
Then the whole image can be reconstructed by aggregating all the denoised patches and is

recorded as q(k). The block mathcing low-rank denoisng process is recorded as q(k) = BMLR(X(k))
. It will be returned to the step 1 to perform regularization, we set X(k−1) = q(k).
We integrate a block matching low-rank minimization method into the compressive ghost

imaging problem, leading to a powerful algorithm. In our scheme, regularization and denoising
are performed alternately. When the iteration reaches a certain number of times, the iteration
is stopped to obtain the final reconstructed image. The whole ghost imaging algorithm is
summarized in Algorithm 1, and is recorded as BLRGI in this paper.
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matrix approximation [Eq. (7)] to estimate Sp from Xp:

Ŝp = arg min
Sp
‖Sp‖∗, s.t.‖Xp − Sp‖22 ≤ η2 (9)

The ‖Sp‖∗ denotes the nuclear norm of a matrix Sp.
The optimal solution of Eq. (9) can be obtained by the singular soft-thresholding operation.



(Up, Σp,Vp) = SVD(Xp)
Σ̂p = Sτp (Σp)

(10)

where Up and Vp are the orthonormal matrices. The reconstructed image matrix Ŝp is obtained
by Ŝp = UpΣ̂pVT

p .
Then the whole image can be reconstructed by aggregating all the denoised patches and is

recorded as q(k). The block mathcing low-rank denoisng process is recorded as q(k) = BMLR(X(k))
. It will be returned to the step 1 to perform regularization, we set X(k−1) = q(k).
We integrate a block matching low-rank minimization method into the compressive ghost

imaging problem, leading to a powerful algorithm. In our scheme, regularization and denoising
are performed alternately. When the iteration reaches a certain number of times, the iteration
is stopped to obtain the final reconstructed image. The whole ghost imaging algorithm is
summarized in Algorithm 1, and is recorded as BLRGI in this paper.

Algorithm 1 : Blocking matching low-rank based compressive ghost imaging.
Input: Bucket values : Y , Random matrix: A .
1: Initialize: X(0) = 0.
2: for k = 1 : K do
3: Use X(0) to obtain the regularized image X(k) via Eq. (4)
4: for each patch xp in X(k) do
5: Find similar patch group Xp
6: SVD for each noisy data matrix Xp: (Up, Σp,Vp) = SVD(Xp)
7: Get the estimation using singular value thresholding [Eq. (10)]
8: end for
9: Image update: obtain an improved image q(k) by weighted averaging all patches, q(k) =
BMLR(X(k)) and set X(k−1) = q(k).
10: end for
Output: Reconstructed image X(K).

3. Result

In order to test the effects of our proposed scheme, we demonstrate the performance via numerical
simulation and experimental results, and compare it with the TV-based GI (TVAL3) [24],
ghost imaging via sparsity constraint (GISC) in discrete cosine domain [16] and joint iteration
compressive ghost imaging (JIGI) [18,21] algorithm.

3.1. Numerical simulation results

In order to objectively evaluate the performance of our proposed method, We measure the
reconstruction quality quantitatively in terms of peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [28,29]. PSNR and SSIM reflect the similarity between the reconstructed

3. Result

In order to test the effects of our proposed scheme, we demonstrate the performance via numerical
simulation and experimental results, and compare it with the TV-based GI (TVAL3) [24],
ghost imaging via sparsity constraint (GISC) in discrete cosine domain [16] and joint iteration
compressive ghost imaging (JIGI) [18,21] algorithm.

3.1. Numerical simulation results

In order to objectively evaluate the performance of our proposed method, We measure the
reconstruction quality quantitatively in terms of peak signal-to-noise ratio (PSNR) and structural



Research Article Vol. 27, No. 26 / 23 December 2019 / Optics Express 38629

similarity index (SSIM) [28,29]. PSNR and SSIM reflect the similarity between the reconstructed
image and original image. They are defined as following:

PSNR = 10 × log10
[
maxVal2

MSE

]
, (11)

where MSE = 1
r×c

∑r
i=1

∑c
j=1[u(i, j) − x(i, j)]2, and maxVal2 is the maximum possible pixel value

of the image and:

SSIM(u, x) = (2µuµx + C1)(2σux + C2)
(µ2u + µ2x + C1)(σ2

u + σ
2
x + C2)

, (12)

here, u represents the original image consisting of r × c pixels, and x denotes the reconstructed
image. L is the dynamic range of image pixels, which takes the values 255 in our paper. µu and µx
are (respectively) the means of u and x, σu and σx are (respectively) the standard deviations of u
and x, and σux is the cross correlation of u and x after removing their means. The items C1, C2 are
small positive constants that stabilize each term. In our simulations, we set C1 = C2 = (0.05L)2.
Naturally, the larger PSNR and SSIM values, the better quality of the image reconstructed.
In the block matching low-rank denoising, the block size b may influence the imaging

performance. If the block size b is larger, we will get smoother imaging result. And, if the
block size is too small, the purpose of edge preserving cannot be achieved. In the ghost imaging
process, we need to trade off between smoothing and edge preserving. In this paper, we select
the block size b between 4, 5 and 6, and adjust the size of the block according to the best imaging
results based on simulations or experiments. We choose the first reference patch from the top
left of image and use step 3 in both rows and columns to go from one reference patch to the
next. All the simulations are performed in MATLAB R2013a on an Intel(R) Core (TM) CPU
i5-8250U processor (1.6 GHz), 32G memory. To estimate the complexity of our method, for an
N × N image, we assume that the average time to compute similar patches for each reference
patch is T. The SVD of each group with a size of B × b2 is O (B × b4). The regularization
costs O (M × N2) for the iterative update. Hence, the total complexity for ghost imaging is
O [N2(B × b4 + T +M × N2)].

The first object to be imaged is the binary object "gong" (the pixel number is 128 × 128).
Figure 2 shows the reconstructed images of TVAL3, GISC, JIGI and BLRGI with sampling
number being 500, 600, 700, 800 and 900 respectively. From Fig. 2, we can see that better quality
of ghost imaging results with four methods are obtained according to the increasing sampling
number. When the sampling number is 500, the ghost imaging results of BLRGI are better than
the results of other methods, and the shape of the object could be distinguished but are blurry.
But when the number of sampling increases to 900, the image quality of our method is better
than others, and the result is close to the original image from visual observation.

In order to numerically compare these four kinds of ghost imaging results, we have calculated
their PSNRs and SSIMs under different sampling numbers which are shown in Figs. 3(a) and
3(b). In Fig. 3(a), we can observe that when the number of sampling is less than 950, the PSNR
value of the BMLRGI is significantly larger than other algorithms, especially when M = 600,
the PSNR values of TVAL3, GISC, JIGI and BMLRGI are 9.89dB, 6.97dB, 9.88dB, 12.15dB
respectively. From Fig. 2, we can find that the reconstruction result of BLRGI is significantly
clearer than other results. The PSNR value of imaging result with JIGI is slightly greater than
BMLRGI when M > 950, e.g., the PSNR values of JIGI and BLRGI are 26.65dB, 23.24dB when
the number of sampling is 1000. However, it can be found that the SSIM of BLRGI is larger than
JIGI at this time from Fig. 3(b). We calculate that the PSNR value of JIGI is 12% higher than
BLRGI, but from the perspective of SSIM value, BLRGI is 14% higher than JIGI. Therefore, the
algorithm in our paper shows better image reconstruction ability under low sampling numbers.
In fact, our method BLRGI is not only applicable to the binary object, but also applicable to

the gray-scale object. In order to verify this point, we choose a more complicated gray-scale
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Fig. 3. Numerical curves of PSNR and SSIM under different M with TVAL3, GISC, JIGI
and BLRGI for "gong" image.

object "cameraman" to show the result of imaging intuitively. The ghost imaging results using
TVAL3, GISC, JIGI and BLRGI are shown in Fig. 4 with different numbers of sampling M, and
the corresponding numerical results of PSNR and SSIM are shown in Fig. 5. From Fig. 4, we can
see that the quality of imaging results with BLRGI are clearer than imaging results of TVAL3,
GISC and JIGI with the same sampling numbers. By careful observation from Figs. 5(a) and 5(b),
we can find that the numerical values of PSNR and SSIM with BLRGI are also correspondingly
higher than other methods under the same sampling number. From these figures and curves, we
can see that our results are superior to other methods, both subjectively and objectively.

As described above, our method BLRGI is an iterative process of regularization and denoising
steps. In order to verify the effectiveness of each step of the method, Fig. 6 shows the regularized
result images X(k) (the first row), denoised images q(k) (the second row) and residual images
(the third row) between the original image O and the reconstructed image q(k) in each iteration
number k for "gong" image with M = 900. From left to right, we can find that as the number of
iterations increases, the image obtained by regularization contains more and more details, the
information of residual images between the original image and the denoised image q(k) becomes
less and less, that is to say the reconstruction result of BLRGI is closer to the original image.
To illustrate this point, we draw a curve about the mean squared error (MSE) under different

iterations k as shown in Fig. 7. It measures the proximity of reconstructed image and original



Research Article Vol. 27, No. 26 / 23 December 2019 / Optics Express 38631

M=3000M=1000 M=2000

JIGI

BLRGI

TVAL3

GISC

M=3500

(a) (b) (c) (d) (e)
 

 

0

0.5

1
Object

Fig. 4. Simulation results of "cameraman" image with TVAL3, GISC, JIGI and BLRGI
under M sampling.

500 1000 1500 2000 2500 3000 3500 4000
The number of measurement

12

14

16

18

20

22

24

26

P
S

N
R

(d
B

)

TVAL3
GISC
JIGI
BLRGI

500 1000 1500 2000 2500 3000 3500 4000
The number of measurement

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
S

IM

TVAL3
GISC
JIGI
BLRGI

（a） （b）

Fig. 5. Numerical curves of PSNR and SSIM under different samples with TVAL3, GISC,
JIGI and BLRGI for "cameraman" image.

Regularization

 result：

Denoising 

result:

Residual  image: 

k =10 k=16 k=62k=52k=42k=30k= 22

)(kX

)(kq

Oq k
�

)(

Fig. 6. Regularized result, denoising result and residual image under different iteration
numbers with 900 samples for "gong" image.



Research Article Vol. 27, No. 26 / 23 December 2019 / Optics Express 38632

image. From Fig. 7, we can observe that with the growth of iteration number, the MSE curve
decrease monotonically and ultimately become flat and stable, exhibiting good stability of the
proposed method. One can also observe that about 50 iterations are typically sufficient. When
the MSE is almost stable or k reaches the maximum number K of iterations, we stop iterating and
get the final reconstructed image.
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Fig. 7. The MSEs change curve of BLRGI reconstructed images under different iteration
number for "gong" image with 900 samplings.

3.2. Experiment results

The schematic of experimental system is shown in Fig. 8. In our experimental system, we use
the binary Bernoulli random speckle matrix to obtain the ghost imaging results and apply the
commercial digital light projector (DLP, Hitachi HCP-3050X, 1024 × 768 pixels with pixel size
= 12.5 × 12.5µm2, 3000 lumens) as the light source to illuminate the object. The object to be
imaged is a rubber and modified 1951 USAF resolution test pattern printed on a A4 sheet of
paper. We select the 128 × 128 pixels for each binary speckle pattern, and the field of view just
covers the object region. The reflected signal light is collected by a Si transimpedance amplified
photodetector (Thorlabs, PDA100A-EC, 320-1100nm, 2.4 MHz BW, 100 mm2).

DLP
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Computer

Object
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Lens

Bucket
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Fig. 8. Experiment schematic diagram of BLRGI.
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The object to be reconstructed is shown in Fig. 9(d) and the reconstructed results of TVAL3,
GISC, JIGI and BLRGI with different sampling numbers (M = 3000,M = 4000,M = 5000) are
shown in Figs. 9(a)–9(c) respectively. From Figs. 9(a)–9(c), we can observe that our result is
smoother than TVAL3, GISC and JIGI, it gets not only the contour of the object, but also the
part of details of 1951 USAF resolution testing pattern with the same sampling. From these
figures, we find that BLRGI could obtain higher resolution and visually more discernible images
compared with other four methods under the same sampling number.

M=3000 M=4000

TVAL3

GISC

JIGI

BLRGI

(a) (b) (c) (d)

 Object

M=5000

Fig. 9. Experimental reconstructed results with different sampling numbers (3000, 4000,
5000) and the original object.

4. Conclusion

In this paper, the compressive ghost imaging via block matching low-rank approach is developed,
which exploits the image’s nonlocal self-similarity. This scheme uses a decoupled iterative
scheme with SVD shrinkage. First, the projected Landweber regularization is used to obtain
preprocessing image, then the property of image nonlocal self-similarity is utilized to process the
regularized image in a sliding window manner, where the block has a fixed size. The array of
these similar blocks are stacked to a low-rank matrix, then the noise is attenuated by the threshold
shrinkage. Both numerical simulations and experimental realizations have been used to show its
superiority in visual observation and numerical values.
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